
 
 

University of Birmingham

Development of partial miscibility in
polycarbonate/polypropylene blends via annealing
Jenkins, Michael; Kukureka, Stephen; Samsudin, Sani Amril

DOI:
10.1515/polyeng-2016-0254

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Jenkins, M, Kukureka, S & Samsudin, SA 2017, 'Development of partial miscibility in
polycarbonate/polypropylene blends via annealing', Journal of Polymer Engineering, vol. 37, no. 7, pp. 707-714.
https://doi.org/10.1515/polyeng-2016-0254

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 04/11/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/267295476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1515/polyeng-2016-0254
https://doi.org/10.1515/polyeng-2016-0254
https://research.birmingham.ac.uk/portal/en/publications/development-of-partial-miscibility-in-polycarbonatepolypropylene-blends-via-annealing(b1fbfdca-e109-4265-906b-e852bf4ac8e8).html


For Review
 O

nly

 

 

 

 

 

 

Partial miscibility in polycarbonate/polypropylene blends 

through annealing process  
 

 

Journal: Journal of Polymer Engineering 

Manuscript ID POLYENG.2016.0254.R1 

Manuscript Type: Unsolicited original article 

Date Submitted by the Author: 14-Sep-2016 

Complete List of Authors: Samsudin, Sani Amril; Universiti Teknologi Malaysia, Department of 
Polymer Engineering 
Kelly, Catherine; University of Birmingham, School of Metallurgy and 
Materials 
Kukureka, Stephen; University of Birmingham, School of Metallurgy and 
Materials 

Jenkins, Mike; University of Birmingham, School of Metallurgy and 
Materials 

Keywords: Polycarbonate, polypropylene, blend, annealing, partial miscibility 

  

 

 

Journal of Polymer Engineering

Journal of Polymer Engineering



For Review
 O

nly

Dear Prof. Ana Vera Machado  

Associate Editor, Journal of Polymer Engineering  

 

Manuscript ID:  POLYENG.2016.0254 

Title: "Partial miscibility in polycarbonate/polypropylene blends through annealing 

process" 

 

We thank the reviewers for their comments on our manuscript and we are pleased that 

reviewer one has decided that the work should be published without modification. In terms of 

the comments made by reviewer two, we have integrated our response to point 1 and 2 as we 

believe that they are closely related. 

1. Mechanical properties are important for polymer blend, but the authors did not provide 

any solid evidence for the difference of PC/PP blend before and after annealing. 

2. In the manuscript, the authors indicated that blend would appear miscibility due to that the 

annealing process gave rise to the degradation of PP. In that cases, whether the mechanical 

properties would decrease and what is the significance of research? 

Answer:  

We agree that mechanical properties of polymer blends are important, but that was not the 

focus of this manuscript. Instead, this is a work that is focused on thermal analysis and the 

interaction between the polymer components that is a consequence of thermal degradation in 

the PP. We did not undertake any mechanical testing so this cannot be included at this stage. 

Furthermore, mechanical properties of this blend system have been extensively reported 

elsewhere, but not the development of partial miscibility and its characterization. 

 

3. The scale of x and y axis shown in Figure 3 did not conform to the criteria. 

Answer:  

Despite careful consideration of this comment, we simply do not understand what is being 

asked of us (the comment does not make sense!) 
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4. Figure 4a and b show the SEM images of the blend before and after annealing, but there is 

no distinct difference between the two images. 

Answer:  

This is not the case. In the text the reader is directed to the regions in which there is localized 

adhesion between the droplets of PC and the PP matrix. 

 

We hope that our responses above are sufficient to allow publication of this work and look 

forward to your decision in due course. 

 

Yours sincerely, 

Dr S.A. Samsudin 

Correspondent 
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ABSTRACT: The morphology, dynamic mechanical properties and infra-red spectra of 

polycarbonate/polypropylene blends were investigated. As expected, polycarbonate and 

polypropylene were immiscible when blended together; however partial miscibility was 

developed following annealing. The miscibility of one polymer in the other was examined 

using the modified Fox equation and the values of the Flory-Huggins polymer-polymer 

interaction parameter ( 12χ ) were also calculated following the Kim and Burns approach. 

Moreover, the possible causes for partial miscibility in the annealed 

polycarbonate/polypropylene blends were explored by infra-red spectroscopy. It was 

concluded that annealing caused degradation of polypropylene leading to the formation of 

polar groups which were then able to interact with polycarbonate generating regions of partial 

miscibility. 

