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A B S T R A C T

The Odontogenic keratocyst (OKC) is a cystic lesion of the jaws, which has high growth and recurrence rates
compared to other cysts of the jaws (for instance, radicular cyst, which is the most common jaw cyst type). For
this reason OKCs are considered by some to be benign neoplasms. There exist two sub-types of OKCs (sporadic
and syndromic) and the ability to discriminate between these sub-types, as well as other jaw cysts, is an
important task in terms of disease diagnosis and prognosis. With the development of digital pathology,
computational algorithms have become central to addressing this type of problem. Considering that only basic
feature-based methods have been investigated in this problem before, we propose to use a different approach
(the Bouligand–Minkowski descriptors) to assess the success rates achieved on the classification of a database of
histological images of the epithelial lining of these cysts. This does not require the level of abstraction necessary
to extract histologically-relevant features and therefore has the potential of being more robust than previous
approaches. The descriptors were obtained by mapping pixel intensities into a three dimensional cloud of points
in discrete space and applying morphological dilations with spheres of increasing radii. The descriptors were
computed from the volume of the dilated set and submitted to a machine learning algorithm to classify the
samples into diagnostic groups. This approach was capable of discriminating between OKCs and radicular cysts
in 98% of images (100% of cases) and between the two sub-types of OKCs in 68% of images (71% of cases).
These results improve over previously reported classification rates reported elsewhere and suggest that
Bouligand–Minkowski descriptors are useful features to be used in histopathological images of these cysts.

1. Introduction

Cysts are pathological cavities containing fluid or semi-fluid content
and lined by epithelial tissue. The diagnosis of jaw cysts is based on
histopathology features, firstly to identify to which of the various cyst
types a lesion corresponds to (with different origins, behaviour and
prognosis), and secondly, to avoid misdiagnosis with other lesions (e.g.
as intra osseous squamous cell carcinoma, unicystic ameloblastoma
and other tumours) might present with similar radiographical features
but require different treatments.

Among the cysts arising in the jaws, two important types are the
‘radicular cyst’ and the ‘odontogenic keratocyst’ (OKC). Radicular cysts
are the most common type (55% of odontogenic cysts [10]), they are
associated with the roots of teeth with non-vital pulps (e.g. due to
advanced dental caries) and have slow growth. OKCs are less frequent

(12% of odontogenic cysts [10]), they are not associated with dental
disease and have certain characteristics common with neoplasms (e.g.
active epithelial growth [21,14,15] and higher recurrence rates).
Furthermore, there are two OKC sub-types; they can be solitary cysts
(sporadic), or they can be multiple (synchronous or metachronous) as
part of a rare autosomal dominant disease, the Gorlin-Goltz or Basal
Cell Naevus Syndrome (BCNS) [11,20]. About 85% of syndromic and
30% of sporadic cases have mutations of the PTCH1 gene [13],
(similarly to basal cell carcinomas of skin) indicating a potential
common pathogenesis across OKC sub-types. However, there seem to
be differences in the behaviour of syndromic and sporadic OKCs too,
and therefore any morphological evidence that could help differentiat-
ing between the two sub-types is of diagnostic and predictive impor-
tance.

Woolgar et al. [22,23] summarised some histological differences
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between syndromic and sporadic OKCs. While those features are
relevant in histopathological terms to understand the organisation of
the OKCs, they are difficult to characterise using automated or semi-
automated approaches as they require contextual descriptions of cells
and tissues that are not directly translated into quantitative features
that machine learning algorithms can currently handle. Although an
automated technique was proposed to classify other groups of oral cysts
in [8], so far in the domain of machine diagnosis the only work
addressing the diagnostic differences between syndromic and non-
syndromic OKC cysts is [11], where the differences in the morphology
of algorithmically segmented cells and the architectural organisation of
the epithelial lining of inflammation-free regions of OKCs sub-types
were investigated using semi-automated image analysis. Such differ-
ences, however, were not sufficient to achieve OKC sub-type classifica-
tion purposes (60% correct classification rate), although they allowed a
good discrimination of OKCs from the most common type of jaw cyst
(i.e. radicular cysts) [11]. For expert histopathologists, the latter
discrimination should not be a particularly difficult task, but is
currently far from becoming automated. Furthermore, the differences
between OKC sub-types are more difficult to quantify. If it was possible
to rationalise the differences between all these lesions systematically,
they could become histolgical discriminators for cases of BCNS,
specially in retrospective analyses, in cases exhibiting low penetrance,
and to develop indicative markers of recurrence potential. Advances in
digital pathology and virtual slides technology have made attractive the
possibility of developing machine learning algorithms to help pathol-
ogists gather reproducible morphological evidence for diagnostic
purposes, to allow analysis of large datasets with multiple tissue
sections and to evaluate the results of treatment modalities.

