
 
 

University of Birmingham

Proteome Changes during Transition from Human
Embryonic to Vascular Progenitor Cells
Tsolis, Konstantinos; Bagli, Eleni; Kanaki, katerina; Zografou, Sofia; Carpentier, Sebastien;
Bei, Ekaterini; Christoforidis, Savvas; Zervakis, Michalis; Murphy, Carol; Fotsis, Theodore;
Economou, Anastassios
DOI:
10.1021/acs.jproteome.6b00180

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Tsolis, K, Bagli, E, Kanaki, K, Zografou, S, Carpentier, S, Bei, E, Christoforidis, S, Zervakis, M, Murphy, C,
Fotsis, T & Economou, A 2016, 'Proteome Changes during Transition from Human Embryonic to Vascular
Progenitor Cells', Journal of Proteome Research. https://doi.org/10.1021/acs.jproteome.6b00180

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Version of Record published as detailed above and available at: http://dx.doi.org/10.1021/acs.jproteome.6b00180

Checked May 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

https://doi.org/10.1021/acs.jproteome.6b00180
https://doi.org/10.1021/acs.jproteome.6b00180
https://research.birmingham.ac.uk/portal/en/publications/proteome-changes-during-transition-from-human-embryonic-to-vascular-progenitor-cells(a5cb7848-6310-4ae0-adb7-a0396ed83cd5).html


 
 

The University of Birmingham (Live System)

Proteome Changes during Transition from Human
Embryonic to Vascular Progenitor Cells
Tsolis, Konstantinos; Bagli, Eleni; Kanaki, katerina; Zografou, Sofia; Carpentier, Sebastien;
Bei, Ekaterini; Christoforidis, Savvas; Zervakis, Michalis; Murphy, Carol; Fotsis, Theodore;
Economou, Anastassios
DOI:
10.1021/acs.jproteome.6b00180

Citation for published version (Harvard):
Tsolis, K, Bagli, E, Kanaki, K, Zografou, S, Carpentier, S, Bei, E, Christoforidis, S, Zervakis, M, Murphy, C,
Fotsis, T & Economou, A 2016, 'Proteome Changes during Transition from Human Embryonic to Vascular
Progenitor Cells' Journal of Proteome Research., 10.1021/acs.jproteome.6b00180

Link to publication on Research at Birmingham portal

General rights
When referring to this publication, please cite the published version. Copyright and associated moral rights for publications accessible in the
public portal are retained by the authors and/or other copyright owners. It is a condition of accessing this publication that users abide by the
legal requirements associated with these rights.

	• You may freely distribute the URL that is used to identify this publication.
	• Users may download and print one copy of the publication from the public portal for the purpose of private study or non-commercial
research.
	• If a Creative Commons licence is associated with this publication, please consult the terms and conditions cited therein.
	• Unless otherwise stated, you may not further distribute the material nor use it for the purposes of commercial gain.

Take down policy
If you believe that this document infringes copyright please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. May. 2016

http://dx.doi.org/10.1021/acs.jproteome.6b00180
http://pure-oai.bham.ac.uk/portal/en/publications/proteome-changes-during-transition-from-human-embryonic-to-vascular-progenitor-cells(a5cb7848-6310-4ae0-adb7-a0396ed83cd5).html


Tsolis et al Endothelial transition proteomics  

 

1 

Proteome changes during transition from human embryonic to vascular 

progenitor cells 

 

Konstantinos C. Tsolis
1,2,4!

, Eleni Bagli
3!

, Katerina Kanaki
2!

, Sofia Zografou3, Sebastien 

Carpentier
5,6

, Ekaterini S. Bei
7
, Savvas Christoforidis3,8, Michalis Zervakis

7
, Carol Murphy3,9, 

Theodore Fotsis
3,8,9

, and Anastassios Economou
1,2,4,6*

 

 

1KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for 

Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium. 

2Institute of Molecular Biology and Biotechnology - FORTH, Department of Protein structure and 

Proteomics Facility, Iraklio, Crete.  

3Institute of Molecular Biology and Biotechnology - FORTH, Division of Biomedical Research, 45110 

Ioaninna, Greece. 