Keywords: Polycarbonate; polypropylene; blend; annealing; partial miscibility; 

Flory-Huggins 
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1. Introduction 

Polypropylene (PP) is a semi-crystalline thermoplastic. It is of prime commercial 

importance as it offers a combination of a relatively low price and ease of processing [1]. 

However, PP can display brittle characteristics and is commonly blended with other materials 

to improve its properties. 

 

Blends of polycarbonate (PC) and PP have been of interest for many years [1-10] PC/PP 

blends are known to be immiscible [10] and many researchers have shown that the size and 

shape of PC particles dispersed in a PP matrix depend significantly on the processing 

conditions as well as the presence of any compatibilisers [2-5, 11]. In addition Xu et al. has 

shown that the tensile strength of PC deteriorates with increasing PP content due to poor 

compatibility between the two polymers [9].  However, the mechanical properties were 

greatly improved on the addition of compatibilisers. The rheological properties [4-6] and 

crystallisation behaviour of PC/PP blends [7, 9, 12-14] have also been investigated, but the 

dynamic mechanical properties and the effects of annealing, have not been explored in any 

detail and are therefore the subject of this paper. 

 

The main focus of this work is to investigate the influence of annealing on the 

morphology and dynamic mechanical properties of PC/PP blends. More specifically, the 

potential for the development of partial miscibility during annealing will be investigated and 

values for the Flory-Huggins polymer-polymer interaction parameter (χ12) will be calculated 

in order to quantify any such blending. The existence of possible interactions between the 

two polymer blend components during annealing will be examined by infra-red spectroscopy. 
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2.0 Experimental 

2.1 Materials 

Polycarbonate (Calibre 303-15) was supplied by the Dow Chemical Company (Midland, 

Michigan, USA) in the form of moulding pellets. The density and melt flow index are 

specified by the manufacturer as 1.2 g/cm
3
 and 15 g/10 min at 300 °C and 1.2 kg, 

respectively. Polypropylene (Sabic PP 575P) was obtained from Sabic EuroPetrochemicals 

(Teesside, UK) in pellet form and has a density of 0.905 g/cm
3
 and a melt flow index of 11 

g/10min at 230°C and 2.16 kg as specified by the manufacturer. To minimise hydrolytic 

degradation during processing, both PP and PC were first dried under vacuum at 90 ˚C for 17 

hours. 

 

2.2 Sample preparation 

An APV model MP2000 twin-screw extruder (Saginaw, Michigan US) was used to 

melt-blend PP and PC at 250˚C with a screw speed of 100-150 rpm. The extrudate was 

subsequently pelletised and plaques (10 x 10 x 0.1 cm) were produced via compression 

moulding using a Moore E1127 hydraulic hot press (George E. Moore & Sons Ltd, 

Birmingham, UK) at 250 ˚C with a pressure of 10 tonnes. Annealing was accomplished via 

prolonged storage within the hot-press at 250 °C for 90 mins followed by quenching to room 

temperature in a water bath.  

 

2.3 Morphology studies 

The fracture surfaces of the blends were examined using a JEOL 6000 scanning electron 

microscope (SEM) (JEOL, Welwyn Garden City, UK). Samples were prepared by mounting 

onto aluminium stubs with a conductive carbon disc. The surface of the stubs together with 

the fracture surfaces were coated in gold, prior to analysis, using a sputter coater.  
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2.4 Dynamic mechanical thermal analysis 

Dynamic-mechanical testing was performed using a dynamic mechanical thermal 

analyser (DMTA) (Polymer Labs, Church Stretton, UK). Measurements were performed in 

which the loss tangent and storage modulus were recorded as a function of temperature on 

heating from -40 and 170 ˚C at a rate of 2 °C/min and a frequency of 1 Hz. The glass 

transition temperature (Tg) was determined as the temperature at which a peak in the loss 

tangent, corresponding to the α relaxation, was observed.  

