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ABSTRACT 30 

Measurements of 16 polycyclic aromatic hydrocarbon (PAH) congeners (particles and vapour) have 31 

been made at three sites  over a distance of 230 km on the Red Sea coast of Saudi Arabia.  The data 32 

have been pooled with an earlier dataset from three sites in the city of Jeddah, with one urban site 33 

common to both studies.  The concentrations and congener profiles are broadly similar for the two 34 

measurement campaigns at the common site.  Coefficients of Divergence have been calculated and 35 

show more substantial differences between the sites within the city of Jeddah than are found 36 

between the sites to the north of the city which emphasises the strong concentration gradients within 37 

Jeddah in comparison to those found in the atmosphere of the coastal sites to the north of the city.  38 

A sub-set of data corresponding to days on which the air mass travelled from the northwest parallel 39 

with the Red Sea coast, hence linking the three sites, showed a progressive reduction in 40 

concentrations as the air mass travelled towards the southeast, which is attributed to emissions from 41 

a large source area to the northwest of the sampling sites and either atmospheric dilution or 42 

chemical reaction accounting for a progressive reduction in concentrations with advection of the air 43 

mass.  The congener profile is very similar to that identified in earlier work relating to oil refinery 44 

emissions and is consistent with the major petrochemical installation at Yanbu contributing 45 

substantial emissions to the atmosphere which are advected to downwind sites. 46 

 47 

Keywords: Polycyclic aromatic hydrocarbons; spatial analyses; atmospheric concentrations; 48 

petrochemical works; Saudi Arabia 49 

  50 
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INTRODUCTION 51 

Polycyclic aromatic hydrocarbons are a group of compounds emitted to the atmosphere from a wide 52 

range of combustion processes.  There are many compounds within the group, but conventionally a 53 

small number are commonly analysed – most often the 16 compounds specified by the US 54 

Environmental Protection Agency (Sun et al., 1998).  The main driver for measurement is concern 55 

over the health risk posed by the PAH mixture, which is listed by IARC as a Class 1 human 56 

carcinogen (IARC, 2010).  Several congeners within the group contribute to that toxicity and 57 

relative potency factors have been proposed by a number of workers (reviewed by Delgado-Saborit 58 

et al., 2011).  Both the World Health Organization and the European Commission use 59 

benzo(a)pyrene (BaP) as a marker for the mixture, as this compound typically accounts for a 60 

substantial proportion of the carcinogenic potential of the entire mixture (Delgado-Saborit et al., 61 

2011).  While the WHO publishes slope factors relating cancer risk to exposure concentrations but 62 

no guideline value (WHO, 2000), the European Union has adopted a target value of 1 ng m-3 of 63 

BaP.  A review of the health risk of PAH exposure in the context of indoor air (WHO, 2010) has 64 

highlighted health outcomes other than cancer for which there is strong evidence of a contribution 65 

from PAH.  Bae et al. (2010) have shown an association between PAH exposure, measured by a 66 

biomarker, and oxidative stress, which is a precursor to disease.  According to Trasande et al. 67 

(2015), children living close to an oil refinery, which was a known source of PAH, showed a 68 

significant increase in symptoms of pre-hypertension. Kim et al. (2013) reviewed the human health 69 

effects of airborne PAH exposure, discussing both acute and chronic health effects. 70 

 71 

As the PAH mixture is a genotoxic carcinogen, there is no wholly safe level of exposure and a 72 

consequent need exists to minimise exposure from all sources.  PAH emissions derive from 73 

combustion sources such as gasoline and diesel engine exhaust, wood smoke and food cooking, as 74 

well as from industrial processes such as steel production and anode baking in aluminium 75 

production, and from the evaporation of fossil fuels (Baek et al., 1991; Mastral and Callen, 2000).  76 
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Since the development of cost-effective abatement strategies requires a sound knowledge of 77 

individual source contributions to ambient concentrations, there is a pressing need for source 78 

apportionment studies, such as that conducted by Jang et al. (2013) using data from the United 79 