4Department of Biology, University of Crete, Iraklio, Crete, Greece 

5
KU Leuven - University of Leuven, Department of Biosystems Engineering, B-3000 Leuven, Belgium. 

6SYBIOMA, KU Leuven facility for Systems Biology based Mass spectrometry, Leuven Belgium 

7
School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece. 

8Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece. 

9School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, 

Edgbaston, Birmingham, B15 2TT, UK. 

 

!These authors contributed equally 

 

*for correspondance: tassos.economou@rega.kuleuven.be

Page 1 of 48

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Tsolis et al Endothelial transition proteomics  

 

2 

e-mail addresses 

Konstantinos C Tsolis E-mail: konstantinos.tsolis@rega.kuleuven.be 

Eleni Bagli   E-mail: elenibgl@hotmail.com 

Katerina Kanaki  E-mail: katkanaki@hotmail.com 

Sofia Zografou  E-mail: szografu@cc.uoi.gr 

Sebastien Carpentier  E-mail: sebastien.carpentier@biw.kuleuven.be  

Ekaterini S Bei  E-mail: beieka@yahoo.gr  

Savvas Christoforidis E-mail: schristo@uoi.gr 

Michalis Zervakis  E-mail: michalis@display.tuc.gr  

Carol Murphy  E-mail: murphyce@adf.bham.ac.uk 

Theodore Fotsis  E-mail: thfotsis@uoi.gr 

Anastassios Economou E-mail: tassos.economou@rega.kuleuven.be 

    phone: +32 16 37 92 73  

Page 2 of 48

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Tsolis et al Endothelial transition proteomics  

 

3 

Abbreviations 

ACD:  Asymmetric Cell Division 

BH:  Benjamini & Hochberg 

BMP:  Bone morphogenic protein 

EPCs:  Endothelial progenitor cells 

ERM:   Ezrin, Radixin, Moesin protein family 

FBS:  Fetal bovine serum 

FWHM:  Full width half maximum 

GMP:   Good Manufacturing Practice 

GSK:   Glycogen Synthase Kinase 

hESCs:  Human embryonic stem cells 

LFQ:   Label Free Quantification 

IF:   Immunofluoresence 

iPSCs:  Induced Pluripotent Stem Cells 

PC:  Principal Component 

PCs:  Pericytes 

PDGF:  Platelet-derived growth factor 

PLS:  Partial Least Squares regression 

PMSF:  Phenyl-methyl-sulfonyl Fluoride  

RM:   Regenerative Medicine 

SDS:   Sodium Dodecyl Sulfate 

SMCs:  Smooth muscle cells 

VEGF:   Vascular Endothelial Growth factor 

VIP:  Variable Importance in Projection 

VPCs:  Vascular Progenitor Cells 

VSMCs:  Vascular smooth muscle cells 
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Abstract 

Human embryonic stem cells (hESCs) are promising in Regenerative Medicine (RM), due 

to their differentiation plasticity and proliferation potential. However, a major challenge in RM 

is the generation of a vascular system, to support nutrient flow to newly synthesized tissues. 

Here we refined an existing method to generate tight vessels, by differentiating hESCs in CD34
+
 

Vascular Progenitor Cells (VPCs), using chemically defined media and growth conditions. We 

selectively purified these cells from CD34
-
 outgrowth populations also formed.  To analyze 

these differentiation processes, we compared the proteomes of the hESCs with those of the 

CD34
+
 and CD34

-
 populations, using high resolution mass spectrometry, label-free 

quantification and multivariate analysis. 18 protein markers validate the differentiated 

phenotypes in immunological assays; 9 of these were also detected by proteomics and show 

statistically significant differential abundance. Another 225 proteins show differential 

abundance between the three cell types. 63 of these have known functions in CD34
+
 and CD34

-
 

cells. CD34
+
 cells synthesize proteins implicated in endothelial cell differentiation and smooth 

muscle formation, supporting the bipotent phenotype of these progenitor cells. CD34
-
 cells are 

more heterogeneous synthesizing muscular/osteogenic/chondrogenic/adipogenic lineage 

markers. The remaining >150 differentially abundant proteins in CD34
+
 or CD34

-
 cells raise 

testable hypotheses for future studies to probe vascular morphogenesis. 

