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Investigating the maximum soil pressure on a concrete pipe with poor haunch 
support subjected to traffic live load using numerical modelling 

 

Saif Alzabeebee, David N Chapman, Ian Jefferson, and Asaad Faramarzi 

School of Engineering, University of Birmingham, Birmingham, United 
Kingdom 

Abstract 
The behaviour of rigid pipes during backfilling, under soil weight, and under traffic live 
loads has received considerable attention from researchers in the past. A significant 
number of numerical, laboratory, and full scale studies on the response of rigid pipes 
under these effects have been published, which provide clear guidelines for the likely 
behaviour of the pipe. However, these studies were conducted assuming full support 
for the pipe in the haunch zone, although proper haunch support is, in fact, difficult to 
achieve in practice. This study therefore focuses on the effect of poor haunch support 
on the maximum soil pressure developed on a buried concrete pipe under traffic live 
loading using three-dimensional finite element modelling. The Duncan-Chang 
hyperbolic soil model has been used to represent the soil material and the pipe 
behaviour is simulated with a linear elastic model. The live load considered in the 
analyses is based on the British Standard design requirement (two axles with a 
maximum axle load of 450 kN). The poor haunch support has been modelled by 
removing the soil elements in the haunch zone to simulate the worst case scenario. 
The results show that the effect of poor haunch support causes significant increases 
in the maximum soil pressure and has considerable implications for the design of 
rigid pipes. 

1. Introduction 
Ensuring good compaction of the soil in the haunch zone is very important for 
providing a buried pipe with enough support and uniformly distributing the load 
around the pipe during its service life.  A significant number of numerical, laboratory, 
and full scale studies on the response of rigid and flexible pipes have been 
published, which provide clear guidelines for the likely behaviour of the pipes 
(Rogers, 1999, Yoo et al., 1999, Dhar et al., 2004, Sargand et al., 2005, Arockiasamy 
et al., 2006, Wong et al., 2006, Trickey and Moore, 2007, Elshimi and Moore, 2013, 
Kang et al., 2013a, Kang et al., 2013b, Bryden et al., 2014, and Kraus et al., 2014). 
However, the previous studies were conducted assuming full support for the pipe in 
the haunch zone, although proper haunch support is, in fact, difficult to achieve in 
practice (Boschert and Howard, 2014). Despite the importance of this topic in the 
practical application of rigid pipeline design, little attention has been paid to it in the 
literature where the majority of the previous studies have focused on the behaviour of 
the pipes due to loss of support as a result of pipe leakage (i.e. void formation). Dhar 
et al. (2004) used a validated two-dimensional finite element model to study the 
effect of poor haunch support on the structural response of ribbed polyvinyl chloride 
(PVC) and corrugated high density polyethylene (HDPE) pipes under soil overburden 
pressure. The inner diameter of the PVC and HDPE pipes was 60.5 cm and 61 cm, 
respectively. They found that poor haunch support increased the vertical 
displacement of the pipe. They further found that poor haunch support also caused a 
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redistribution of strains around the circumference of the pipe, with the strains being 
concentrated at the haunch for both the HDPE and PVC pipes. Balkaya et al. (2012) 
studied the effect of voiding due to pipe leakage on the behaviour of cast iron (CI) 
pipes with a 2.5 m overburden pressure using three dimensional finite element 
modelling. Voids were introduced in the bedding and the haunch zone. The effect of 
void depth, void length, and void angle were investigated. Medium-dense and dense 
sandy soils were considered in the analysis. An internal water pressure of 400 kPa 
was also considered in the analysis. It was found that increasing the void size 
increased the stresses generated in the pipe and resulted in a decrease in the factor 
of safety against tensile rupture. Balkaya et al. (2013) repeated the same 
investigation on a PVC water pipe, where the outer diameter of the pipe was 15 cm 
and the wall thickness was 0.5 cm. The internal water pressure was again assumed 
to be 400 kPa. The behaviour was studied under the effect a 2.5 m overburden soil 
pressure. Comparing the results of the uniform bedding and the bedding with a void 
showed that the presence of a void increased the tensile stress in the pipe wall. The 
percentage increase of the maximum tensile stress ranged from 37% to 69% for the 
medium sand and 45% to 95% for the dense sand. Kamel and Meguid (2013) studied 
experimentally and numerically the effect of voids due to erosion on the soil pressure 
distribution around a buried steel pipe with an outer diameter of 15 cm and wall 
thickness of 2.5 cm. The backfill height to diameter ratio was equal to 2. In these 
tests, the contact loss (retractable strip) was placed at the invert, haunch, and 
springline. The experimental results showed that the contact loss at the springline 
and haunch increases the earth pressure by 30% from its initial value. Meguid and 
Kamel (2014) used a three dimensional finite element program ABAQUS to study the 
effect of an erosion void on the response of a buried concrete pipe with an inner 
diameter of 60 cm, wall thickness of 7 cm, and a soil cover height of 3 m. The results 
showed that the presence of the erosion void increased the earth pressure compared 
with the case of no erosion void. The increase in earth pressure was more than 100 
% for the case of a void located at the spring line and approximately 30% for the 
case of a void located at the invert.  