Kingdom PAH monitoring network and Wang et al. (2015) using a large dataset collected at a 80 

megacity in China.  In addition to the application of Positive Matrix Factorization to a multi-site, 81 

multicomponent dataset, Jang et al. (2013) used spatial distribution analysis to infer source 82 

contributions.  The differences in concentrations between paired sites were used to infer source 83 

contributions, which could be compared with emissions inventory data.  Site pairs included 84 

roadside/urban background pairs and industrial/urban background pairs of sites.  Mari et al. (2010) 85 

also made a qualitative comparison of congener profiles between urban and rural sites, and 86 

compared a road traffic profile with an urban background concentration profile, but did not use 87 

quantitative measures of difference. 88 

 89 

A factor to consider in analysing ambient air measurements of PAH is that the compounds are 90 

reactive in the atmosphere at differing rates leading to degradation, and a consequent change occurs 91 

in the ratios of compounds from those emitted at source (Keyte et al., 2013).  A further 92 

consideration is that PAH are semi-volatile compounds which actively partition between the vapour 93 

and condensed phases, and to fully understand their airborne concentrations it is necessary to 94 

measure both phases (Yamasaki et al., 1982).  Receptor modelling is also likely to generate 95 

misleading results unless the sum of both phases is used in the model (Harrison et al., 1996; Xie et 96 

al., 2013; Gao et al., 2015). 97 

 98 

There have been relatively few measurements of PAH in countries from the Middle Eastern region.  99 

Alghamdi et al. (2015a) review data from Assiut, Egypt (Abdallah and Atia, 2014), Giza, Egypt 100 

(Hassan and Khoder, 2012), Tehran, Iran (Halek et al., 2010), Kuwait (Gevao et al., 2006) and 101 

Zonguldak, Turkey (Akyuz and Cabuk, 2010) as well as measurements from two locations in Saudi 102 
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Arabia: Makkah (Habeebullah, 2013) and Riyadh (El-Mubarek et al., 2014).  These show a huge 103 

diversity in concentrations, with concentrations reported from Egypt and Iran far exceeding those 104 

from sites in Jeddah, Saudi Arabia (measured by Alghamdi et al., 2015a), and those from Kuwait 105 

falling below the Jeddah data.  Both the studies of Habeebullah (2013) and El-Mubarak et al. (2014) 106 

report very high PAH concentrations;  the latter reported average benzo(a)pyrene of 400 ng m-3, 107 

which is so high as to require independent confirmation.  Due to the very different climate, and 108 

availability of fuels, it is anticipated that PAH sources may be very different in the Middle Eastern 109 

region from that in temperate western countries.  It is anticipated that there would be little use of 110 

coal or wood as fuels, but greater dependence upon petroleum-based products.   111 

 112 

The anticipated dominance of petroleum based sources is borne out by a receptor modelling study 113 

conducted in Saudi Arabia.  In a study of PAH measured at three sites in Jeddah, Saudi Arabia, 114 

Alghamdi et al. (2015a) used PMF to apportion PAH to three factors representing traffic emissions, 115 

industrial sources, especially an oil refinery, and oil combustion.  The purpose of this research is to 116 

extend the geographic coverage of PAH concentrations and source attribution well beyond Jeddah 117 

and Riyadh for which data are already available into that part of the western coast which contains 118 

extensive petrochemical industry activity.  In this paper we report further measurements from one  119 

of the sites used by Alghamdi et al. (2015a) – Site C in that paper – and over the same campaign 120 

period from two further sites up to 230 km to the north of Jeddah.  These new data include 121 

measurements from two sites which substantially increase the spatial coverage,   and were collected 122 

so as to test for spatial trends in concentration within the prevailing air mass movements from 123 

north-west towards south-east along the Red Sea coast (see Figure 1).  They also include a rural site 124 

for which very few data are available in this region. 125 

 126 

 127 

 128 
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EXPERIMENTAL 129 

Sampling Sites 130 

These are shown in Figure 1. 131 

 132 

FIGURE 1 HERE 133 

 134 

Site A (Refinery) (21.4439ºN; 39.2005ºE) is a primary school situated in a highly populated 135 

economically disadvantaged residential area in the south of the city of Jeddah, about 700 metres 136 

east of the Jeddah oil refinery, and close to the Port of Jeddah. 137 

 138 

Site B (Ring Road) (21.4727ºN; 39.2755 ºE) is also a primary school in the eastern part of Jeddah, 139 

about 150 metres from the heavily trafficked Al-Haramian ring road. 140 

 141 

Site C (Abhur) (21.7572ºN; 39.1147ºE) is located in the grounds of a research institute on the Red 142 