Data are available via ProteomeXchange with identifier PXD003606. 
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Introduction 

Regenerative Medicine (RM) is an emerging interdisciplinary field of research and clinical 

applications, focused on the repair, replacement, or regeneration of cells, tissues, or organs to 

restore impaired function resulting from any cause, including congenital defects, disease, and 

trauma.
1
 Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), 

created by reprogramming adult donor cells, have the ability to differentiate into any human cell 

and ultimately to generate any human tissue.
2-4

 However, main challenges in RM are the ability 

to reproducibly differentiate hESCs/iPCSs to a specific cell type and the creation of vascular 

tissue to ensure rapid in vivo vascularization and sufficient nutrient flow to the implant inside 

the host.
5-8

 In addition, RM protocols require compliance with the GMP (Good Manufacturing 

Practice) specifications necessitating chemically defined media to avoid use of serum or feeder 

layers, ensuring that the cells have been produced according to predefined manufacturing 

criteria.
9
 

Current interest has shifted towards generating tissue-engineered constructs that are already 

vascularized before implantation.
10

 For the differentiation process, cells are grown on 

biodegradable 3D scaffolds, which mimic cell-cell or cell-matrix interactions. In addition, 

soluble factors are mimicking the physiological microenvironment leading to differentiation of 

hESCs to Vascular Progenitor Cells (VPCs). Differentiation of VPCs from their precursor cells 

involves co-operative interaction among many different signaling molecules [i.e. hedgehog, 

vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), bone 

morphogenetic protein (BMP), Notch, Wnt], and transcription factors (ETS, Forkhead, GATA 

transcription factors).
11, 12

 A thorough understanding of the molecular events that underlie this 

differentiation process is still missing as are comprehensive biomarker signatures with which to 

monitor both the transition as well as the biological robustness of the final differentiated 

states.
13
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Omics workflows provide powerful means for the study of the molecular base of the 

differentiation process of VPCs, due to their ability to monitor multiple targets (genes/proteins) 

simultaneously, in complex samples. Several RNA-based omics approaches have been used for 

the study of vascular progenitor cell differentiation.
14-19

 However, mRNA expression levels are 

not necessarily correlated with protein abundance.
20

 Hence proteomics approaches are essential 

to directly analyze the expressed proteome shifts that occur during differentiation events and the 

concomitant post-translational and complexome changes.
21

 To our knowledge, there are no 

proteomics analyses in the literature of VPCs derived from human pluripotent SCs, in defined 

culture conditions. Several analyses have been performed in ESCs or iPSCs
22

, in primary 

endothelial cells after stimulation with VEGF
23

, or in in vitro differentiated erythroid cells 

derived from iPSCs.
23-25

 Endothelial cells display functional heterogeneity that cannot be 

addressed with the existing markers for cell classification.
13

 Therefore, there is intense need to 

identify more VPCs markers
26, 27

, which can be used to monitor this population. Proteomics can 

be a major contributor in the development of proteomic signatures of VPCs. 

Here, we modified and refined an existing method in order to generate VPCs that could be 

used to generate tight vessels. hESCs were first differentiated to mesodermal intermediates and 

then towards Vascular Progenitor cells (VPCs). Each growth factor is added separately, for 

better control over the differentiation process and offers the possibility to study each step 

separately. In addition, the protocol is fast, providing functional VPCs within 5 days. The 

differentiation event gives rise to two distinct cellular populations: the CD34
+
 VPCs and a 

CD34
- 

population that probably contains mixed cells (see below), that can be further 

differentiated into other cell types such as other mesoderm derivatives including cells from the 

mesenchymal lineage.
28

 We monitored these cell states by comparing the proteome of the initial 

hESCs with the differentiated CD34
+
 and CD34

-
 populations, using high resolution mass 

spectrometry. 236 proteins with differential abundance were identified. 46, 86 and 51 proteins 
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are over-synthesized in hESCs, in CD34
+
 and CD34

-
, respectively. 18 known protein markers of 

the differentiation cell state were detected using immunological assays, and 9 of them are also 

detected in the proteomics flow and show statistically significant differential abundance. Some 

of the identified proteins have known functions in CD34
+
 or CD34

-
 cells based on the literature 

and thus provide additional validation for our differentiation protocol and the proteomics flow. 