The purpose of this paper is to investigate a statistical approach to
the classification of cyst lining images, based on a machine vision
algorithm (Bouligand–Minkowski descriptors) that does not require
high levels of segmentation of histologically relevant features.

2. Materials

The material used in this paper consists of an anonymised database
of 150 images of haematoxylin and eosin (H&E) sections from
formalin fixed and paraffin embedded specimens of developmental
(solitary and syndromic OKCs) or inflammatory (radicular cysts)
origin. Briefly, the database included 65 images of the lining from 13
cases of sporadic (k) OKCs, 40 images from 8 cases of syndromic (s)
OKCs and 45 images from 9 cases of radicular (r) cysts (i.e. 5 non-
overlapping images per case and with no sectioning artefacts). The cyst
types were previously determined by histopathologists using histologi-
cal as well as clinical information from the respective patients.

The images were captured using an Olympus BX50 microscope
(Olympus Optical Co. Tokyo, Japan) with a x40 objective and a colour
camera JVC KY-55B (JVC, Tokyo, Japan) attached to a 24 bit RGB
frame grabber (Imaging Technologies IT4PCI, Bedford, MA, USA).
With this setup the image size was 768×572 pixels with an inter-pixel
distance of 0.31 µm. The images were background corrected for
illumination uniformity (by means of the transmittance ratio of the
specimen with an empty bright field frame), for camera bias (by
subtraction of a non illuminated frame) and for camera shot noise
(each image was the average of 32 consecutive frames). The extent of
the epithelial lining of the lesions was segmented (from the background
and connective capsule) by optical intensity thresholding (described
below), and further analysis was done exclusively on the pixel values of
the epithelial lining. Fig. 1 shows one sample for each group (sporadic
OKC, radicular and syndromic OKC).

Finally, all the stained images were converted to grey values, where
the in the intensity G of each pixel is obtained from the R, G and B
components using the following weighted sum:

G R G B= 0.2989* + 0.5870* + 0.1140* (1)

3. Method

We investigated the classification performance of the Bouligand–
Minkowski (B-M) descriptors developed in [2], to classify the images of
cyst linings into their original diagnostic groups k (sporadic OKCs), s
(syndromic OKCs) and r (radicular cysts). To our knowledge, this is the
first proposal for using a statistical approach to this task, while
previous works used morphological features that require more com-
plicated pipelines to guarantee that the generated histologically-
relevant features are segmented accurately. The method consists of
three steps applied to each image: 1) segmenting the epithelial lining
from the background (i.e. empty space of the cystic lumen and the
surrounding cyst fibrous capsule), 2) computing the Bouligand–
Minkowski descriptors of the lining image and 3) concatenating and
submitting such descriptors to a classifier algorithm to predict the
original type of cysts they belonged to. Section 3.1 briefly describes the
steps involved in the segmentation, whereas Sections 3.2–4 provide the
theoretical background on the B-M descriptors.

3.1. Segmentation

The segmentation of the epithelial lining was performed by a
combination of colour deconvolution and morphological operations.
First, colour deconvolution separated the main colour components of
the hematoxylin and eosin stained regions into two channels. The
epithelial lining typically showed more intense staining in the haema-
toxylin channel than the other parts of the sample. The histogram
equalization and thresholding of this channel allowed highlighting the
region containing the epithelial cells. Finally, morphological filtering
(using binary reconstruction) was used to eliminate small features
producing a clean image where the largest region closely corresponded
to the epithelial lining of the cysts. Fig. 2 illustrates the procedure and
each step involved. More details can be found in [11].

3.2. Fractal geometry

A fractal [16] is a set of points embedded in a topological space that
exhibits self-similarity (i.e. the characteristic of being exactly or
statistically similar independently of the scale of observation). Fractal
geometry concerns the study of the properties that are scale-indepen-
dent and the self-similarity of such objects. The most commonly used
property to characterise such objects is the ‘fractal dimension’. This
describes the rate of space filling of the set with scale and it can be
defined through the Hausdorff-Besicovitch dimension, a concept from
Measure Theory, which requires some knowledge of the analytical rules
that generated the fractal set.