Sea coast to the west of major roads.  It is in the northern suburbs of the major city of Jeddah 143 

(population 5 million), with the King Abdulaziz international airport to the east (inland).  The site is 144 

approximately 130 km to the SE of Rabegh. 145 

 146 

Site D (Rabegh) (22.8122ºN; 39.0664ºE) is a site located about 1 km from the residential areas of 147 

this substantial city, which has appreciable local industry.  The sampling site is ca. 500 metres east 148 

of the coastal road.  It is approximately 100 km SSE of Rayes. 149 

 150 

Site E (Rayes) (23.5756ºN; 38.6058ºE) is a sparsely developed area with little road traffic and no 151 

appreciable local sources.  The sampling site is located about 950 metres inland (east) of the coastal 152 

road, and 25-50 km SSE of the large industrial complex in the region of Yanbu. 153 

 154 



7 
 

Wind trajectories in western Saudi Arabia often travel parallel to the coast from an approximately 155 

north-westerly direction.  Consequently, three sites were selected for air sampling spaced along the 156 

coast, to the south east of the major petrochemical plant located south of Yanbu.  Thus, air masses 157 

travelling parallel to the coast after Yanbu would firstly cross the site at Rayes, some 25-50 km 158 

southeast of the industrial activities around Yanbu (see Figure 1). Rayes is in a sparsely developed 159 

area and would be expected to experience predominantly regionally polluted air masses, as well as 160 

possibly being influenced by emissions from the Yanbu industrial complex.  The second site along 161 

the coast is Rabegh which is located within a major urban area, with both local road traffic and 162 

industrial influences.  It is 100 km from Rayes.  The third site, Abhur is in the northern suburbs of 163 

Jeddah city, about 130 km from Rabegh.  Southerly air masses would carry the pollution load from 164 

the city, while air masses following the coast from the north-west would cross few areas of 165 

population between Rabegh and Abhur.  The area is mainly residential with local traffic influences, 166 

but no industry, other than that to the south within Jeddah.  The city of Jeddah has both high traffic 167 

density and major fixed emission sources including an oil refinery and a desalination plant which 168 

burns fuel oil. 169 

 170 

In order to carry out an effective Lagrangian test of compositional change, the sampling of air 171 

masses at Sites E, D and C was staggered to allow for the atmospheric transport of air masses.  172 

Samples were hence initiated sequentially at 05.00 (Site E), 11.00 (Site D) and 17.00 (Site C) local 173 

time, and each continued for 24 hours. 174 

 175 

Dates of Sampling 176 

The first campaign was at Sites A, B and C, and daily 24-hour samples were collected 177 

simultaneously at all sites between 23 February 2013 and 23 April 2013.  Peak daily temperatures 178 

over this period ranged from 26 to 30ºC.  The data from that campaign have been reported as part of 179 

a study of brachial artery distensibility in relation to pollutant exposure by Trasande et al. (2015), a 180 



8 
 

receptor modelling study by Alghamdi et al. (2015a), and a study of urinary PAH metabolites by 181 

Alghamdi et al. (2015b).  The second campaign took place at Sites C, D and E from 16 June 2013 to 182 

7 July 2013 and 17 September to 1 October 2013 (summer) and 23 December 2013 to 30 January 183 

2014 (winter).  Peak hourly temperatures ranged from 38-47ºC (summer) and 23-30ºC (winter). 184 

 185 

Sampling Instruments 186 

Samples were collected using a “pesticide” sampler (TE-PUF, Tisch Environmental Inc.) which 187 

draws air (240-300 m3 per day) through a TSP inlet onto a quartz microfibre filter (TE-QMA4; 188 