Another ~150 proteins are new candidates for further hypothesis-driven testing regarding the 

phenotype of CD34
+
 VPCs or CD34

-
 cells and the mechanism of vascular cell differentiation. 
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Experimental Section 

hESC culture in feeder-free conditions 

The H1 hESC line was purchased from Wicell Research Institute (Madison, WI, USA) and 

maintained on six-well tissue culture plates coated with hESC-qualified Matrigel (Corning, 

Cat.No.354277) in complete mTeSR
TM

1 medium (05850, Stem Cell Technologies). Cells were 

routinely characterized and found to be karyotypically normal (data not shown) and express the 

pluripotent markers OCT4, SSEA4, SOX2, NANOG and alkaline phosphatase as determined by 

western immunostaining (Supporting Figure S-1, S-2).
29

 Every 5-7 days, cells were passaged 

enzymatically using 1 mg/ml dispase (Invitrogen) for 2 minutes at 37°C. hESCs colonies were 

then harvested, dissociated into small clumps and re-plated onto Matrigel-coated 6-well plates 

(ratio 1:6). 

Differentiation of hESCs 

Differentiation of hESCs to CD34
+
 cells was carried out under feeder-free, chemically 

defined conditions as described with minor modifications (Fig. 1A).
28

 Briefly, H1 colonies were 

first dissociated into small clumps and re-plated onto Matrigel-coated 6-well plates as per 

normal routine passaging. After 48 h, mTeSR medium was changed to differentiation medium 

(APEL), which was synthesized as previously described 
30

, supplemented with 5 µM Glycogen 

Synthase Kinase-3 (GSK-3) inhibitor (CHIR99021, Selleckchem). After 24 h, the medium was 

replaced with the same basal medium supplemented with Bone Morphogenetic Protein-4 (BMP-

4) (25 ng/ml; PHC9534, Life Technologies) for 48 h and then with Vascular Endothelial 

Growth Factor-A (VEGF-A) (80ng/ml; Immunotools) for another 48 h. On day 5, successful 

commitment to endothelial lineage was confirmed by the presence of a CD34
+
KDR

+
 cell 

population using FACs analysis as previously described (Supporting Table S-1).
28
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Isolation of CD34
+
 cells 

On day 5 of the differentiation process, CD34
+
 cells were isolated using the EasySep™ 

Human CD34 Positive Selection Kit (Stem Cell Technologies, Cat.No.18056) according to the 

manufacturer's instructions (see Supporting Experimental Procedures). In total, we performed 6 

biological repeats of the differentiation experiment were we studied hESCs, CD34
+
 and CD34

-
 

populations separately. 

Protein extraction, sample preparation for proteomic analysis 

Total cells were lysed using RIPA lysis buffer (50 mM Tris/HCl pH 7.2, 150 mM NaCl, 1 

% v/v Triton X-100, 0.5 % w/v sodium deoxycholate, 0.1% w/v SDS, 2.5 mM PMSF) (see 

Supporting Experimental Procedures). 40 µg total protein extract from each repeat was analysed 

in 1D-SDS-PAGE. Gels were stained with colloidal coomassie blue (0.12% w/v Coomassie 

G250, 10% v/v phosphoric acid, 10% w/v ammonium sulfate, 20% v/v methanol) and each lane 

was cut into 10 slices. Each slice was trypsin digested and the corresponding peptides were 

stored until the LC-MS/MS analysis (see Supporting Experimental Procedures). 

LC-MS/MS analysis 

Lyophilized peptide samples were first dissolved in an aqueous solution containing 0.1% 

v/v formic acid (FA) and 5% v/v ACN and afterwards were analyzed using nano-Reverse Phase 

LC coupled to a Q Exactive™ Hybrid Quadrupole - Orbitrap mass spectrometer (Thermo 

Scientific, Bremen, Germany) through a nanoelectrospray ion source (Thermo Scientific, 

Bremen, Germany). Peptides were initially separated using a Dionex UltiMate 3000 UHPLC 

system on an EasySpray C18 column (Thermo Scientific, OD 360 µm, ID 50 µm, 15 cm length, 

C18 resin, 2 µm bead size) at a nanoLC flow rate of 300 nL min
-1

. The LC mobile phase 

consisted of two different buffer solutions, an aqueous solution containing 0.1% v/v FA (Buffer 

A) and an aqueous solution containing 0.08% v/v FA and 80% v/v ACN (Buffer B). A 60 min 
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multi-step gradient was used from Buffer A to Buffer B (percentages from each in parentheses 

below) as follows: 0–3 min constant (96:4), 3–15 min (90:10); 15–35 min (65:35); 35–40 min 

(35:65); 40-41 min (5:95); 41-50 min (5:95); 50-51 min (95:5); 51-60 min (95:5). 