Fractal scale independence implies infinite amount of morphologi-
cal detail. Real-world natural objects cannot be infinitely complex, yet
some degree of self-similarity and complexity is a common feature.
Therefore, it is possible to model such objects by means of fractal
geometry concepts (e.g. the fractal dimension) even when there are no
well-defined analytical rules (as required by Measure Theory) respon-
sible for generating the sets. An alternative approximation to the
Hausdorff-Besicovitch dimension consists of measuring some physical
property of the object over a range of scales, e.g. with a ruler with
measuring unit length ϵ and counting the number N(ϵ) of units
necessary to measure the length of the object. Such abstraction can
be extended to any embedding space endowed with a topological
dimension DT by enlarging the length ϵ and recomputing N(ϵ), to
estimate the fractal dimension D:

D D N= − lim log (ϵ)
log1/ϵ

.T
ϵ→0 (2)

In practice, the limit is estimated from the slope of a straight line fit to
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the plot of log N(ϵ) vs. log1/ϵ. Quantities other than N(ϵ) can be used to
estimate the self-similarity of objects using, e.g., methods such as box-
counting, B-M dilation and mass-radius [6]. Here we concentrate on
the B-M approach because it can be easily implemented and was shown
to be useful in characterising a number of biological problems [19,2,7].

3.3. Bouligand–Minkowski dimension

The B-M fractal dimension, originally developed for the analysis of
binary sets [6], was adapted here to analyse grey-level images. The
procedure consists of two steps. First, the grey level image

I M N: [1, ] × [1, ] → is mapped onto a cloud C of points within a
discretised bounded region E of the three-dimensional Euclidean
space. Each pixel with coordinates x y M N( , ) ∈ ([1, ] × [1, ]) and in-

tensity Rz ∈ is mapped onto a point x y z C( , , ) ∈ . Fig. 3 illustrates
such procedure.

Second, the points are gradually dilated by spheres with increasing
radii r, starting with r=1, and the total volume V(r) of the dilated cloud
is measured. By replacing N(ϵ) by V(r) in Eq. (2) and considering that
the power-law scales with r2 in the B-M dilation, the dimension is
estimated by

D V r
r

= 3 − lim log ( )
log2

.BM
r→0 (3)

Fig. 1. Images of the three cysts classes investigated. Field width 241 µm. On top, the image as captured with the microscope. At the bottom, the region of interest containing exclusively
cyst lining (epithelium), which is where the analysis was actually carried out. The cysts lumen is at the top of the image. The dark elliptic dark structures in the epithelium are the
epithelial cell nuclei. Note the similarities between the OKC subtypes.

Fig. 2. Steps involved in the segmentation of the epithelial lining. (a) Original image. (b) Hematoxylin component. (c) Grey-level equalised version of (b). (d) Threshold. (e)
Morphological reconstruction to remove “holes”. (f) Segmented epithelial lining.

J.B. Florindo et al. Computers in Biology and Medicine 81 (2017) 1–10

3



3.4. Bouligand-Minkowski descriptors

Here, instead of estimating the dimension DBM, the method uses
the values of log V r( ) within a pre-defined range of radii r as the B-M
descriptors. When an image is homogeneous, the procedure results in a
regular cloud of points with the plot of log V r( ) vs. log r approaching a
linear function. With heterogeneous images, at some scales the spheres
start merging for various values of r and the log-log plot shows a
different pattern. This curve therefore is a representation of the image
homogeneity at various scales (radii) and this makes it appealing for
characterisation of grey-level image complexity [2].

The set of volumes V(r) are obtained by summing the points
pertaining to the union of spheres B p r( , ) centred at each point
p C∈ with radius r, that is,

∑V r p1( ) = ( ′),
p E

U
′∈

r
(4)

where 1 is the indicator function and

U B p r= ⋃ ( , ).r
p C∈ (5)

In discrete spaces (such as digital images), B p r( , ) is the (finite) set
of points at a distance at most r from p. Therefore the number of points
in U can be efficiently computed by means of the Euclidean Distance
Transform (EDT). In a three-dimensional space, each point p E′ ∈ is
transformed into:

EDT p p pdist( ′) = min( ( , ′)),
p C∈ (6)

where p pdist( , ′) is the Euclidean distance between the vectors. Several
methods exist to compute the EDT efficiently [5].

