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Abstract  

Observational studies of the association of alanine aminotransferase (ALT) levels with 

ischemic heart disease (IHD) and cardiovascular disease (CVD) risk factors are inconsistent, 

probably because of confounding and reverse causality. Mendelian randomization (MR) 

provides less confounded results. We used MR analysis to assess the associations of ALT 

(U/L) with IHD, diabetes and other CVD risk factors. We used instrumental variable 

analysis based on two single nucleotide polymorphism (SNPs) HSD17B13/MAPK10 

(rs6834314) and PNPLA3/SAMM50 (rs738409) to assess the associations of ALT (U/L) with 

IHD, diabetes and other CVD risk factors in the Guangzhou Biobank Cohort Study (GBCS). 

Observationally in 19,925 participants ALT levels were strongly positively associated with 

self-reported IHD, systolic and diastolic blood pressure, low-density lipoprotein- and total 

cholesterol, triglycerides, fasting glucose, body mass index, waist circumference, heart rate 

(HR) and diabetes, but were not associated with uncorrected QT interval, HR-corrected QT 

interval or high-density lipoprotein-cholesterol. In the MR study, using a credible genetic 

instrument (F-statistic=23) for ALT, ALT levels were negatively associated with IHD (odds 

ratio (OR) 0.92, 95% confidence interval (CI) 0.87 to 0.97) and triglycerides (β -0.08, 95% 

CI -0.13 to -0.03), but were not associated with other CVD risk factors. Our results using 

Mendelian randomization suggest that ALT reduces the risk of IHD, probably through 

reducing triglyceride levels. The underlying mechanisms deserve further investigation.  
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Introduction  

Serum alanine aminotransferase (ALT) is a non-specific marker for liver fat. High ALT 

levels indicate the release of aminotransferase from cytoplasm to blood stream probably due 

to damaged liver (1, 2) and are associated with a higher risk of diabetes.(3) Prospective 

studies of the association of ALT with cardiovascular disease (CVD) showed inconsistent 

results.(4, 5) Meta-analyses of prospective cohort studies report an inverse association of 

ALT levels with CVD mortality, despite great heterogeneity (I
2
 range 79-82).(4, 5) The 

prospective associations also appeared to vary by region and age, with estimates suggestive 

of positive associations in Asians and younger people but possible negative associations in 

people from Europe or North America and older people.(4, 5) Higher ALT levels are 

associated with incident type 2 diabetes.(3, 6, 7) Given diabetes is a known risk factor for 

CVD, it is unclear whether these divergent associations are the result of confounding by 

factors related to aging (such as frailty and reduced skeletal muscle mass),(8-10) poor 

nutrition and other biomarkers of hepatocyte function, which are often difficult to measure 

and control for in traditional observational studies,(5) or another example of a factor, such as 

statins(11) and familial hypercholesterolemia,(12, 13) with opposite effects on IHD and 

diabetes.  

 

Increasing interest in the potential value of ALT in CVD prevention means MR study is a 

vital first step before investigating in depth the underlying mechanisms in an experimental 

approach. Moreover, MR study tests a causal pathway, whilst trials of pharmacologic agents 

or interventions for improving liver function that influence ALT but may also influence other 
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several hepatic and lipid factors,(14, 15) making it difficult to distinguish the effects 

attributable to ALT from other off-target effects. No intervention that specifically modifies 

ALT is known. Examining the effect of ALT using Mendelian randomization (MR) is the 

most appropriate, cost-effective and timely approach to assess the effects of ALT on IHD 

and its risk factor. Here, we conducted the first MR study of the effect of ALT on IHD and 

its risk factors based on individual-level data from the Guangzhou Biobank Cohort Study. 

 

Results  

Of the four ALT-related SNPs (rs6834314, rs2954021, rs10883437, rs738409) from a recent 

GWAS(16) tested in 10,623 older Chinese people in GBCS with mean age of 61.5 (standard 

deviation (SD) 6.9) years, two SNPs (rs2954021 and rs10883437) were excluded. 

