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ENUMERATING SOLUTION-FREE SETS IN THE INTEGERS

ROBERT HANCOCK AND ANDREW TREGLOWN

Abstract. Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain any ‘non-trivial’

solutions to L. In this paper we consider the following three general questions:

(i) What is the size of the largest L-free subset of [n]?
(ii) How many L-free subsets of [n] are there?

(iii) How many maximal L-free subsets of [n] are there?

We completely resolve (i) in the case when L is the equation px + qy = z for fixed p, q ∈ N where
p ≥ 2. Further, up to a multiplicative constant, we answer (ii) for a wide class of such equations L,

thereby refining a special case of a result of Green [15]. We also give various bounds on the number

of maximal L-free subsets of [n] for three-variable homogeneous linear equations L. For this, we
make use of container and removal lemmas of Green [15].

1. Introduction

Let [n] := {1, . . . , n} and consider a fixed linear equation L of the form

a1x1 + · · ·+ akxk = b(1.1)

where a1, . . . , ak, b ∈ Z. If b = 0 we say that L is homogeneous. If∑
i∈[k]

ai = b = 0

then we say that L is translation-invariant. Notice that if L is translation-invariant then (x, . . . , x) is
a ‘trivial’ solution of (1.1) for any x. More generally, a solution (x1, . . . , xk) to L is said to be trivial
if L is translation-invariant and if there exists a partition P1, . . . , P` of [k] so that:

(i) xi = xj for every i, j in the same partition class Pr;
(ii) For each r ∈ [`],

∑
i∈Pr

ai = 0.

A set A ⊆ [n] is L-free if A does not contain any non-trivial solutions to L. If the equation L is clear
from the context, then we simply say A is solution-free.

The notion of an L-free set encapsulates many fundamental topics in combinatorial number theory.
Indeed, in the case when L is x1 + x2 = x3 we call an L-free set a sum-free set. This is a notion that
dates back to 1916 when Schur [31] proved that, if n is sufficiently large, any r-colouring of [n] yields
a monochromatic triple x, y, z such that x + y = z. Sidon sets (when L is x1 + x2 = x3 + x4) have
also been extensively studied. For example, a classical result of Erdős and Turán [13] asserts that
the largest Sidon set in [n] has size (1 + o(1))

√
n. In the case when L is x1 + x2 = 2x3 an L-free set

is simply a progression-free set. Roth’s theorem [24] states that the largest progression-free subset of
[n] has size o(n).
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In [17] we prove a number of results concerning L-free subsets of [n] where L is a homogeneous
linear equation in three variables. In particular, our work is motivated by the following general
questions:

(i) What is the size of the largest L-free subset of [n]?
(ii) How many L-free subsets of [n] are there?

(iii) How many maximal L-free subsets of [n] are there?

We make progress on all three of these questions. For each question we use tools from graph theory;
for (i) and (ii) our methods are somewhat elementary. For (iii) our method is more involved and
utilises container and removal lemmas of Green [15].

1.1. The size of the largest solution-free set. As highlighted above, a central question in the
study of L-free sets is to establish the size µL(n) of the largest L-free subset of [n]. It is not difficult
to see that the largest sum-free subset of [n] has size dn/2e, and this bound is attained by the set of
odd numbers in [n] and by the interval [bn/2c+ 1, n].

When L is x1 +x2 = 2x3, µL(n) = o(n) by Roth’s theorem. In fact, Sanders [27] proved that there
is a constant C such that every set A ⊆ [n] with |A| ≥ Cn(log log n)5/ log n contains a three-term
arithmetic progression. On the other hand, Behrend [5] showed that there is a constant c > 0 so that
µL(n) ≥ n exp(−c

√
log n). See [12, 16] for the best known lower bound on µL(n) in this case.

More generally, it is known that µL(n) = o(n) if L is translation-invariant and µL(n) = Ω(n)
otherwise (see [25]). For other (exact) bounds on µL(n) for various linear equations L see, for
example, [25, 26, 4, 11, 19].

In [17] we mainly focus on L-free subsets of [n] for linear equations L of the form px + qy = z
where p ≥ 2 and q ≥ 1 are fixed integers. Notice that for such a linear equation L, the interval
[bn/(p+ q)c+ 1, n] is an L-free set. Our first result implies that this is the largest such L-free subset
of [n]. Let min(S) denote the smallest element in a finite set S ⊆ N.

Theorem 1.1. [17] Let L denote the equation px + qy = z where p ≥ q and p ≥ 2, p, q ∈ N. Let n
be sufficiently large. Suppose S is an L-free subset of [n], and let min(S) = b n

p+q c − t where t is a
non-negative integer.