To compute the B-M descriptors D from the EDT, all the possible
values of the transform within the region of interest in E are
increasingly sorted into a vector o(k) and the descriptors are given by
the logarithm of the cumulated sum of points p′ such that
EDT p o k( ′) ≤ ( ):

D k p p E EDT p o k( ) = log#{ ′: ′ ∈ and ( ′) ≤ ( )}, (7)

Fig. 3. Steps involved in the estimation of the Bouligand-Minkowski fractal dimension of a grey-level image. (a) Greyscale image. (b) Cloud dilation by growing radius. (c) Plot of log
V r( ) vs. log r. The dimension is obtained by replacing the limit in Eq. (3) by the slope of a straight line fit to the curve. Here, the cloud points were sub-sampled by 1/10th of the original

for display clarity purposes. In the proposed method the entire image is analysed, (a) Original image, (b) Morphological dilation, (c) Bouligand-Minkowski curve.
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where # expresses for set cardinality. The variable k indexes all the
non-negative values for the EDT within the considered space, so that
e.g., if we take r ≤ 2 there are four possible values for k (1, 2 , 3 and
2), and therefore four B-M descriptors are produced. We use r ≤ 8, to
provide 64 descriptors, although only the first 50 are used in our
experiments, as no significant classification gains were achieved
beyond that number.

3.5. Assessment

As described in Section 2, the database contains 150 images
collected from 30 independent cases (5 images per case).

The B-M descriptors were used for image classification as input
parameters of a Linear Discriminant Analysis (LDA) supervised
classifier [4]. This method was chosen due to its ability of decorrelating
features among the samples. For small values of k the difference
between the growth of D k( ) is subtle, so simpler classifiers (such as k-
nearest-neighbours [4]) for instance, might not be capable of identify-
ing patterns useful for the classification.

We used two approaches to define training and testing sets and
assess the classification performance, to know, a random 10-fold to
evaluate the performance of the classifier when the number of
descriptors is varied and a nested 10-10-fold employed to obtain the
best classifier setup for the cyst classification. In both cases, the B-M
descriptors were subjected to principal component analysis [4] with the
aim of decorrelating the image features, as the cumulative way that B-
M descriptors are obtained tends to result in some degree of inter-

descriptors dependence. If any random fold did not contain at least one
sample from each group, that classification round was discarded and
the procedure was repeated until satisfying such requirement.

In the first approach, the set of samples is randomly divided into 10
equal sub-sets and in each round of classification one sub-set is used
for testing and all the other sub-sets are used for training. The success
rate is given by the ratio of the number of images correctly classified
and the total number of images in the database. The procedure is
repeated 10 times (each time with a different arrangement of the
random sub-sets) and the final success rate is given by the total
average.

The second approach differs from the first one in that instead of
running over all possible numbers of features, an ideal number is
chosen by a second 10-fold procedure performed only over the testing
set. In this way, the classification involves two nested 10-folds, an
external one responsible for the classification and an internal proce-
dure where the optimum number of descriptors is determined.

4. Results

The results are reported below by groupings (k: sporadic OKCs, r:
radicular cysts and s: syndromic OKCs) having diagnostic relevance
(k×r×s, ks×r and k×s).

All the results are expressed in terms of classification accuracy Acc,
which is defined by the following expression:

Fig. 4. Classification accuracy (percentage of samples correctly identified) when the number of features is varied in the discrimination between all the types of cysts here considered
(k×r×s). (k: sporadic OKC, r: radicular cyst and s: syndromic OKC). The test is also applied to pre-processed images.

J.B. Florindo et al. Computers in Biology and Medicine 81 (2017) 1–10

5



Acc TP
TP TN

=
+

where TP is the number of true positives, i.e., the number of samples/
cases assigned to a particular group and actually pertaining to that
group and TN is the number of true negatives, i.e., the number of
samples/cases not assigned to a particular group and that actually do
not come from that group. In this way, TP TN+ is the total number of
samples and therefore Acc can also be interpreted as the ratio of images
correctly classified with respect to the total number of samples in the
database.