Rs2954021 had a total missing rate >90% and minor allele frequency <0.05, and deviated 

from Hardy-Weinberg Equilibrium. Rs10883437 was not associated with ALT levels 

(p-value 0.73). Two SNPs, HSD17B13/MAPK10 (rs6834314) and PNPLA3/SAMM50 

(rs738409), were used for constructing the allele score. The effects of these two variants on 

plasma ALT in our sample were smaller than those reported in the GWAS (Appendix Table 

1). These two genetic variants were defined as being independent of each other on the basis 

of low correlation (R
2
 < 0.1) in HapMap22 or the 1000 genome project data. A weighted 

genetic score was created based on the equation of “0.6×rs6834314+0.6×rs738409+24”, 

with the genotypes being coded into 0, 1 and 2, and the number of alleles was used as 

continuous variables. The F-statistic from the first stage of the IV analysis was 23, 

suggesting that weak-instrument bias was unlikely.  
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Table 1 shows that ALT levels were negatively associated with age, being a woman and 

alcohol use, and positively associated with education, waist circumference and BMI. No 

clear association with smoking or physical activity was found (Table 1). As expected, most 

of the CVD risk factors were correlated with each other (Appendix table 2), while neither 

rs6834314 nor rs738409 was associated with socioeconomic position or lifestyle, including 

age, sex, education, smoking status, use of alcohol and physical activity, suggesting these 

SNPs were not affected by confounding (Table 2).(17) 

 

In 19,925 GBCS participants, adjusted for age, sex, education, smoking status, alcohol use, 

physical activity, BMI and waist circumference (except for the results for BMI and waist 

circumference, respectively), ALT was positively associated with systolic and diastolic blood 

pressure, total and LDL-cholesterol, triglycerides, fasting glucose, BMI, waist circumference, 

heart rate, and diabetes (all P values <0.001), but not with HDL-cholesterol levels, corrected 

QT interval, uncorrected QT interval or self-reported IHD (Table 3). 

 

Table 4 shows that, in the MR study, ALT was negatively associated with triglyceride levels 

(β -0.08, 95% confidence interval (CI) -0.13 to -0.03) and consistently negatively associated 

with IHD (OR 0.92, 95% CI 0.87 to 0.97). No association with other CVD risk factors, 

including systolic and diastolic blood pressure, HDL-, LDL- and total cholesterol, fasting 

glucose, BMI, waist circumference, HR-corrected and uncorrected QT interval, HR, or type 

2 diabetes were evident (p-value from 0.21 to 0.98). MR estimates for blood pressure and 
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cholesterol were of similar magnitude and direction as the observational estimates, whilst 

the MR estimates for BMI, WHR and QT interval were more different from the 

observational estimates. Sensitivity analysis additionally including rs10883437 in the 

genetic instrument showed similar results (Appendix table 3).   

 

Discussion 

Using a Mendelian randomization study in an under-studied population, ALT levels were 

negatively associated with IHD, probably via lowering triglyceride levels. The results for 

IHD were consistent with the emerging body of evidence from large scale prospective cohort 

studies,(9, 18) and meta-analysis of older adult samples.(4) Using Mendelian randomization 

ALT had few other associations with other CVD risk factors. In contrast with the MR results 

observationally ALT was positively associated with self-reported IHD and CVD risk factors 

most likely to residual confounding.  

 

The positive association of ALT with type 2 diabetes was consistent in observational 

analysis with and without adjustment. The MR association of ALT with type 2 diabetes was 

almost null, which may be because type 2 diabetes in the GBCS was defined according to 

fasting glucose levels and self-reports only. The lack of other factors that can contribute to 

the clinical diagnosis, i.e., taking into account diabetes related symptoms, blood glucose 

after an 2-hour oral glucose tolerance test, HbA1c, and/or a repeat testing on a second 

occasion, may lead to misclassification (under-diagnosis) of the type 2 diabetes and dilute 

the gene-disease association, which will attenuate the MR estimate toward the null. However, 
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the definition of type 2 diabetes in the GBCS is usually used in large epidemiologic studies. 

However, the MR estimate for fasting glucose was directionally and quantitatively similar to 

the observational estimate, but had a confidence interval including the null because of the 

larger sample size needed for MR studies. As such an adverse effect of ALT on fasting 

glucose cannot be ruled out. 