10.16 cm) to collect particulate matter, followed by an adsorbent polyurethane (PUF) substrate to 189 

collect vapour phase compounds. 190 

 191 

Chemical Analysis 192 

Prior to sampling, the filters were preheated at 400 °C for 48 h in a box furnace, wrapped in a clean 193 

preheated foil, placed in a cardboard box and sealed in an airtight metallic container. The PUF 194 

substrates were pre-cleaned prior to their use in the field by immersing in 100 mL of 195 

dichloromethane (DCM) and ultrasonicating at 20°C for 30 min. The solvent was then drained and 196 

the PUF substrates were left to dry in a sealed metal container under a stream of nitrogen. The clean 197 

and dry PUF substrates were subsequently sealed in airtight plastic bags and stored in the freezer. 198 

Once exposed, the filter and PUF substrates were wrapped separately with a clean preheated foil, 199 

enclosed in airtight plastic bags and stored at approximately -18ºC.  200 

 201 

Samples were analysed for 16 PAH using the methodology described previously (Delgado-Saborit 202 

et al., 2010; 2013). Briefly, filter and PUF substrates were spiked with 1000 pg μL-1 deuterated 203 

internal standards for quantification.  Nine deuterated compounds were used, covering the volatility 204 

range from acenaphthylene-d8 to benzo(ghi)perylene-d12.  A recovery standard, p-terphenyl-d14 was 205 

also added using a solution of 2000 pg µL-1.  Filters were immersed in dichloromethane (DCM) and 206 
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ultrasonicated for 15 min at 20ºC. The extract was subsequently dried and cleaned using a 207 

chromatography column filled with 0.5 g of anhydrous sodium sulphate (puriss grade for HPLC). 208 

The extract was further concentrated to 50 μL under a gentle N2 flow. PUF substrates were 209 

immersed in 100 mL of DCM and ultrasonicated for 20 min at 20ºC. The sample was then 210 

concentrated to 10 mL using N2 and subsequently dried and cleaned as outlined for the filters 211 

above. 212 

 213 

Samples were analysed for PAH compounds using Gas Chromatography (6890, Agilent 214 

Technologies) equipped with a non-polar capillary column (Agilent HP-5MS, 30 m, 0.25 mm ID, 215 

0.25 μm film thickness — 5% phenylpolysiloxane) in tandem with a Mass Spectrometer (5973 N, 216 

Agilent Technologies). The precision of analysis was 8±4% (range: RSD, 0.3-9.7%) and the 217 

accuracy, expressed as the difference between the measured and true value as a percentage of the 218 

true value was 6±4% (range: -6 to 25%). The analytical detection limits varied widely between 219 

congeners, and sample detection limits estimated from analysis of blank filters and PUFs all lay 220 

well below 1 pg m-3 for the 24-hour air samples. Further information regarding the analytical 221 

procedure can be found in Delgado-Saborit et al. (2010;  2013).  Some of the PUF substrates 222 

showed contamination in the later part of the chromatogram making quantification of compounds 223 

from benzo(e)pyrene to coronene unreliable.  As these compounds are typically > 90% particulate 224 

(Alghamdi et al, 2015a) the vapour component has not been quantified, therefore implying an 225 

underestimation of up to 10% in concentration of these compounds.   226 

 227 

RESULTS AND DISCUSSION 228 

Mean concentrations of PAH for each congener and each site appear in Table 1, and 229 

diagrammatically in Figure 2.  Phase partitioning was considered in detail in our earlier study  230 

(Alghamdi et al., 2015a), and was found to be similar in this dataset. The bars marked Site A, B and 231 

C in Figure 2 derive from data from the first campaign, while the data for Rayes (site E), Rabegh 232 
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(site D) and Abhur (site C2) are from the second campaign. This shows a clear spatial pattern, with 233 

highest concentrations at Site A which is strongly influenced by the Jeddah refinery and port, and 234 

second highest at Site B where the main influence is from road traffic.  Concentrations at Site C, 235 