The separated peptides were analyzed in the Orbitrap QE operated in positive ion mode 

(nanospray voltage 1.5 kV, source temperature 250°C). The instrument was operated in data-

dependent acquisition (DDA) mode with a survey MS scan at a resolution of 70,000 FWHM for 

the mass range of m/z 400-1600 for precursor ions, followed by MS/MS scans of the top 10 

most intense peaks with +2, +3 and +4 charged ions above a threshold ion count of 16,000 at 

35,000 resolution. MS/MS was performed using normalized collision energy (NCE) of 25% 

with an isolation window of 3.0 m/z, an apex trigger 5-15 sec and a dynamic exclusion of 10 s. 

Data were acquired with Xcalibur 2.2 software (Thermo Scientific). 

MS data analysis 

Raw MS files from the mass spectrometer were analyzed by MaxQuant v1.5.2.8, a 

quantitative proteomics software package designed for analyzing large mass spectrometric data 

sets.
31

 MS/MS spectra were searched by the Andromeda search engine against the Uniprot 

human reviewed proteome without isoforms (Last modified - July 6, 2015, 20,198 proteins) and 

common contaminants as described.
32

 Enzyme specificity was set to trypsin, allowing for a 

maximum of two missed cleavages. Dynamic (methionine oxidation and N-terminal 

acetylation) and fixed (S-Carbamidomethylation of cysteinyl residues) modifications were 

selected. Precursor and MS/MS mass tolerance was set to 20 ppm for the first search (for the 

identification of maximum number of peptides for mass and retention time calibration) and 4.5 

ppm for the main search (for the refinement of the identifications). Protein and peptide False 

Discovery Rate (FDR) were set to 1%. Peptide features were aligned between different runs and 

masses were matched (“match between runs” feature), with a match time window of 0.7 min 

and a mass alignment window of 10 min. Proteins were normalized and quantified using the 
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MaxLFQ algorithm
33

 with a minimum of 2 peptides per protein (18.752 or 27% of the sum of 

proteins identified in all samples was excluded). The mass spectrometry proteomics data have 

been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the 

dataset identifier PXD003606.
34

 

Multivariate statistical Analyses 

For the identification of differentially synthesized proteins we performed multivariate 

analysis using the Partial Least Square regression (PLS) method (n = 6).
35, 36

 We constructed a 

PLS model using the LFQ intensities of the whole dataset, derived from the three populations 

(hESCs, CD34
+
 and CD34

- 
cells). Most significant variables were selected after performing 

Variable Importance in Projection analysis (VIP).
37

 For the non-identified proteins, the 

quantitative value was set to 0. The 250 most significant proteins, based on the VIP analysis, 

were then tested for statistically significant difference in abundance. Since our data does not 

necessarily follow the assumptions of normally distributed data of equal variance, we performed 

the non-parametric test Kruskal-Wallis (p-value <0.05), on LFQ intensities to select proteins of 

possible interest. Pairwise differences were then examined using the Wilcoxon test (p-value 

<0.05). 

Other software 

Images and vectors were processed using Canvas (ACDSee). Statistical analysis was 

performed using STATISTICA v8 (Statsoft) or R scripts, and graphs were plotted in R using 

ggplot2 package or in Prism v5 (GraphPad). 