 

An MR study approach provides relatively less confounded estimates of causal effects, given 

unavoidable confounding factors from other hepatic factors in traditional observational 

studies. Potential limitations in MR studies, such as confounding from linkage 

disequilibrium and population stratification, pleiotropy and canalization should not be major 

concerns in our study. Firstly, the existence of pleiotropy, where a genetic instrumental 

variable has an effect on an outcome (CVD risk factors, IHD or diabetes) independent of its 

effect on the exposure (ALT) would have implications for the assumptions made in the MR 

analysis. However, we assessed potential pleiotropy effects using the Ensembl gene 

annotation system (19) and found no evidence for the existence of other phenotypes for 

these genetic instruments. Similarly, if a genetic variant in the score was in linkage 

disequilibrium with another genetic variant that influences the outcome through a pathway 

that is unrelated to the exposure, this could also bias the causal estimate. However, no 

linkage disequilibrium between the ALT-related SNPs in the GWAS(16) or from the SNP 

Annotation and Proxy Search system (20) was identified. In addition, the consistency of IV 

estimates obtained using two allele scores in this study suggests that pleiotropy is unlikely. 

Secondly, population stratification, which refers to the existence of the differences in allele 
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frequencies and disease prevalence in different ethnic groups, is also unlikely because we 

included permanent residents of Guangzhou who were homogeneous Southern Chinese. 

Thirdly, we used the most functionally relevant SNPS identified from a large GWAS as the 

genetic instruments, and no other phenotypic traits or biological effects related to IHD or 

type 2 diabetes for these 2 SNPs have been reported. Fourthly, we cannot completely rule 

out the effect of canalization in MR studies. Sixthly, it would be very useful to examine the 

temporal stability in the estimates of relationship between SNPs and ALT and for the MR 

analyse. However, we did not have sufficient number of participants with repeated 

measurements of ALT to conduct such analyses. Further studies with repeated measurements 

of ALT are warranted to examine the stability of the genetic instruments. Additionally, MR 

studies require large sample sizes. Meta-analysis of MR studies may provide more precise 

estimates of the effect size. But no other MR studies on ALT were found. Further 

two-sample MR studies using consortium-based GWAS (21) or one-sample MR in large 

cohorts (i.e. UK biobank) are warranted to replicate our results. Seventhly, we used 2SLS for 

the MR analysis, in which the output from the first-stage regression was fed into the 

second-stage regression with no acknowledgement of uncertainty.(22) Finally, as some CVD 

risk factors (i.e. adiposity (23) or lipids (24)) were also associated with ALT, further MR 

studies using functionally related loci are helpful in addressing the potential issue of reverse 

causation (i.e. elevated CVD risk factors increase ALT level). 

 

Although the inverse association of ALT with IHD is convincing, the mechanistic pathways 

are not fully understood. Our results suggest one possible pathway is through the effect on 
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triglycerides. Moreover, it has been suggested that low ALT levels may reflect impaired 

synthetic capacity of the liver.(25) As hepatocytes play important roles in detoxification and 

lipid metabolism, a decrease in functional hepatocytes may increase the susceptibility to 

toxins and metabolic disorders, which leads to higher risks of IHD.(9) Low ALT levels could 

also be a proxy for liver aging(26)and aging-related reduced skeletal muscle mass,(9) 

because a small amount of ALT is derived from skeletal muscle.(27) ALT levels might also 

be regulated by androgens, which may have deleterious effects on cardiovascular disease(28) 

and lipids,(29) but are inversely associated with glucose probably via increasing skeletal 

muscle mass.(30) An animal study showed ALT gene expression was affected by castration 

or androgen administration in non-hepatic tissues.(31) Further studies to clarify whether 

androgen plays a role in the ALT and IHD/diabetes associations are warranted.(10) Finally, 

the discrepancy between the observational and MR findings are illuminating, because lack 

of replication of observed relations suggests strong confounding by causal factors that might 

be of interest in their own right. For example observationally obesity strongly predicted 

higher ALT, but in MR the relation was in an opposite direction, indicating causal factors 

that increase both adiposity and ALT. 

 

Our results using Mendelian randomization suggest that ALT reduces the risk of IHD, whilst 

an adverse effect on fasting glucose cannot be excluded. The implications of these findings 

for the primary prevention of CVD, such as lifestyle interventions or use of pharmacological 

agents, warrant further investigation. 
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Materials and Methods 

Participants  

The Guangzhou Biobank Cohort Study (GBCS) is a 3-way collaboration among Guangzhou 

12th Hospital and the Universities of Hong Kong and Birmingham, UK, which has been 

described in detail elsewhere,(32) and several papers on MR have been published.(29, 33, 34) 

The GBCS baseline examination was conducted in three phases from 2003 to 2008, 

 in the Guangzhou 12
th
 Hospital, included an interview on lifestyle, family and personal 

medical history and assessment of anthropometric and clinical factors. Information on 

socioeconomic position and lifestyle including age, sex, education, smoking and alcohol use 

was collected by a computer-assisted standardized questionnaire administered by trained 

interviewers. Physical activity was assessed using a validated Chinese version of the 

International Physical Activity Questionnaire.(35) Anthropometric measurements were 

performed by trained nurses using standard protocols. Participants wore light clothing and no 

shoes. Body weight was measured to the nearest 0.1 kilogram using a platform scale 

(RGZ-120-RT, China). Waist circumference was measured horizontally around the smallest 

circumference between ribs and iliac crest, or at the navel, if there was no natural waistline. 