Abhur on the northern boundaries of Jeddah, can be compared between the first and second 236 

campaign. It can be seen from Figure 2 that concentrations at the Abhur site (C1 and C2) were 237 

broadly similar in the two campaigns. 238 

 239 

There are indications in Figure 2 of a concentration gradient in the sense of Rayes (Site E) > 240 

Rabegh (Site D) > Abhur (Site C).  This was explored further by selecting a sub-set of data 241 

corresponding only to those days when the air mass back trajectory ran from north-west to south-242 

east parallel to the Red Sea coast of Saudi Arabia, as in the example trajectory shown in Figure 3.  243 

This sub-set corresponds to a total of 14 samples which included all 12 from the summer campaign 244 

and 2 from the winter campaign measurements.  When averaged (Figure 4), these show a marked 245 

gradient in most PAH congeners from Site E (Rayes) > Site D (Rabegh) > Site C (Abhur).  This is 246 

despite the different characteristics of the sites and the fact that Rabegh may have local source 247 

influences, and Abhur is in an area with light local urban traffic.  The fact that the highest 248 

concentrations are observed at remote Site E (Rayes) is clearly indicative of a major source to the 249 

north-west of that site, which is presumably the major petrochemical complex at Yanbu.  As the air 250 

mass is advected along the Red Sea coastline towards the south-east, concentrations are reduced 251 

progressively through atmospheric dispersion/dilution processes and chemical reactions of the PAH 252 

(Keyte et al., 2013). 253 

 254 

TABLE 1 HERE 255 

 256 

FIGURE 2, 3 AND 4 HERE 257 

 258 
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The Coefficient of Divergence is defined as:   259 

𝐶𝐶𝐶𝑓ℎ =  �
1
𝑛
��

𝑥𝑖𝑓 − 𝑥𝑖ℎ
𝑥𝑖𝑓 + 𝑥𝑖ℎ

�
𝑛

𝑖=1

2  

In which xif and xih are the respective concentrations for sampling period i at sites f and h 260 

respectively and n is the number of observations.  Values of COD for the site pairs measured 261 

simultaneously in this study appear in Table 2.  Small values of COD are indicative of only small 262 

differences in concentrations between sites, while values approaching the theoretical maximum of 263 

one reflect large inter-site differences.  Comparisons are based upon total (particulate plus vapour) 264 

concentrations. 265 

 266 

Data from the first campaign appear in Table 2(a), and show a large divergence between both Site 267 

A, close to the Jeddah refinery, and Site B, close to the major highway, and Site C in the relatively 268 

unpolluted northern suburbs.  Differences between the more polluted Sites A and B are much 269 

smaller.  With respect to the second campaign and the three more northerly sites, COD values are 270 

typically intermediate.  The lowest values, representing the greatest similarity between sites are 271 

between Site D (Rabegh) and Site C (Abhur).  Not unexpectedly, the largest differences are seen 272 

between Sites E and C which have the largest spatial separation. 273 

 274 

TABLE 2 HERE 275 

 276 

One sample, collected on 29 September 2013 showed a major elevation in concentrations of all 277 

PAH.  This was seen both in the particulate and vapour forms, and hence it is considered to reflect a 278 

genuine atmospheric phenomenon, and not laboratory contamination of a single sample.  It is 279 

thought likely to be the result of a single major contribution event close to the Rayes sampling site 280 

(E), which showed the greatest elevation in concentrations.  For many of the congeners, a lesser 281 

elevation was seen on the same sampling date at the downwind Rabegh sampling site.  The same 282 
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general pattern of concentrations at Rayes (site E) > Rabegh (site D) > Abhur (site C) was repeated 283 

in this sample, and it has been retained in the averaging process as it does not affect the overall 284 

pattern of absolute or relative concentrations appreciably. 285 

 286 

Diagnostic ratios are widely used in source attribution of PAH, although where multiple sources are 287 

present, their use is extremely limited (Galarneau, 2008).  Diagnostic ratios are also influenced by 288 

atmospheric degradation processes (Tobiszewski and Namiesnik, 2012).  There appear to be very 289 

few published data concerning PAH from petrochemical complexes, but Zhao et al. (2015) report 290 

data from eight villages surrounding a large petrochemical complex in Guangzhou, China.  They 291 

report that ratios of ANT/(ANT + PHE) which fall below 0.1 are typical of a petrogenic source such 292 

as a petrochemical works and their data showed ratios within this range.  They cite Ravindra et al. 293 