 

2.5 Fourier transform infrared (FTIR) spectrometer 

A Nicolet Magna-IR 856 Fourier transform infrared (FTIR) spectrometer 

(Thermoscientific, Hemel Hempstead, UK) coupled to a Specac Golden Gate ATR 

supercritical fluid analyser (Specac, Slough, UK) was used to record the spectra of the 

homopolymers and blends prior to and following annealing. Spectra were recorded at room 

temperature with a resolution of 4 cm
-1

. To achieve an acceptable signal to noise ratio 100 

scans were recorded. Spectra were also collected over time using a heated ATR top-plate 

(Specac supercritical fluid heated top-plate) in conjunction with the FTIR in order to detect 

possible degradation of the samples. The samples were monitored at 250 °C for 90 minutes 

with a 2 cm
-1

 resolution. 

  

3.0 Results and Discussion 

3.1 Dynamic mechanical properties of unannealed PP/PC blends  

The DMTA spectra of the loss tangent against temperature for the unannealed PC/PP 

blends showed several distinct relaxations (Figure 1). Pure PC displayed a maximum in tan 

delta between 140 and 160 °C which is indicative of an α relaxation and therefore the glass 

transition of PC [13, 15]. The two peaks detected at lower temperatures (11˚C and 83˚C) can 
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be attributed to the β relaxation and α relaxation of the PP component, respectively [13]. The 

β relaxation at 10.7˚C is associated with the glass transition of the amorphous phase [16-17] 

whereas the small α relaxation peak appears as a shoulder and corresponds to a lamellar-slip 

mechanism and rotation in the crystalline phase [17-18]. As expected the intensities of each 

of these three peaks were seen to diminish as the polymer concentration within the blend 

reduced.  

 

The composition dependence of the maximum intensity of the loss tangent α relaxation 

peak in PC was analysed (Figure 2). As expected the intensity of the peak was found to 

decrease with a reduction in PC content. This is a dilution effect created by the increasing 

presence of PP [19]. Moreover, it is apparent that there is a pronounced negative deviation 

from the line that represents linear additivity suggesting partial dissolution of PC into the PP 

phase. 

 

The point at which each maximum occurs corresponds to the α and β relaxation 

temperatures for PC, PP and the blends as shown in Table 1. No systematic variation in the α 

and β relaxation temperatures with blend composition was found. As these transitions 

correspond to the Tg of the materials, this lack of shift, together with the observation of two 

distinct relaxations, suggests that the blend systems are immiscible [19,20]. It was not 

possible to resolve the peak temperatures for the α and β relaxations in the PP blend 

component at 90/10 (PC/PP) because the associated peaks were extremely broad. However, 

in the remaining blends, the temperatures associated with the α relaxation of PP were found 

to rise slightly with increasing PC content. Although this suggests some degree of partial 

dissolution of PC into the PP rich phase [19] it is more probable that there is constraint of the 
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PP chains by the PC region, thereby resulting in an increase in the temperature at which the α 

relaxation occurs.  

 

The frequency dependence of the α relaxation in the PC component was probed using an 

Arrhenius approach [21]. Plots of the natural logarithm of the applied frequency against the 

reciprocal of the measured relaxation temperature were constructed and found to be linear. 

Activation energies between 600 and 1000 kJ mol
-1

 were obtained by multiplying the 

gradient of these plots by the gas constant. The variation in the calculated activation energy 

with composition can be seen in Figure 3. It is apparent that the activation energy of the α 

relaxation in PC rises with increasing content.  Furthermore, this trend reflects that shown in 

Figure 2, in that a negative deviation from the trend line is observed at low PC contents 

suggesting some degree of miscibility.  

 

3.2 Development of miscibility in annealed PP/PC blends  

3.2.1 Effect of annealing on morphology of blends 

SEM micrographs of the blend containing 7.5% PC both prior to, and following, 

annealing are shown in Figure 4. It can be seen that the boundaries between the polymer 

phases are very well defined prior to annealing, whereas there is evidence of localised 

adhesion post-annealing. This suggests that the PC particles may undergo some chain 

entanglement with the PP chains in the matrix. Accordingly, it can be inferred that partial 

miscibility has developed during the annealing of the 7.5% PC blend. Similar images were 

also obtained for the blends containing other compositions. 

 

 The glass transition temperatures of both the PP and PC components of the annealed 

blends were determined by DMTA and plotted against composition (Figure 5). After 
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annealing, two glass transitions were again visible, however in contrast to the unannealed 

blends (Table 1), the temperatures at which these transitions occurred was found to vary with 

composition. This observation is in accordance with the development of adhesion between 

the phases (Figure 4), and therefore constitutes further evidence of the development of partial 

miscibility in this blend system following annealing. In general, the change in Tg for both PP 

and PC follows a linear trend; however a deviation seen at low PC concentrations suggests a 

region of increased miscibility [10, 22]. 