The first test evaluates the success rate of the classification
(percentage of images correctly classified) assessed for a number of
descriptors ranging between 1 and 50. In addition to the original
unprocessed images, we also applied three different pre-processing
operations: histogram equalization, Gaussian filter blurring (kernel of
radius=5 pixels and standard deviation=1) and sub-sampling size
reduction by half, to test the robustness of the classification subject
to possible variations in image quality. Histogram equalization en-
hances the contrast of images, balancing excessively dark or clear
images. Blurring and subsampling simulate practical situations where
the images are collected with sub-optimal microscope focusing and at
lower resolution, respectively. The objective of verifying the perfor-
mance in such conditions is only to assess how much and in which case
such operations affect the final result. For the purpose of discussion
and comparison only the results for the original images were con-
sidered. Fig. 4 shows the plot of success rates for the discrimination
k×r×s, Fig. 5 for ks×r and Fig. 6 for k×s.

Table 1 lists the success rates for each discrimination task and for
the different pre-processings applied. Here the nested 10-10-fold is
employed and an ideal number of features is selected by the internal
10-fold procedure. Confirming what was expected from the biological
problem, the discrimination between keratocysts is a more difficult
challenge than the identification of radicular cysts.

Tables 2–4 show the confusion matrices for k×r×s, ks×r and k×s
classification, respectively. In this representation, the rows contain the
actual (expected) groups and the columns, the predicted groups. We
opted for normalising this matrix as the number of samples assigned to
each group is an average of all the classification rounds. That results in
fractional values (including a non-integer number of samples) which
should not be misinterpreted in this context. It is worth noticing that
the discrimination between syndromic (k) and sporadic (s) OKCs tends
to be lower than between OKC cysts (of any type) and radicular (r)
cysts.

At this point, we also tested the possibility of using only the H
component of the image (Hematoxylin) as that dye is mostly uptaken
by cell nuclei. The H component was extracted from the H E& image
using a procedure called colour deconvolution. This involves an
orthonormal transformation of the Red-Green-Blue pixel components,
once the individual dye vectors (in this case H and E separately) have
been determined. The procedure enables determining the contribution
of each individual dye used in the staining. Futher details can be found
in [18]. Tables 5–8 list the results obtained for the same types of pre-
processed images. In general the average performance is similar to that
achieved using the original image.

Table 9 shows the success rates analysed case-wise (the database

Fig. 5. Classification accuracy (percentage of samples correctly identified) when the number of features is varied in the discrimination between radicular (r) and OKC (ks×r). The test is
also applied to pre-processed images.
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contains 30 individual cases, with 5 images from each). For each case,
the percentage of samples correctly classified as k, r or s is taken into
account. The classifier is said to identify the lesion type if more than
50% of a case are correctly classified. In general, all the success rates
are now larger than in the sample-wise classification, even because the
classification problem is easier in fact, given the reduced number of
elements to be discriminated (30 against 150 in the sample-wise test).

Tables 10–12 show the confusion matrices for the case-wise
classification of k×r×s, ks×r and k×s, respectively.

Finally, Table 13 shows the contingency tables comparing the
classification performance of the approach proposed in this work to
that previously achieved in [11]. The same table shows the respective
p-values of a McNemar test [3] for rejecting the null hypothesis that
both classifiers are equivalent. In all cases it was demonstrated that the
difference in the classification performance is statistically significant
with an error within the confidence interval.

Fig. 6. Classification accuracy (percentage of samples correctly identified) when the number of features is varied in the discrimination between both types of OKCs (k×s). (k: sporadic
and s: syndromic OKC). The test is also applied to pre-processed images.

Table 1
Classification accuracy in the discrimination between all the types of cysts here
considered (k×r×s), between radicular (r) and OKC (ks×r) and between both types of
OKCs (k×s) (k: sporadic and s: syndromic OKSs).

k×r×s ks×r k×s

Original 72 ± 2% 98 ± 1% 68 ± 3%
Equalised 74 ± 2% 95 ± 1% 73 ± 2%
Blurred 70 ± 1% 94 ± 2% 72 ± 2%
Sub-sampled 69 ± 2% 92 ± 2% 62 ± 4%

Table 2
Confusion matrices obtained from the classification of cysts k×r×s.

k r s

k 0.66 0.00 0.34
r 0.04 0.88 0.08
s 0.36 0.00 0.64
Normal

k r s

k 0.73 0.03 0.34
r 0.10 0.86 0.04
s 0.33 0.05 0.62
Equalised

k r s

k 0.63 0.06 0.31
r 0.06 0.82 0.11
s 0.29 0.02 0.69
Blurred

k r s

k 0.64 0.06 0.30
r 0.05 0.84 0.11
s 0.36 0.04 0.60
Sub-sampled
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5. Discussion

Odontogenic cysts arise from proliferation of epithelial cell rests
commonly found in the jaw bones. These cells were originally part of
the tooth-forming apparatus and subsequently remain inactive through
life, but can occasionally proliferate spontaneously or in response to
inflammatory processes occurring nearby.