(i) If 0 ≤ t < ( p+q−1
p+q+p/q )b n

p+q c then |S| ≤ d (p+q−1)np+q e − bpq tc.

(ii) If t ≥ ( p+q−1
p+q+p/q )b n

p+q c then |S| ≤ (q2+1)n
q2+q+1 .

Corollary 1.2. Let L denote the equation px + qy = z where p ≥ q and p ≥ 2, p, q ∈ N. If n is
sufficiently large then µL(n) = n− b n

p+q c.

Roughly, Theorem 1.1 implies that every L-free subset of [n] is ‘interval like’ or ‘small’. In the
case of sum-free subsets (i.e. when p = q = 1), a result of Deshouillers, Freiman, Sós and Temkin [10]
provides very precise structural information on the sum-free subsets of [n]. Loosely speaking, they
showed that a sum-free subset of [n] is ‘interval like’, ‘small’ or consists entirely of odd numbers.

In the case when p = q, Corollary 1.2 was proven by Hegarty [19] (without a lower bound on n).
Very recently we have obtained the exact value of µL(n) for many other linear equations L. Indeed,

we determine µL(n) for a wide class of equations of the form px + qy = rz where p ≥ q ≥ r are
fixed natural numbers, as well as for some equations L in more than three variables. This is work in
progress [18].



1.2. The number of solution-free sets. Write f(n,L) for the number of L-free subsets of [n]. In
the case when L is x+ y = z, define f(n) := f(n,L).

By considering all possible subsets of [n] consisting of odd numbers, one observes that there are at
least 2n/2 sum-free subsets of [n]. Cameron and Erdős [8] conjectured that in fact f(n) = Θ(2n/2).
This conjecture was proven independently by Green [14] and Sapozhenko [28]. In fact, they showed
that there are constants C1 and C2 such that f(n) = (Ci + o(1))2n/2 for all n ≡ i mod 2.

Results from [21, 29] imply that there are between 2(1.16+o(1))
√
n and 2(6.45+o(1))

√
n Sidon sets in

[n]. There are also several results concerning the number of so-called (k, `)-sum-free subsets of [n]
(see, e.g., [6, 7, 30]).

More generally, given a linear equation L, there are at least 2µL(n) L-free subsets of [n]. In light
of the situation for sum-free sets one may ask whether, in general, f(n,L) = Θ(2µL(n)). However,
Cameron and Erdős [8] observed that this is false for translation-invariant L.

Green [15] though showed that given a homogeneous linear equation L, f(n,L) = 2µL(n)+o(n)

(where here the o(n) may depend on L). Our next result implies that one can omit the term o(n) in
the exponent for certain types of linear equation L.

Theorem 1.3. [17] Fix p, q ∈ N where (i) q ≥ 2 and p > q(3q− 2)/(2q− 2) or (ii) q = 1 and p ≥ 3.
Let L denote the equation px+ qy = z. Then

f(n,L) = Θ(2µL(n)).

1.3. The number of maximal solution-free sets. Given a linear equation L, we say that S ⊆ [n]
is a maximal L-free subset of [n] if it is L-free and it is not properly contained in another L-free
subset of [n]. Write fmax(n,L) for the number of maximal L-free subsets of [n]. In the case when L
is x+ y = z, define fmax(n) := fmax(n,L).

A significant proportion of the sum-free subsets of [n] lie in just two maximal sum-free sets, namely
the set of odd numbers in [n] and the interval [bn/2c + 1, n]. This led Cameron and Erdős [9] to
ask whether fmax(n) = o(f(n)) or even fmax(n) ≤ f(n)/2εn for some constant ε > 0.  Luczak

and Schoen [22] answered this question in the affirmative, showing that fmax(n) ≤ 2n/2−2
−28n for

sufficiently large n. Later, Wolfovitz [32] proved that fmax(n) ≤ 23n/8+o(n). Recently, Balogh, Liu,
Sharifzadeh and Treglown [1, 2] proved the following: For each 1 ≤ i ≤ 4, there is a constant Ci such
that, given any n ≡ i mod 4, fmax(n) = (Ci + o(1))2n/4.

Except for sum-free sets, the problem of determining the number of maximal solution-free subsets
of [n] remains wide open. In [17] we give a number of bounds on fmax(n,L) for homogeneous linear
equations L in three variables. The next result gives a general upper bound for such L. Given a
three-variable linear equation L, an L-triple is a multiset {x, y, z} which forms a solution to L. Let
µ∗L(n) denote the number of elements x ∈ [n] that do not lie in any L-triple in [n].

Theorem 1.4. [17] Let L be a fixed homogenous three-variable linear equation. Then

fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n).