 

3.2.2 Measurement of miscibility in annealed PC/PP blends 

The interaction between the components of a polymer blend can be determined from the 

composition dependence of the glass transition temperature. If two polymers are completely 

miscible only one Tg occurs with its position determined by the composition of the blend. 

However, when two partially compatible polymers are blended, the glass transition 

temperatures of each component shift towards each other with the degree of movement 

dependent on both the concentration of the blend and the degree of miscibility [23]. DMTA 

analysis gave values for the Tg of the PC/PP blends after annealing (Figure 5). When the 

content of the PC component was more than 50 %, it was difficult to determine the glass 

transition temperature of PP due to the broad shape of tanδ. Thus this section focusses on the 

annealed blends with PC concentrations up to 50 %.  

 

Theoretically, when two polymers are completely miscible, the Tg of the blend can be 

estimated by the Fox [24] equation, as follows; 

              
2

2

1

11

gg

b

g
T

W

T

W

T
+=                   (1) 
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where W1 and W2 are the weight percentages of polymers 1 and 2; Tg1, Tg2 and 
b

gT are the 

glass transition temperatures of each composition in isolation and the blend, respectively.  

 

The Fox equation is commonly only applied to miscible polymers; however this theory 

can also be expanded to partially miscible blends. If two polymers are partially miscible, two 

phases will exist following processing: a polymer-1 rich phase and a polymer-2 rich phase. If 

no further phase separation occurs, each of these phases may be considered as totally 

miscible systems. Therefore the Fox equation (1) will be applicable to each phase and the 

weight fraction of component 1 in the polymer-1 rich phase can be calculated as [25]; 

)( ( )[ ]21121111 / gg

b

gg

b

gg TTTTTTW −−=             (2) 

where subscript 1 and 2 represent the polymer 1-rich phase and polymer 2-rich phase, 

respectively; 11W  is the apparent weight fraction of polymer 1 in the polymer 1-rich phase 

and 
b

gT 1  is the observed Tg of the polymer 1-rich phase in the blend.  

 

Similarly, the weight fraction of polymer 1 in the polymer-2 rich phase can be 

determined as: 

)( ( )[ ]21222112 / gg

b

gg

b

gg TTTTTTW −−=         (3) 

where 12W  is the apparent weight fraction of polymer 1 in the polymer 2-rich phase  and 

b

gT 2  is the observed Tg of the polymer 2-rich phase in the blend. Comparison of the Tgs of PC 

and PP in the annealed blends allows the apparent weight fractions of the PC and PP 

components dissolved in each phase to be estimated.  By applying Equation 3, the apparent 

weight fraction of PC in the PP-rich phase ( 12W ) and PP in the PC-rich phase (
21W ) were 

calculated (Table 2).  
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Following this, the apparent volume fraction (φ ) of each polymer in each phase could then 

be calculated (Equation 5 and 6):  

( ) ( )[ ]22211211212 //// ρρρφ WWW +=                      (4) 

( ) ( )[ ]11122122121 //// ρρρφ WWW +=                      (5) 

where 12φ  is the apparent volume fraction of PC dissolved in the PP-rich phase,  21φ  is the 

apparent volume fraction of PP dissolved in the PC-rich phase and ρ is the density of the 

respective polymers. 

 

The miscibility of PC and PP after annealing can be examined by plotting the volume 

fraction of each polymer in the other phase as a function of PC concentration, (Figure 6).  

The volume fractions of PC within the PP-rich phase are considerably greater than the reverse, 

although the latter are not zero, as expected for totally incompatible blends. In the 

composition range studied, it is PC which shows the greater capacity to be incorporated and 

diluted within the PP-rich phase of the annealed blends with very little dissolution of PP 

occurring in PC. A linear decrease in the volume fraction is to be expected as the 

concentration of the minor component is reduced, however the large drop observed with 

7.5 % PC suggests a region of greater miscibility as discussed previously. 