Traditional histopathology is based on the interpretation of the
morphological appearance of cells and tissues, and while this is the
current diagnostic gold standard, the assessment of morphological
features through visual observation has unavoidable elements of
subjectivity. For instance, cell and tissues shapes and sizes and staining
patterns are difficult to assess consistently across observers, making the
reproducibility of diagnostic procedures less robust than desired. The
arrival of digital imaging and digital pathology, however, has opened
the opportunity to treat histopathological digital images as numerical
data sets which can be processed by algorithms for image reconstruc-
tion, enhancement and classification. The rationale for the develop-
ment of automated diagnosis therefore aims to more accurate and
reproducible diagnosis and to analyse more tissue samples than is

Table 3
Confusion matrices obtained from the classification of cysts ks×r

ks r

ks 1.00 0.00
r 0.07 0.93
Normal

ks r

ks 0.97 0.03
r 0.09 0.91
Equalised

ks r

ks 0.95 0.05
r 0.09 0.91
Blurred

ks r

ks 0.94 0.06
r 0.12 0.88
Sub-sampled

Table 4
Confusion matrices obtained from the classification of cysts k× s.

k s

k 0.69 0.31
s 0.34 0.66
Normal

k s

k 0.77 0.23
s 0.33 0.67
Equalised

k s

k 0.74 0.26
s 0.32 0.68
Blurred

k s

k 0.65 0.35
s 0.43 0.57
Sub-sampled

Table 5
Classification accuracy in the discrimination between all the types of cysts using only the
H (hematoxylin) component of the microscopy image.

k×r×s ks×r k×s

Original 73 ± 3% 97 ± 1% 60 ± 3%
Equalised 78 ± 2% 95 ± 1% 75 ± 2%
Blurred 65 ± 2% 92 ± 1% 61 ± 4%
Sub-sampled 71 ± 2% 93 ± 1% 60 ± 4%

Table 6
Confusion matrices obtained from the classification of cysts k×r×s using the H
component.

k r s

k 0.72 0.02 0.26
r 0.06 0.91 0.03
s 0.43 0.01 0.56
Normal

k r s

k 0.70 0.01 0.29
r 0.03 0.92 0.05
s 0.24 0.01 0.75
Equalised

k r s

k 0.65 0.05 0.30
r 0.14 0.81 0.05
s 0.49 0.04 0.47
Blurred

k r s

k 0.72 0.03 0.25
r 0.11 0.85 0.04
s 0.45 0.02 0.53
Sub-sampled

Table 7
Confusion matrices obtained from the classification of cysts ks×r using the H component.

ks r

ks 0.98 0.02
r 0.07 0.93
Normal

ks r

ks 0.98 0.02
r 0.11 0.89
Equalised

ks r

ks 0.95 0.05
r 0.17 0.83
Blurred

ks r

ks 0.96 0.04
r 0.13 0.87
Sub-sampled
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currently possible.
Within this context, automated diagnosis can be approached from

two different perspectives. One is the interpretation of digital images in
terms of histologically-relevant concepts. This type of intelligent
imaging requires algorithms that associate pixel values into discrete

regions with special histological meaning (such as cells and nuclei, see
for example [17,1] to then compare and measure those against known
spatial and temporal models of normality and disease [12]. Such
model-interpreting computations aim to approach algorithmically the
tasks pathologists perform. An alternative is a data-driven, ‘machine
vision’ approach based on the analysis of the image data itself, without
need of identifying histologically-relevant structures.

Both approaches have their benefits. Ideally, intelligent imaging
might provide the means to enable histopathological generalisations to
be made. The data-analysis approach, on the other hand, can be
simpler to implement by avoiding intermediate, higher level inter-
pretation of the image data. However the solutions encountered might
not be specific to the biological problem and prevent any generalisation
(in pathology terms) of the solutions achieved.