(2008) as the source of this information but that paper does not appear to refer to petrochemical 294 

sources.  There is however support for this ratio to distinguish petrogenic from pyrogenic sources of 295 

PAH in the work of Yunker et al. (2002) and Pies et al. (2008).  In a recent paper, Dominguez-296 

Morueco et al. (2015) report PAH concentrations measured with passive air samplers in the 297 

petrochemical area of Tarragona, Spain.  They report a predominance of 3-ring compounds and 298 

ratios of ANT/(ANT+PHE) of <0.1.  It is notable that ratios of ANT/(ANT + PHE) fell below 0.1 at 299 

all of the measurements sites used in our study.  This is unsurprising for the sites in Jeddah where 300 

there is a petroleum refinery within the boundaries of the city, and Site A was located close to it.  301 

The fact that the ratios fell well below 0.1 at the Rayes site, which is downwind of the 302 

petrochemical complex at Yanbu is strongly suggestive of the petrochemical complex being the 303 

source of the elevated PAH concentrations at Rayes.  Alternatively, because of the greater chemical 304 

reactivity of anthracene relative to phenanthrene, it may simply be due to degradation of anthracene 305 

during airmass transport.  Alam et al. (2013) examined ANT/(ANT + PHE) ratios from two sites in 306 

Birmingham, UK, one located at roadside and the other at urban background and also calculated a 307 

traffic increment from the difference in concentration between the sites.  They examined diagnostic 308 
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ratios and report values for ANT/(ANT + PHE) which are all in excess of 0.1 for the traffic 309 

increment.  The majority are in excess of 0.1 for the roadside site, but all of the values of this ratio 310 

fall below 0.1 for the urban background site which they interpret as due to the atmospheric 311 

reactivity of anthracene being greater than phenanthrene and reducing the ratio as the air ages.  312 

Consequently, we feel that diagnostic ratios do not give us a definitive indication of the sources of 313 

elevated concentrations of PAH at Rayes but that the elevation is consistent with a petrogenic 314 

source such as the petrochemical complex upwind at Yanbu.   315 

 316 

There were insufficient samples to carry out a further PMF analysis from the second campaign.  317 

However, the congener profile of the PAH can be  compared with those of the three source-related 318 

factors identified by Alghamdi et al. (2015a).  The industrial (oil refinery) factor has substantial 319 

concentrations of phenanthrene > pyrene > fluoranthene > anthracene with only very minor 320 

amounts of other congeners.  This is very similar to the profile seen in Figure 4 for the three sites 321 

during the second campaign, when winds were parallel to the coast. 322 

 323 

CONCLUSIONS 324 

The results of the Coefficients of Divergence calculations show strong gradients in concentration 325 

between the heavily polluted sites in southern Jeddah and the background site (Site C, Abhur) in the 326 

northern suburbs of the city.  This is consistent with conclusions in our earlier work that Sites A and 327 

B in the south of Jeddah were heavily influenced by local sources, a refinery and a major highway 328 

respectively.  Concentration gradients between the sites on the Red Sea coast to the north of Jeddah 329 

generate much smaller Coefficients of Divergence indicative of lesser concentration gradients.  The 330 

steady decline seen in Figure 4 for those days in which the air mass moved from northwest, 331 

southeast along the Red Sea coast are consistent with a major source of PAH to the north of the 332 