Page 11 of 48

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Tsolis et al Endothelial transition proteomics  

 

12 

Results 

Differentiation of hESCs to CD34
+
 Vascular Progenitor Cells 

Differentiation of hESCs to vascular progenitor cells was conducted in a chemically 

defined stepwise approach, using a modified protocol from Tan et al.
28

 Pluripotent stem cells 

were first induced to mesoderm using a GSK inhibitor and BMP4 and then to vascular 

commitment with an additional VEGF treatment (48 h; Fig. 1A). On the 5
th

 day of the 

differentiation procedure small cobblestone-like cells were spreading outwards from the edges 

of the colony (Supporting Fig. S-1A). FACs analysis revealed that 25-40% of the cells co-

express the CD34, CD31 and KDR surface markers (Fig. 1B & C, Supporting Fig. S-1B), which 

are not expressed in hESCS (42-44), being used for the identification of vascular progenitor 

cells. Without VEGF treatment, CD34 and CD31 remained down-regulated (data not shown), 

indicating that stimulation with VEGF is an essential step for the differentiation process. Since 

CD34 has generally been associated with progenitors of endothelial lineages, we isolated the 

CD34
+
 cells using magnetic beads coated with anti-CD34 antibody (Fig. 1C). 

First, we assessed the endothelial potential of the isolated hESC-derived CD34
+
 cells by 

testing them for tube formation on 3D Matrigel cultures. Indeed, the sorted CD34
+
 fraction (but 

not the CD34
-
 fraction) could be organized into vascular-like structures on a Matrigel support 

(Fig. 1D). Quantitative RT-PCR analyses showed that CD34
+
 cells expressed typical endothelial 

markers such as the genes encoding VEGF receptors (VEGFR 1,2,3; neuropillin 1, 2), CD31 

(PECAM1), VE-Cadherin (CDH5), Tie2 (TEK)
38

, the arterial endothelial marker EPHRINB2 

(EFNB2)
39

 and the venous endothelial marker EPHRINB4 (EFNB4)
40

 (Supporting Fig. S-1F). 

Also ETV2, a transcription factor belonging to the ets-transcription family, which is important 

for the commitment to the endothelial lineage, during development,
41-45

 was upregulated 

(Supporting Fig. S-1F). However, the gene for von Willebrand factor (vWF), a marker of mature 
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endothelial cells
38

, showed marginal expression demonstrating the premature nature of the 

purified CD34
+
 cells. Finally, the expression of genes typical to mural cells

46, 47
 such as 

calponin (CNN1), smooth muscle protein 22-alpha (SM22/TAGLN) and Chondroitin Sulfate 

Proteoglycan NG2 (NG2/CSPG4) was negligible (Supporting Fig. S-1F). 

To investigate the differentiation potential of CD34
+
 progenitor cells to mature vascular 

cells (endothelial and mural cells), post-sorted CD34
+
 cells were cultured on fibronectin coated 

dishes in APEL differentiation medium supplemented with either VEGF (50 ng/ml) or PDGFB 

(50 ng/ml) and TGFβ1 (5 ng/ml). Cells treated with VEGF exhibited cobblestone morphology, 

were positive for the endothelial marker CD31 and did not express the contractile mural marker 

SM22-alpha demonstrating their endothelial phenotype (Supporting Fig. S-2). In contrast, when 

the selected CD34
+
 cells were cultured with PDGFβ/TGFβ, exhibited a fibroblast-like 

morphology, lost the expression of CD31 and expressed the typical mural marker SM22-alpha 

(Supporting Fig. S-2B). These data validate that VPCs produced with the described protocol, 

have the capacity to further differentiate into mature vascular cells. 

Proteomic analysis of pluripotent hESCs, CD34
+
 and CD34

-
 cells 

We first compared the proteomic profile of hESCs with that of the CD34
+
 and CD34

-
 

populations (see Experimental Section). To exclude proteins with less reliable quantification, 

from the total number of proteins identified we proceeded for further analysis using the ones 

that were quantified using two peptides. In total, 4491 proteins were quantified, in all groups, at 

least once (Supporting Table S-2). Label-free quantification reproducibility between the 

biological repeats, is good for the specific workflow setup that was followed, with average 

Pearson correlation r
2
 = 0.86 between biological repeats of the same group and r

2
 = 0.83, 

between groups (Supporting Fig. S-3A). Protein copy numbers in the cell span roughly in a 

range of seven orders of magnitude.
48

 Given the similarity between different cell types
49, 50

, we 

approximated the abundance of the proteins identified here based on a reference set by aligning 
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the experimentally identified proteins of this study with those of the reference one (Supporting 

Fig. S-3B).
48

 Proteins present in low copy numbers are also identified here, suggesting good 

identification depth. 