Here we concentrated on an ‘image data’ analysis approach to the
problem of classifying sporadic, syndromic OKC and radicular cyst
images solely based on the staining patterns of the epithelial lining of

Table 8
Confusion matrices obtained from the classification of cysts k×s using the H component.

k s

k 0.66 0.34
s 0.49 0.51
Normal

k s

k 0.77 0.23
s 0.28 0.72
Equalised

k s

k 0.68 0.32
s 0.48 0.52
Blurred

k s

k 0.65 0.35
s 0.48 0.52
Sub-sampled

Table 9
Classification accuracy in the case-wise discrimination between all the types of cysts.

k×r×s ks×r k×s

Original 76 ± 6% 100 ± 1% 71 ± 4%
Equalised 83 ± 4% 97 ± 1% 75 ± 5%
Blurred 79 ± 5% 99 ± 2% 80 ± 4%
Sub-sampled 79 ± 5% 98 ± 3% 67 ± 8%

Table 10
Confusion matrices obtained from the case-wise classification of cysts k×r×s.

k r s

k 0.68 0.00 0.32
r 0.00 0.98 0.02
s 0.34 0.00 0.66
Normal

k r s

k 0.81 0.01 0.18
r 0.01 0.98 0.01
s 0.31 0.00 0.69
Equalised

k r s

k 0.74 0.03 0.23
r 0.00 0.99 0.01
s 0.35 0.00 0.65
Blurred

k r s

k 0.72 0.02 0.25
r 0.00 0.97 0.03
s 0.30 0.01 0.69
Sub-sampled

Table 11
Confusion matrices obtained from the case-wise classification of cysts ks×r.

ks r

ks 0.99 0.01
r 0.00 1.00
Normal

ks r

ks 0.99 0.01
r 0.07 0.93
Equalised

ks r

ks 0.99 0.01
r 0.00 1.00
Blurred

ks r

ks 0.97 0.03
r 0.00 1.00
Sub-sampled

Table 12
Confusion matrices obtained from the case-wise classification of cysts k×s.

k s

k 0.75 0.25
s 0.35 0.65
Normal

k s

k 0.78 0.22
s 0.30 0.70
Equalised

k s

k 0.81 0.19
s 0.21 0.79
Blurred

k s

k 0.69 0.31
s 0.36 0.64
Sub-sampled
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these lesions. This is a difficult task that, to date, has not been resolved
satisfactorily by neither expert observers nor algorithmic approaches.

Our analysis based on the B-M descriptors achieved better results
classifying OKCs vs. radicular cysts than those previously reported in
[11]/(98% (Table 1) against around 95%), or in [9].

When discriminating between the three types of cysts, our approach
achieved a better success rate (72%, Table 1), compared to 66% in [11].
The previous reported success rate in the discrimination of solitary
from syndrome OKCs was also outperformed by the approach here
described (68% (Table 1) vs. 60%).

We have used a nested cross-validation procedure which is a more
challenging than the standard cross-validation, ensuring a fair feature
selection stage with no a priori knowledge about images in the training
set and using a similar number of images for training and testing sets.
The patient-wise analysis, had an average success rate of 76% for k×r×s
(average between the two majority success rates in Table 9), 100% for
ks×r and 71% for k×s).

The effects of image variation on the analysis were non-predictable,
k×r×s classification was better (except with equalization, which im-
paired the result) and k×s and worse in ks×r discrimination. As the
mapping of pixel values into a cloud is sensitive to pixel intensity (the z
coordinate) different procedures are likely to change the image data in
somewhat unexpected manner.

6. Conclusion

We applied the state-of-the-art Bouligand-Minkowski descriptors to
classify the epithelial lining of the sub-types of OKCs and discriminate
between OKCs and radicular cysts. Unlike previous attempts to resolve
this problem, we used a statistical approach to analyse and quantify the
complex patterns of pixel intensities in the image. This outperformed
previous sample classification results and demonstrates that in addi-
tion to histologically-relevant structures (such as those in [11]) the
distribution pixel intensities also carry useful diagnostic importance for
image characterisation. This highlights the value of texture-based
image analysis to describe complex histological images.

The results achieved in the classification of cyst types are of high
relevance to histopathology as they can form the basis for automatic
diagnosis with known levels of accuracy, making the diagnostic process
more reproducible and less time-consuming. This also opens the
possibility to automatic pre-screening of larger numbers of histological
samples from the same case than it is currently possible, therefore
making diagnosis more robust.
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