Rayes sampling site.  The congener profile is consistent with that source being the large 333 

petrochemical works in the vicinity of Yanbu.  Figure 4 also shows a steady decline in 334 
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concentrations as the air mass moves towards the southeast which might be attributable either to 335 

progressive dilution with cleaner air or alternatively to reduction in concentrations due to chemical 336 

reactions.  Without further supporting information, it is not possible to clearly identify the causal 337 

factor.  Such supporting information might include measurements of a passive (unreactive) tracer 338 

compound from which to assess the extent of dilution during transport.  339 
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TABLE LEGENDS 490 
 491 
Table 1:   Total concentrations of PAH congeners at all sites (ng m-3) 492 
 493 
Table 2:   (a) Coefficients of Divergence (COD) values for total PAH for sites A, B and C1 494 

(first campaign); (b) COD values for total PAH for sites D, E and C2 (second 495 
campaign). 496 

 497 
 498 
FIGURE LEGENDS 499 
 500 
Figure 1: Locations of sampling sites and the city of Jeddah.  The sites are: A-refinery; B-ring 501 

road; C-Abhur; D-Rabegh and E-Rayes. 502 
 503 
Figure 2: Average congener profile of PAH from both sampling campaigns at the five sites, 504 

including both campaign data for Site C. 505 
 506 
Figure 3: Air mass back trajectories to the the three sites for 17 September 2013 ending at 950 507 

mb  showing the air mass running parallel to the Red Sea coast.  508 
 509 
Figure 4: Average congener profile of PAH from the second sampling campaign including 510 

only air samples when the air mass travelled from north-west to south-east parallel to 511 
the Red Sea coast. 512 

 513 
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Table 1:  Total concentrations of PAH congeners at all sites (ng m-3). 

 

Note : Sites A, B and C1 refer to the first campaign (Alghamdi et al. 2015a). Sites C2 (Abhur), D (Raybegh) and E (Rayes) refer to the second campaign. 
  :  n.d. = not determined 
     

 

 

 

 

Congener Site A Site B Site C1 Site C2 Site D Site E 
Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range 

Fluorene n.d. n.d. n.d. n.d. n.d. n.d. 0.47 0.20-1.54 0.90 0.45-1.92  1.13 0.36-6.98 
Phenanthrene 21.15 11.63-41.55  16.83  5.75-29.67  8.65  2.71-21.91  6.03 2.57-12.09 7.97 4.51-14.41  9.58 3.24-29.92 
Anthracene 1.43 0.40-4.14  1.63  0.57-3.13  0.71  0.17-1.65  0.31 0.14-0.79 0.46 0.20-1.30  0.82 0.19-7.53 
Fluoranthene 3.47 1.01-7.77  2.69  1.22-4.79  1.11  0.40-2.42  0.94 0.50-1.67 1.23 0.69-2.53  1.18 0.40-5.86 
Pyrene 6.23 1.43-15.30  4.15  1.85-8.06  0.82  0.32-1.44  0.89 0.43-1.50 1.45 0.79-2.51  1.11 0.27-7.08 
Retene n.d. n.d. n.d. n.d. n.d. n.d. 0.56 0.05-1.14 0.47 0.16-1.09  0.52 0.21-1.75 
Benzo(a)anthracene 0.23 0.07-0.79  0.24  0.08-0.33  0.06  0.02-0.23  0.26 0.05-0.59 0.37 0.04-1.00  0.37 0.02-1.48 
Chrysene 0.65 0.20-2.27  0.61  0.26-1.03  0.17  0.06-0.60  0.26 0.07-0.47 0.28 0.02-0.61  0.39 0.06-1.91 
Benzo(b)fluoranthene 0.57 0.17-1.11  0.47  0.22-0.81  0.12  0.03-0.42  0.12 0.01-0.25 0.16 0.05-0.25  0.23 0.04-1.53 
Benzo(k)fluoranthene 0.60 0.19-1.24  0.42  0.23-0.71  0.11  0.03-0.37  0.12 0.02-0.23 0.15 0.02-0.25  0.24 0.04-2.08 
Benzo(e)pyrene 0.60 0.17-1.30  0.50  0.24-0.82  0.13  0.04-0.42  0.10 0.01-0.27 0.11 0.02-0.29  0.19 0.03-1.68 
Benzo(a)pyrene 0.39 0.09-1.01  0.30  0.12-0.56  0.09  0.02-0.30  0.07 0.00-0.16 0.09 0.01-0.14  0.16 0.01-1.53 
Indeno(1,2,3-cd)pyrene 0.63 0.22-1.21  0.47  0.26-0.75  0.11  0.02-0.38  0.09 0.01-0.17 0.09 0.02-0.29  0.18 0.03-1.89 
Dibenz(a,h)anthracene 0.15 0.04-0.27  0.09  0.04-0.14  0.02  0.01-0.07  0.03 0.00-0.08 0.04 0.01-0.12  0.08 0.01-0.67 
Benzo(ghi)perylene 1.27 0.46-2.38  1.03  0.51-1.61  0.17  0.03-0.64  0.11 0.02-0.32 0.18 0.04-0.69  0.24 0.04-2.32 
Coronene 0.79 0.29-1.59  0.61  0.32-0.88  0.09  0.01-0.36  0.09 0.03-0.21 0.16 0.04-0.45  0.20 0.06-1.54 
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Table 2:  (a) Coefficients of Divergence (COD) values for total PAH congeners for sites A, B and C1 (first 
campaign); (b) COD values for total PAH for sites C2, D and E (second campaign). 
 