From this brief review, it can be seen that the previous studies assumed a void with 
limited dimensions, they also did not consider the loss of support in the full haunch 
area, as well as not considering the effect of traffic live load. The present study 
therefore focuses on studying the effect of the poor soil support in the full haunch 
zone for a concrete pipe under an overburden pressure and the British Standard 
traffic live load (BS 9295, 2010). The aim was to study the impact of poor haunch 
support on the maximum soil pressure on a concrete pipe and how this might affect 
design practice. 

2. Numerical modelling details 
Concrete pipes with diameters ranging from 41 cm to 289 cm (Peterson et al. 2010) 
were modelled as part of this study. However, the results for one representative pipe 
are presented in the paper to illustrate the key findings. The concrete pipe had a 
diameter of 76 cm and a wall thickness of 7.62 cm and was modelled using the finite 
element package MIDAS GTS NX 2015. The length, width, and height of the 
numerical model were equal to 15 m, 12 m, and 10 m, respectively and were chosen 
based on a sensitivity analysis to avoid any boundary effect. Four noded tetrahedron 
solid elements were used to model the surrounding soil and the trench, while three 
noded triangular shell elements were used to model the pipe. The average element 
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size was 0.15 m for the pipe, 0.15 m for the trench, 0.25 for the bedding layer, and 
0.5 m for the surrounding soil. The bedding layer was assumed to have a thickness 
of 10 cm. The British Standard main highway (‘main road’) traffic load has been 
considered because this loading configuration simulates the worst case scenario (BS 
9295, 2010). This loading configuration comprises two axles with four wheels in each 
axle as shown in Figure 1. The total single wheel load is equal to 112.5 kN. The 
wheel load area is assumed to have a length of 0.5 m and a width of 0.25 m 
(Petersen et al., 2010 and Kang et al., 2013a). To find the critical loading condition of 
the traffic live load, the effect of truck position for the cases of a truck travelling 
parallel and transverse to the pipeline direction was investigated. It was found that 
the maximum stresses and deformations in the pipe occur when the truck is moving 
transverse to the pipe direction with the first axle being directly above the pipe. The 
hyperbolic Duncan-Chang soil model (Duncan and Chang, 1970) was used to model 
the in situ soil, bedding soil, and backfill soil. A linear elastic model was used to 
model the pipe. A well-graded sand with a degree of compaction of 90% (SW90) was 
considered for both the backfill and bedding soils. The unit weight material properties 
of the compacted soil and the pipe have been adopted from the literature (Boscardin 
et al., 1990, and Petersen et al., 2010), while the in situ soil was assumed to be 
stronger than the backfill soil. All of the material properties of the bedding soil, backfill 
soil, and surrounding soil are shown in Table 1. The modulus of elasticity (E) and the 

Poisson ratio () of the pipe were taken equal to 24856 MPa and 0.2, respectively 
(Petersen et al., 2010). The backfill heights ranged from 1.0 m to 4.5 m. The finite 
element mesh used in these analyses is shown in Figure 2a. Four steps were 
performed in the finite element analyses. 