 

3.2.3 Polymer-polymer interaction parameter of annealed PC/PP blends 

 From the discussion above, partial miscibility has been deduced in the annealed PC/PP 

blends. In such cases the approach developed by Kim and Burns [25-27] can be used to 

calculate the Flory-Huggins polymer-polymer interaction parameter ( 12χ ) (Equation 6). The 

theory of Kim and Burns is applicable to partially miscible systems in the absence of solvents 

and assumes that the equilibrium state has been accomplished.  
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( ) ( ) ( )( )[ ] ( ) ( ) ( )( )[ ]{ }
( )( )2

22

2

21

2

12

2

1121

12111221221

2

22

2

2122212111122

2

12

2

11

12
2

/ln/ln

φφφφ

φφφφφφφφφφφφ
χ

−−

−−+−+−−+−
=

mm

mmmmmm  (6) 

where 11φ  and 22φ  are the apparent volume fractions of PC dissolved in the PC-rich phase 

and that of PP dissolved in the PP-rich phase; 2111 1 φφ −= ; 1222 1 φφ −= ; 1m  and 2m  are 

the number-average degrees of polymerisation of pure PC and PP, respectively. 

               

The values of 1m and 2m can be obtained from the following relationships: 
011 /VVm =  

and 
022 /VVm = , where V1 and V2 are the molar volume of PC and PP respectively. V0 is a 

fictitious molar volume of one submolecule of polymer. The repeat unit of PP has been 

chosen as a lattice-site volume. The values of 1m =4.19×10
2
 and 2m =1.18×10

3
 were 

calculated for the PC and PP components, respectively.                    

 

Calculation of the interaction parameters of the annealed PP-PC blends showed very low, 

positive values for each composition (Table 2). In general, a large negative 12χ is associated 

with strong specific interactions, i.e. polymer miscibility; while a large positive value 

indicates immiscibility. Relatively low positive values, as seen here, indicates a degree of 

interaction and therefore partial miscibility between PC and PP.  The interaction parameter 

was found to rise as the PC concentration within the blend increased indicative of the blends 

becoming less miscible. This is consistent with the sharp reduction in both the Tg and soluble 

weight fraction of PC at low PC concentrations. 
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A more accurate method to determine the miscibility of a polymer blend is to compare 

the interaction parameter with the critical interaction parameter as defined by Scott [28].
 
The 

critical value of 12χ , ( )
critical12χ  is calculated as: 

( ) ( )22/1

2

2/1

112
2

1 −− += mm
critical

χ         (8) 

The condition ( )
critical12χ / 12χ  = 1 corresponds to the transition of a polymer system from a 

stable to a metastable state. Therefore, 12χ < ( )
critical12χ  is a condition for the miscibility of 

components in a blend. It has been suggested that if 12χ < ( )
critical12χ  the polymers will be 

miscible and no phase separation will occur. The larger the difference between the two values, 

the wider the composition dependent miscibility window. If 12χ > ( )
critical12χ  the polymers 

will be immiscible and results in the occurrence of two distinct phases [29].  

 

The critical interaction parameter of the annealed PC/PP blends was calculated to be 

3.05×10
-3

. Each of the annealed blends studied possessed interaction parameters greater than 

this value (Table 2) which is indicative of partially miscible or immiscible blends. These 

results are consistent with the experimental data predicting a partially miscible blend. 

 

3.3 Time-resolved FTIR spectroscopy of the annealing process in PC/PP blends 

FTIR spectroscopy was used to monitor any chemical changes in the blends during the 

annealing process. Initial experiments were conducted on the homopolymers, PC and PP. The 

infra-red spectrum obtained from PC remained the same during the annealing process 

indicating no significant chemical change in the polymer (data not shown). This is consistent 

with the idea that PC is a thermally stable material. In contrast, the infra-red spectrum for PP 

was found to change considerably during annealing (Figure 7). It is clear that a series of new 
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bands appear in the region 1600 to 1800 cm
-1

 after 60 minutes annealing. This observation 

has been reported previously and attributed to the oxidation of PP, initiated from the surface 

of the material [30]. The by-products of the degradation process have been shown to be 

composed of many carbonyl containing species such as α,β-unsaturated ketones (1690 cm
-1

), 

carboxylic acids (1710 cm
-1

), methyl ketones (1720cm
-1

), aldehydes (1725 cm
-1

), esters (1745 

cm
-1

), and lactones (1780 cm
-1

) [31]. 

 

The FTIR spectra of the 7.5% PC blend before and after annealing are shown in Figure 8. 