Body mass index (BMI) was calculated using measured weight and height as weight in 

kilograms divided by height in meters squared. Plasma glucose, lipids and liver enzymes were 

measured by Shimadzu CL-8000 Clinical Chemistry Analyzer (Shimadzu, Kyoto, Japan). All 

measurements of biochemical parameters from 2003 to 2008 were conducted in the same 

laboratory of the Guangzhou Number 12 Hospital using the same methods. A standard 

electrocardiogram (ECG) was also performed The details of the ECG measurement have been 
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reported elsewhere.(33, 34)The Guangzhou Medical Ethics Committee of the Chinese 

Medical Association approved the study and all participants gave written, informed consent 

before participation.  

 

DNA extraction and single nucleotide polymorphism (SNP) analysis 

DNA was extracted at Guangzhou Number 12Hospital either from fresh blood using a 

standard phenol-chloroform extraction procedure and stored at -80°C or from blood or buffy 

coat previously stored at -80°C using a standard magnetic bead extraction procedure. 

Genotyping was performed using the MassARRAY system (Sequenom, San Diego, CA, 

USA) at a commercial company (Beijing Genomics Institute, Shenzhen, China). 

 

Exposure and outcomes  

Data for all exposure and outcome variables were collected at the baseline examination. The 

exposure was ALT (U/L). The outcomes included self-reported IHD, type 2 diabetes mellitus 

(T2DM), and cardiovascular disease risk factors including total, HDL- and LDL-cholesterol, 

systolic and diastolic blood pressure, fasting glucose, BMI, waist circumference, QT interval, 

heart rate (HR) corrected QT intervals using the Framingham formula (calculated as 

QT+154×(1-60/HR))(36) and HR. T2DM was defined as self-reported physician diagnosis 

diabetes, use of hypoglycemia medication or insulin, and/or fasting glucose ≥7.0mmol/l.(37) 

 

Instrumental variable (IV) for ALT 

Four SNPs (rs6834314, rs2954021, rs10883437, rs738409)associated with plasma ALT 
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concentrations at P < 1×10^-8 in a recent GWAS(16) were genotyped in the GBCS. The 

SNPs significantly associated with ALT in our sample were used as an IV for ALT. Allele 

scores were derived using the dose of the effect allele at each SNP which was first weighted 

by the effect size of the variant and then summed:  

Weighted ALT score = w1 × SNP1 + w2 × SNP2 + ⋯ wn × SNPn    

Where w is the weight (i.e. the beta-coefficient of association of the SNP with ALT) and 

SNP is the dosage of ALT-raising alleles at that locus (i.e. 0, 1 or 2 ALT raising alleles). 

 

Potential Confounders  

Potential confounders, selected as common causes of ALT and the outcomes, included age, 

sex, education, smoking, alcohol use, physical activity, BMI and waist circumference were 

used in the observational analysis.  

 

Statistical analysis 

We tested for Hardy-Weinberg equilibrium at the SNP locus on a contingency table of 

observed-versus-predicted frequencies with an exact test. We used analysis of variance 

(ANOVA) and linear regression to assess the association of potential confounders with ALT. 

Linear regression with bootstrapping internal validation was used to select the SNPs which 

best predicted ALT. An allele score was created by summing the number of risk alleles with 

weighting.(38) We used 2 stage least squares (2SLS) to estimate the possible causal effect of 

ALT on each outcomes, i.e., the change in health outcomes per U/L increase in ALT. To 

avoid weak IV bias, we checked the F-statistic from the first stage was greater than 10, 
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which indicates that the IV is unlikely to be weak.(39) We also used Durbin-Wu-Hausman 

endogeneity test to test for endogeneity in a regression estimated with IV. The null 

hypothesis is that an ordinary least squares (OLS) estimator of the same equation would 

yield consistent estimates. We also conducted sensitivity analysis using all variants available 

for the genetic instrument. All statistical analysis was performed using STATA 13.1 (Stata 