Step 1: The initial earth pressures for the in situ soil were calculated. A coefficient of 
lateral earth pressure of 1 was assumed for the in situ soil. 

Step2: The trench was excavated. 

Step 3: The bedding soil, pipe, and backfill soil were added. The lateral earth 
pressure coefficient for the compacted soil was assumed to be 1 (Brown and Selig, 
1990). To simulate the poor haunch support, the soil elements in the haunch zone 
were not added in the model so there was a void along the whole pipe length in the 
haunch zone as shown in Figure 2b.  

Step 4: The traffic live load was applied with a total number of 25 equal steps.   
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Table 1: The material properties for the soils used in the parametric study  

Property SW90* Natural soil** 

Unit weight (γ) (kN/m3) 20.99 21.00 

Poisson's ratio () 0.3 0.3 

Effective cohesion (c) (kN/m2) 0 30 

Effective angle of internal friction () (°) 42 36 

Modulus number (K)  640 1500 

Failure ratio (Rf) 0.75 0.90 

Modulus exponent (n) 0.43 0.65 

* adopted from Boscardin et al. (1990) 

** assumed values 

 

 

Figure 1: The British Standard main highway (‘main road’) loading configuration (BS 
9295, 2010), showing the worst load case condition relative to the pipe 
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Figure 2: (a) The finite element mesh used in the analyses (b) An example of the 
mesh used to simulate the poor haunch support 

 

(a) 

 

(b) 

3. Results of the analyses 

3.1 Maximum soil pressure for the pipe under full haunch support condition 
This section presents the results of the maximum soil pressure for the 76 cm 
diameter pipe with full haunch support for backfill height range of 1 m to 4.5 m. The 
results for a single pipe size are presented here to illustrate the potential effects of 
poor haunch support. The maximum soil pressure has been considered because the 
British Standard adopts the indirect design method, which uses the maximum soil 
pressure to estimate the required pipe capacity (BS 9295, 2010). The maximum soil 
pressure for the pipe with full haunch support is investigated first to study the effect of 
the backfill height and to demonstrate the relative change in the soil pressure due to 
poor haunch support. 

Figure 3 shows the maximum soil pressure at the crown of the pipe due to the soil 
weight only, the traffic load only, and the combined soil weight and traffic load. For 
the sake of comparison, the overburden pressure (i.e. backfill height x unit weight) is 
also presented in the Figure 3. The results show that the maximum soil pressure due 
to the effect of the soil weight only increases linearly as the backfill height increases. 
Furthermore, the maximum soil pressure at the crown of the pipe is larger than the 
overburden pressure. This is due to the tendency of the rigid pipe to attract more 
stress because of its higher rigidity (Kang et al. 2007). It can also be seen that the 
maximum soil pressure due to the traffic live load decreases nonlinearly as the 
backfill height increases and becomes equal to zero for a backfill height of 4.5 m. 
These results reveal that only approximately 12% of the total tyre stress (900 kPa) 
reaches the pipe crown at a backfill height of 1.0 m, and for a backfill height of 3 m, 
the percentage reduces to 2%. Similar observations were also found by Bian et al. 
(2012) from a full scale study on the effect of truck loads on an arch concrete culvert 
buried in a granular soil with a backfill height ranging from 0.5 m to 3.5 m. Bian et al. 
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(2012) noticed that the tyre stress decreased by 91 % at a depth of 1.0 m below the 
ground surface. 
Figure 4 shows the maximum soil pressure at the invert of the fully supported pipe 
under the effect of the soil weight, the traffic live load, as well as a combination of 
both. Similar observations are noticed for the crown, where the maximum soil 
pressure under the effect of the soil weight only increases linearly as the backfill 
height increases and the maximum soil pressure under the traffic live load decreases 
as the backfill height increases.  
 