It is again apparent that the PP component in the blend is sensitive to degradation, i.e. 

numerous bands appear following annealing. Particularly prominent is the development of the 

carbonyl band at 1774 cm
-1

. To enable comparison of the effects of annealing on each blend 

the ratio of this carbonyl peak to a reference peak was calculated. The carbon-carbon 

vibrational band centred at 841 cm
-1

 was used as a reference as it remained unaffected by the 

annealing process [32]. The ratio of the intensity of these bands was found to increase from 

0.196 to 0.457 for the 7.5% PC blend after annealing, and from 0.573 to 0.757 for 30% PC. 

This highlights that the degradation process is more pronounced in the 7.5% blend than in the 

30% blend. 

 

Prior to annealing, the blend has been shown to be immiscible. However, the annealing 

process causes the PP component to degrade, which is accompanied by the formation of a 

range of functional groups, many of which are polar. The polar nature of these new groups 

offers regions for the PP component to interact with PC. The degradation of PP may also 

result in the formation of esters [33]. The presence of such functional groups within the PP 

component offers the possibility of transesterification between the degraded PP and the PC 
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components. Given the fact that the blend was found to immiscible prior to annealing, such 

reactions would be limited to the interface between the phases. The result would be the 

formation of regions of adhesion between the phases as observed in Figure 4b. 

 

4.0 Conclusions 

The blending of polypropylene and polycarbonate has been evaluated. The glass 

transition temperatures of PP and PC, as analysed by DMTA, were unaffected by blending 

suggesting immiscibility. Following annealing at 250 °C for 90 minutes, sites of adhesion 

between the phases were observed. The glass transition temperatures were also found to 

converge following annealing pointing to the development of partial miscibility. These shifts 

in glass transition temperature were analysed in terms of the Flory-Huggins and Kim-Burns 

theories and the calculated interaction parameter was positive which supported the 

interpretation of partial miscibility. A study of the annealing process using time-resolved 

FTIR spectroscopy provided an explanation of why the blend components were able to 

participate in some degree of blending. The annealing process was found to cause PP to 

degrade. The degradation pathway involved the formation of polar groups which were able to 

participate in ‘favourable interactions’ with PC and thereby create regions of partial 

miscibility in a blend system that had previously been described as completely immiscible. 
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Figure 1. Variation of tan δ with temperature for unannealed PC/PP blends of different compositions.  
Figure 1  
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Figure 2. Maximum intensity of the PC α peak temperature as a function of PC composition in the 
unannealed PC/PP blends.  

Figure 2  
143x94mm (96 x 96 DPI)  
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Figure 3. Variation in the activation energy of the α relaxation of PC with PC content for unannealed PC/PP 
blends.  
Figure 3  
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Figure 4. SEM micrographs of a PP blend containing 7.5% PC before and after annealing.  
Figure 4  
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Figure 5. Variation of the glass transition temperatures with composition in annealed PC/PP blends.  
Figure 5  
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Figure 6. Volume fractions of each polymer in the opposite rich-phase as a function of PC content in the 
annealed PC/PP blends.  

Figure 6  
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Figure 7. Selected time-resolved spectra of pure PP during annealing at 250 °C.  

Figure 7  
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Figure 8. IR spectra of a PP blend containing 7.5% PC before and after annealing.    
Figure 8  
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Table 1 Variation in tan δ peak temperature with composition for unannealed PC/PP 

blends. 

 

PC content 

 / wt % 

Relaxation Temperature / ± 0.1 °C 

PP 

β relaxation 

PP 

α relaxation 

PC 

α relaxation 

0 10.7 82.8 - 

7.5  12.5 83.7 153.6 

30 11.6 85.2 154.6 

50 13.2 87.3 154.4 

90 - - 153.1 

100 - - 153.5 
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Table 2 Glass transition temperatures, apparent weight and volume fractions of each 

component in the PC-rich and PP-rich phases and the polymer-polymer interaction 

parameter ( 12χ ) of the annealed PC/PP blends 

 

PC content / wt % 

b

gT 1  

/°C 

b

gT 2  

/°C 
12w  21w  12φ  21φ  

12χ ± 0.01 

(10
-3
) 

7.5 % 148.0 12.7 0.169 0.0028 0.134 0.0037 5.38 

10 % 150.7 13.3 0.210 0.0014 0.168 0.0024 5.50 

30 % 151.9 13.5 0.223 0.0008 0.178 0.0011 5.70 

50 % 152.0 13.6 0.229 0.0007 0.184 0.0010 5.71 
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