Theorem 1.4 together with the aforementioned result of Green shows that fmax(n,L) is significantly
smaller than f(n,L) for all homogeneous three-variable linear equations L that are not translation-
invariant. So in this sense it can be viewed as a generalisation of the result of  Luczak and Schoen.
The proof of Theorem 1.4 is a simple application of container and removal lemmas of Green [15]. The



same idea was used to prove results in [3, 1, 2]. Although at first sight the bound in Theorem 1.4
may seem crude, perhaps surprisingly there are equations L where the value of fmax(n,L) is close to
this bound (see Proposition 22 in [17]).

On the other hand, the following result shows that there are linear equations where the bound in
Theorem 1.4 is far from tight.

Theorem 1.5. [17] Let L denote the equation px + qy = z where p ≥ q ≥ 2 are integers so that
p ≤ q2 − q and gcd(p, q) = q. Then

fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n).

In the case when L is the equation 2x+2y = z we provide a matching lower bound (see Proposition
26 in [17]). However, for many other linear equations L, the bound in Theorem 1.5 is far from tight.
Indeed, this is shown by the following very recent exact result.

Theorem 1.6. [18] Let L denote the equation px+ py = z where p ≥ 2 is an integer. Then

fmax(n,L) = 2n/2p+o(n).

Note that when p = q = 2, the upper bound in Theorem 1.5 is the same as the bound in
Theorem 1.6 (but this is the only case when the bounds meet). The proofs of Theorems 1.5 and 1.6
apply the container and removal lemmas of Green [15]. The former also utilises Theorem 1.1.

Our results suggest that, in contrast to the case of f(n,L), it is unlikely there is a ‘simple’ general
asymptotic formula for fmax(n,L) for all homogeneous linear equations L. It would be extremely
interesting to make further progress on this problem.

2. Overview of the proof techniques

In this section we give a brief overview of some of the ideas used to prove the results from [17].
Throughout this section, L will denote the equation px+ qy = z where p ≥ q and p ≥ 2, p, q ∈ N.

2.1. The proof of Theorem 1.1. Suppose that S is an L-free subset of [n] where m = min(S).
We define the graph Gm to have vertex set [m,n] and edges between c and pm+ qc for all c ∈ [m,n]
such that pm+ qc ≤ n. Note that S is a subset of the vertex set of Gm. Moreover, as S is L-free it
must be an independent set in Gm. (Notice though that we may have independent sets in Gm that
do not correspond to L-free sets.) Thus to give an upper on |S| it suffices to give such a bound on
the size of the largest independent set in Gm.

We observe that the components of Gm are paths. With care one can quantify precisely how many
of these ‘path components’ have a given length. We then use this structural information to bound
the size of the largest independent set in Gm.

2.2. The proof of Theorem 1.3. Notice that the number of L-free subsets S of [n] with min(S) = m
is bounded from above by the number of independent sets in Gm. Thus, once we have obtained
structural information about Gm, Theorem 1.3 follows. Indeed, we give a bound on f(n,L) by
summing up the total number of independent sets in the graphs G1, . . . , Gn.



2.3. Upper bounds on fmax(n,L). To prove Theorems 1.4–1.6 we apply the following container
result of Green [15].

Lemma 2.1. [15] Fix a three-variable homogeneous linear equation L. There exists a family F of
subsets of [n] with the following properties:

(i) Every F ∈ F has at most o(n2) L-triples.
(ii) If S ⊆ [n] is L-free, then S is a subset of some F ∈ F .
(iii) |F| = 2o(n).
(iv) Every F ∈ F has size at most µL(n) + o(n).

We refer to the elements of F as containers. By Lemma 2.1(ii)–(iii), to prove Theorem 1.4 for
example, it suffices to show that in each container F ∈ F there are at most 3(µL(n)−µ

∗
L(n))/3+o(n)

maximal L-free subsets of [n]. To achieve this goal we again translate the problem into one about
counting (maximal) independent sets in graphs.

The definition of the auxiliary graphs we use for this is more subtle than the definition of Gm, so
we do not define them here. The different upper bounds in Theorems 1.4 and 1.5 arise because in
Theorem 1.5 we are able to obtain structural information about these auxiliary graphs; specifically,
we show these graphs are triangle-free and then apply a result of Hujter and Tuza [20] that states that
any triangle-free graph on N vertices contains at most 2N/2 maximal independent sets. In the case
of Theorem 1.4, we do not use any structural information about our auxiliary graphs and therefore
just use a general bound of Moon and Moser [23] which states that any graph on N vertices contains
at most 3N/3 maximal independent sets. Similar ideas were used to prove results in [3, 1, 2].
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