Corp LP, College Station, TX, USA). 
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Table 1. Baseline demographic characteristics in 19,925participants measured alanine 

aminotransferase (ALT) during 2003-2008 in Guangzhou Biobank Cohort Study 

Characteristics Number % Alanine aminotransferase (U/L) 

   Mean SD P-value
†
 

Age group, years      

50-59 8,043 40.3 25.51  13.54  <0.001 

60-69 8,394 42.2 25.24  12.27   

≥70 3,488 17.5 23.56  12.16   

Sex       

Women  14,471 72.6 24.39  12.49  <0.001 

Men  5,454 27.4 26.81  13.41   

Education      

Primary school or less 8,758 44.0 24.67  12.44  <0.001 

Secondary  9,413 47.2 25.19  13.00   

College or above 1,754 8.8 26.31  13.37   

Smoking status       

Never 16,070 80.7 24.97  12.73  <0.001 

Former 1,827 9.2 26.57  12.91   

Current  2,028 10.2 24.38  13.09   

Alcohol use      

Never 13,701 68.8 25.04  12.63  0.03 

Former 750 3.8 26.25  13.48   

Current  5,474 27.4 24.94  13.10   

Physical activity       

Inactive  916 4.6 24.59  13.84  <0.001 

Moderately active 6,262 31.4 25.63  13.22   

Active  12,747 64.0 24.81  12.49   

   β 95% CI P-value
‡
 

Age, year  19,925 - -0.08 -0.11 to -0.06 <0.001 

Waist circumference, cm 19,925 - 0.32 0.31 to 0.34 <0.001 

Body mass index, kg/m
2
 19,925 - 0.85 0.80 to 0.90 <0.001 

SD: standard deviation; CI: confidence interval 
†
: P values from analysis of variance; 
‡
: P values from linear regression 

  



20 

 

Table 2. Baseline demographic characteristics by ALT-related SNPs in 10,623 participants measured alanine aminotransferase (ALT) and ALT-related SNPs in 

Guangzhou Biobank Cohort Study 

SNP HSD17B13/MAPK10 (rs6834314) PNPLA3/SAMM50 (rs738409) 

 GG(n=1,408) GA 

(n=4,918) 

AA(n=4,297) P-value CC(n=4,959) GC(n=4,508) GG(n=1,156) P-value 

ALT, U/L, mean (SD)
†
 24.5 (14.7) 25.0 (13.9) 25.7 (14.3) 0.009 24.9 (13.9) 25.2 (13.8) 26.5 (16.7) 0.002 

Age, year, mean (SD)
†
 61.8 (6.9) 61.4 (6.9) 61.7 (7) 0.06 61.7 (7) 61.4 (6.9) 61.8 (7) 0.53 

Sex, number (%)
‡
        

Women  1075 (76.4) 3737 (76) 3286 (76.5) 0.86 3797 (76.6) 3453 (76.6) 848 (73.4) 0.06 

Men  333 (23.7) 1181 (24) 1011 (23.5)  1162 (23.4) 1055 (23.4) 308 (26.6)  

Education, number (%)
‡
        

Primary school or less 588 (41.8) 1945 (39.6) 1697 (39.5) 0.57 2024 (40.8) 1741 (38.6) 465 (40.2) 0.24 

Secondary  705 (50.1) 2533 (51.5) 2212 (51.5)  2495 (50.3) 2359 (52.3) 596 (51.6)  

College or above 115 (8.2) 440 (9) 388 (9)  440 (8.9) 408 (9.1) 95 (8.2)  

Smoking status, number (%)
‡
        

Never 1148 (81.5) 4110 (83.6) 3605 (83.9) 0.11 4159 (83.9) 3767 (83.6) 937 (81.1) 0.17 

Former 123 (8.7) 391 (8) 303 (7.1)  365 (7.4) 344 (7.6) 108 (9.3)  

Current  137 (9.7) 417 (8.5) 389 (9.1)  435 (8.8) 397 (8.8) 111 (9.6)  

Alcohol use, number (%)
‡
        

Never 952 (67.6) 3273 (66.6) 2938 (68.4) 0.30 3387 (68.3) 3002 (66.6) 774 (67) 0.37 

Former 43 (3.1) 184 (3.7) 155 (3.6)  182 (3.7) 162 (3.6) 38 (3.3)  