(a) 

Species CODA&B CODA&C1 CODB&C1 

Phenanthrene 0.250 0.459 0.433 
Anthracene 0.313 0.464 0.518 
Fluoranthene 0.374 0.543 0.493 
Pyrene 0.406 0.728 0.676 
Benzo(a)anthracene 0.399 0.611 0.691 
Chrysene 0.348 0.607 0.654 
Benzo(b)fluoranthene 0.227 0.685 0.674 
Benzo(k)fluoranthene 0.272 0.724 0.677 
Benzo(e)pyrene 0.269 0.671 0.680 
Benzo(a)pyrene 0.296 0.675 0.677 
Indeno(1,2,3-
cd)pyrene 0.237 0.749 0.723 
Dibenz(a,h)anthracene 0.356 0.769 0.677 
Benzo(ghi)perylene 0.227 0.806 0.793 
Coronene 0.238 0.828 0.810 

 
 
(b) 
 

Species CODC2&D CODC2&E CODD&E 

Fluorene 0.430 0.398 0.314 
Phenanthrene 0.250 0.474 0.253 
Anthracene 0.261 0.413 0.316 

Fluoranthene 0.188 0.456 0.361 
Pyrene 0.291 0.480 0.447 

Benzo(a)anthracene 0.414 0.471 0.342 
Chrysene 0.485 0.558 0.453 

Retene 0.292 0.402 0.331 
Benzo(b)fluoranthene 0.155 0.305 0.374 
Benzo(k)fluoranthene 0.196 0.388 0.387 

Benzo(e)pyrene 0.287 0.465 0.370 
Benzo(a)pyrene 0.320 0.472 0.332 

Indeno(1,2,3-cd)pyrene 0.273 0.468 0.385 
Dibenz(a,h)anthracene 0.364 0.564 0.408 

Benzo(ghi)perylene 0.376 0.482 0.353 
Coronene 0.363 0.462 0.333 
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 1 

Figure 1:  Locations of sampling sites and the city of Jeddah.  The sites are: A-refinery; B-ring 2 
road; C-Abhur; D-Rabegh and E-Rayes. 3 
  4 
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 5 

Figure 2:  Average congener profile of PAH from both sampling campaigns at the five sites, 6 
including both campaign data for Site C.  The site C data refer to the first campaign (1) and the 7 
Abhur data refer to the second campaign (2). 8 

 9 

 10 

  11 
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 12 

Figure 3:  Air mass back trajectories to the the three sites for 17 September 2013 ending at 950 mb  13 
showing the air mass running parallel to the Red Sea coast. 14 
  15 
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 16 

 17 

Figure 4:  Average congener profile of PAH from the second sampling campaign including only air 18 
samples when the air mass travelled from north-west to south-east parallel to the Red Sea coast. 19 
 20 