 
 
Figure 3: Maximum soil pressure at the crown of the pipe for the full haunch support 
condition 
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Figure 4: Maximum soil pressure at the invert of the pipe for the full haunch support 
condition 

 

 

3.2 Maximum soil pressure under poor haunch support condition 
Figure 5 shows the maximum soil pressure at the crown of the pipe under the soil 
weight only and the combined soil weight and traffic live load. Comparing the results 
with Figure 3 shows that the low haunch support only slightly decreased the 
maximum soil pressure at the crown of the pipe. For the case of the soil weight only, 
the percentage reduction in the maximum soil pressure is equal to 5% for backfill 
heights of 1.0 m and 4.5 m. For the case of the combined soil weight and traffic live 
load, the percentage reduction is equal to 5% for a backfill height of 1.0 m and 4.5 m.  

Figure 6 compares the maximum soil pressure at the invert of the pipe under the soil 
weight only and the combined soil weight and traffic live load for the full and poor 
haunch support conditions. It can be seen that the poor haunch support significantly 
increases the maximum soil pressure at the invert of the pipe. For the case of the soil 
weight only, the percentage increase in the maximum soil pressure is equal to 171% 
for a backfill height of 1.0 m and 174% for a backfill height of 4.5 m. For the case of 
the combined soil weight and traffic live load, the percentage increase in the 
maximum soil pressure at the invert of the pipe is equal to 210% for a backfill height 
of 1.0 m and 174% for a backfill height of 4.5 m. The increase in the maximum soil 
pressure at the invert of the pipe is because of the concentration of the reaction 
pressure at the invert only, which makes the soil in the invert zone react to all of the 
pressure developing above the pipe from the soil weight and the traffic live load in 
order to satisfy the equilibrium conditions. Comparing the total maximum soil 
pressure for the poor haunch support case (i.e. at the pipe invert) with the maximum 
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soil pressure for the full haunch support case (i.e. at the pipe crown) shows that the 
zone of the maximum soil pressure changes from the crown to the invert due the 
poor haunch support. 

It can be concluded from the above discussion that the effect of the poor haunch 
support may lead to the failure of the pipe because the stress dramatically increases 
due to the concentration of the reaction pressure on the invert only. Due to the 
difficulties associated with achieving good haunch support in practice (Boschert and 
Howard, 2014), this needs to be taken into account to achieve safe pipe designs of 
by magnifying the estimated stress. A magnification factor equation is therefore 
required to account for the poor haunch support in design practice. This equation 
should be built based on different diameters and different backfill heights to cover all 
of the expected design scenarios, and is the subject of further study. 

 

 

Figure 5: Maximum soil pressure at the crown of the pipe for the poor haunch support 
condition 
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Figure 6: Maximum soil pressure at the invert of the pipe for the full and low haunch 
support conditions 

 

4. Summary 
This paper has presented the results of a numerical study using three dimensional 
finite element modelling investigating the effect of poor haunch support on the 
maximum soil pressure of a 76 cm concrete pipe under the effect of soil weight and 
the British Standard main road traffic loading requirements, with backfill heights 
ranging from 1 m to 4.5 m. The effect of poor haunch support has been considered 
by removing the soil elements in the haunch area to simulate the worst case 
scenario. The results from analyses with full haunch support have also been 
presented to demonstrate the effect of the backfill height on the maximum soil 
pressure and to demonstrate how these change due to the effect of poor haunch 
support. The following conclusions can be drawn from the present study: 

1- The maximum soil pressure at the crown of the pipe under the effect of the 
traffic live load decreases nonlinearly as the backfill height increases, with only 
12% of the tyre stress reaching the crown of the pipe at a backfill height of 1.0 
m. 

2- Poor haunch support does not significantly affect the maximum soil pressure 
at the crown of the pipe under the soil weight and the traffic live load. 

3- Poor haunch support does, however, increase the maximum soil pressure at 
the invert of the pipe under the soil weight and the traffic live load (by up to 
210% in the example presented). This increase changes the zone of the 
maximum soil pressure from the crown of the pipe to the invert. It is important 
for designers to take this into account if they don’t have control over the 
installation process or if the installation practice is not good. 
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