Current  413 (29.3) 1461 (29.7) 1204 (28)  1390 (28) 1344 (29.8) 344 (29.8)  

Physical activity, number (%)
‡
        

Inactive  63 (4.5) 243 (4.9) 199 (4.6) 0.72 216 (4.4) 226 (5) 63 (5.5) 0.42 

Moderately active 436 (31) 1459 (29.7) 1320 (30.7)  1501 (30.3) 1360 (30.2) 354 (30.6)  

Active  909 (64.6) 3216 (65.4) 2778 (64.7)  3242 (65.4) 2922 (64.8) 739 (63.9)  
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Systolic blood pressure, mmHg, mean 

(SD)
†
 

129.8 (21.8) 129.4 (21.3) 130.2 (21.6) 
0.27 

129.9 (21.6) 129.6 (21.6) 130 (20.9) 
0.65 

Diastolic blood pressure, mmHg, mean 

(SD)
†
 

73.4 (11.3) 73.5 (11) 73.7 (10.9) 
0.69 

73.6 (10.9) 73.5 (11.1) 73.8 (10.8) 
0.69 

High density lipoprotein-cholesterol, 

mmol/l, mean (SD)
†
 

1.7 (0.4) 1.7 (0.4) 1.7 (0.4) 
0.46 

1.7 (0.4) 1.7 (0.4) 1.7 (0.4) 
0.72 

Low density lipoprotein-cholesterol, 

mmol/l, mean (SD)
†
 

3.3 (0.7) 3.3 (0.7) 3.2 (0.7) 
0.31 

3.2 (0.7) 3.3 (0.7) 3.3 (0.7) 
0.06 

Triglycerides, mmol/l, mean (SD)
†
 1.8 (1.4) 1.7 (1.1) 1.7 (1) 0.04 1.7 (1.2) 1.7 (1.1) 1.6 (1) 0.03 

Total cholesterol, mmol/l, mean (SD)
†
 5.9 (1.2) 5.9 (1.1) 5.9 (1.1) 0.19 5.9 (1.1) 5.9 (1.1) 5.9 (1.1) 0.90 

Fasting glucose, mmol/l, mean (SD)
†
 5.8 (1.4) 5.8 (1.4) 5.8 (1.6) 0.06 5.8 (1.5) 5.8 (1.5) 5.7 (1.4) 0.62 

Body mass index, Kg/m
2
, mean (SD)

†
 23.7 (3.3) 23.8 (3.3) 23.9 (3.3) 0.15 23.9 (3.3) 23.8 (3.3) 23.6 (3.1) 0.006 

Waist circumference, cm, mean (SD)
†
 78.7 (8.8) 78.9 (8.9) 79.1 (9) 0.38 79.2 (9) 78.7 (9) 78.6 (8.7) 0.03 

Corrected QT interval, milliseconds, 

mean (SD)
†
 

412.1 (21.3) 412.3 (21.5) 412.3 (20.9) 
0.95 

411.7 (21.3) 413 (21.3) 411.9 (20.8) 
0.02 

Uncorrected QT interval, milliseconds, 

mean (SD)
†
 

389.1 (28) 389.5 (28.9) 389.1 (28.2) 
0.72 

388.8 (28.7) 389.8 (28.4) 389.5 (27.8) 
0.23 

Heart rate, beats per minute, mean (SD)
†
 72 (10.6) 71.9 (10.6) 72.2 (10.8) 0.45 72 (10.8) 72.1 (10.6) 71.6 (10) 0.32 

Ischemic heart disease, number (%)
‡
         

Yes  1352 (96) 4720 (96) 4144 (96.4) 0.49 4752 (95.8) 4352 (96.5) 1112 (96.2) 0.20 

No  56 (4) 198 (4) 153 (3.6)  207 (4.2) 156 (3.5) 44 (3.8)  

Type 2 diabetes, number (%)
‡
          

Yes  1242 (88.2) 4355 (88.6) 3789 (88.2) 0.84 4370 (88.1) 3991 (88.5) 1025 (88.7) 0.78 

No  166 (11.8) 563 (11.5) 508 (11.8)  589 (11.9) 517 (11.5) 131 (11.3)  

SD: standard deviation; 
†
: P values from analysis of variance;

‡
: P values from chi-square test
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Table3 Observational multivariable linear or logistic regression estimate of the cross-sectional association of alanine aminotransferase (ALT, U/L) with 

cardiovascular disease (CVD) risk factors, self-reported ischemic heart disease and type 2 diabetes in 19,925GBCS participants from 2003 to 2008 

 Crude model Multivariate regression model
†
 

 β 95% CI P value β 95% CI P value 

Systolic blood pressure, mmHg 0.12  0.1 to 0.15 <0.001 0.03  0.01 to 0.05 <0.001  

Diastolic blood pressure, mmHg 0.09  0.08 to 0.11 <0.001 0.02  0.01 to 0.03 <0.001  

High density lipoprotein-cholesterol, mmol/l -0.002  -0.002 to -0.001 <0.001 0.0001  -0.0002 to 0.0005 0.50  

Low density lipoprotein-cholesterol, mmol/l 0.001  0.00004 to 0.0016 0.04 0.001  0.0004 to 0.0017 <0.001 

Triglycerides, mmol/l 0.013  0.011 to 0.014 <0.001 0.009  0.007 to 0.01 <0.001 

Total cholesterol, mmol/l 0.004  0.003 to 0.005 <0.001 0.003  0.0023 to 0.0043 <0.001 

Fasting glucose, mmol/l 0.010  0.01 to 0.02 <0.001 0.008  0.01 to 0.01 <0.001 

Body mass index, Kg/m
2
 0.04  0.04 to 0.04 <0.001 0.04  0.04 to 0.04 <0.001 

Waist circumference, cm 0.12  0.11 to 0.12 <0.001 0.11  0.10 to 0.12 <0.001 

Corrected QT interval, milliseconds 0.01  -0.01 to 0.03 0.27 0.02  -0.0003 to 0.04 0.054 

Uncorrected QT interval, milliseconds -0.02  -0.05 to 0 0.08 -0.02  -0.04 to 0.01 0.27  

Heart rate, beats per minute 0.02  0.01 to 0.03 <0.001 0.02  0.01 to 0.03 <0.001 

 Odds ratio 95% CI P value Odds ratio 95% CI P value 

Ischemic heart disease 1.005  1.00 to 1.01 0.05  1.0009  0.996 to 1.01 0.71 

Type 2 diabetes  1.02  1.019 to 1.02 <0.001 1.012 1.009 to 1.01 <0.001 

CI: confidence interval 

†: Adjusted for age, sex, education, smoking status, alcohol use, physical activity and adiposity (BMI and waist circumference, except for the results for BMI 

and waist circumference) 
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Table 4 Mendelian randomization estimates, obtained from instrumental variable (IV) analysis 

using data from Guangzhou Biobank Cohort Study (GBCS) of the association of alanine 

aminotransferase (ALT) with cardiovascular disease (CVD) risk factors, Ischemic heart 

disease and type 2 diabetes.  

 GBCS MR analysis (n=10,623)  

 β
†‡

 95% CI P value  

Systolic blood pressure, mmHg 0.19 -0.51 to 0.89 0.60   

Diastolic blood pressure, mmHg 0.06 -0.29 to 0.42 0.74   

High density lipoprotein-cholesterol, mmol/l -0.0001 -0.01 to 0.01 0.98   

Low density lipoprotein-cholesterol, mmol/l 0.01 -0.01 to 0.03 0.40   

Triglycerides, mmol/l -0.08 -0.13 to -0.03 0.004   

Total cholesterol, mmol/l -0.01 -0.05 to 0.02 0.44   

Fasting glucose, mmol/l 0.03 -0.02 to 0.07 0.29   

Body mass index, Kg/m
2
 -0.05 -0.15 to 0.06 0.40   

Waist circumference, cm -0.12 -0.41 to 0.17 0.43   

Corrected QT interval, milliseconds 0.44 -0.24 to 1.12 0.21   

Uncorrected QT interval, milliseconds 0.31 -0.59 to 1.2 0.50   

Heart rate, beats per minute 0.03 -0.3 to 0.36 0.88   

 Odds ratio 95% CI P value  

Ischemic heart disease 0.92 0.87 to 0.97 0.004  

Type 2 Diabetes  0.99 0.91 to 1.08 0.87  
†
: P-values from the Durbin-Wu-Hausman endogeneity test were non-significant (from 0.07 to 

1.00) for the cardiovascular risk factors above except for triglycerides (P<0.001).  
‡
: Beta coefficients reflect differences in mean outcomes per 1 U/L difference of ALT  