Next, we sought out differentially synthesized proteins by performing multivariate analysis. 

Due to the nature of the proteomics data (small number of samples (n) and large number of 

variables – proteins (p)), we implemented Partial Least Squares regression (PLS) to identify 

possible proteins of interest
35, 51

, using the LFQ-derived abundance values of the identified 

proteins. To select the proteins that show the greatest variation in our dataset, we combined PLS 

analysis with the Variable Importance in Projection (PLS-VIP) method.
36, 37

 By plotting the 

scores of the PLS model, we observe 3 distinct clusters corresponding to the 6 biological repeats 

of each of the three different cell populations examined (Fig. 2A). Also, the variation between 

the biological repeats is smaller in hESCs and CD34
+
 cells types compared to that in the CD34

- 

cells, which are considered to be a mixed population of several other progenitors. To find 

proteins with differential abundance, we then used the VIP method to identify the proteins with 

the highest variation. The 250 proteins that contribute most to the variation were then tested for 

statistical significance. Since we cannot consider that the proteomics quantification approach 

that we use, follows the assumptions of normality or equal variance between the different study 

groups, we used the non-parametric test Kruskal-Wallis (p-value < 0.05) followed by post hoc 

analysis using the Wilcoxon test (p-value < 0.05). 236 proteins showed differential synthesis in 

at least one pair (Fig. 2B & C, Supporting Table S-3, Supporting Fig. S-4). 

Validation of proteomics results using established protein markers 

To validate the quantification approach of our proteomics workflow, we assessed the 

expression of selected markers in hESCs and in their derived differentiated populations, using 

immunofluorescence (IF), western blot analysis (WB) and flow cytometry (FACS). Loss of 

pluripotency during this differentiation procedure was evidenced by the down-regulation of 
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NANOG, SOX2, OCT3/4 (POU5F1), E-Cadherin (CDH1) and Alkaline phosphatase (ALPL) 

(Supporting Fig. S-2A) that are the typical pluripotent stem cell markers.
52-54

 Typical surface 

endothelial markers KDR, VE-Cadherin (CDH5), CD31, Endothelial protein C receptor 

PROCR (CD201) as well as the endothelial transcription factor ERG revealed robust and almost 

exclusive expression in CD34
+
 cells by FACs and western immunoblots (Fig. 1E; Supporting 

Fig. S-1C).
55

 Surface expression of the characteristic vascular markers, CD73, CD44, CD105, 

CD146 (MCAM) and CD140B (PDGFRB) known to be expressed in endothelial and mural 

cells, was evaluated using FACs.
40, 46, 56, 57

 As expected, none of these markers was expressed in 

hESCs (<2% positive; Supporting Fig. S-1A). CD73 was expressed only in the CD34
+
 

population and the remaining markers were differentially expressed among the CD34
+
 and 

CD34
-
 cell fractions. Specifically, there was a clear shift in the intensity for the surface 

expression of CD44, CD105 and CD146 in the whole CD34
+
 population compared to that in 

CD34
-
, in FACs analysis, which could be possibly interpreted as a higher total expression of 

these markers in the CD34
+
 fraction. Analysis of CD140B showed a double population, where 

43 ± 5,5 % of CD34
+
 and  66 ± 4,5 % of CD34

-
 cells, were positive for the CD140B marker. 

Among the 18 markers validated with immunological methods, 9 of them (OCT4 (POU5F1), 

ALPL, CD34, KDR, CDH5 (VE-Cadherin), PROCR (CD201), ERG, CD44 and PDGFRB) 

display the same profile in the proteomics and the immunological methods and show 

statistically significant differential abundance between the study groups (Fig. 4A), validating 

our proteomics flow. 

GO-slim analysis of the differential proteins 

To gain functional insight in the proteins identified by the proteomics flow, we performed 

limited scale Gene Ontology analysis (GO-slim)
58

 for the differential proteins in the three cell 

populations (hESCs, CD34
+
 VPCs and CD34

-
). Proteins specific to each group (see 

Experimental Section), were uploaded separately in the AmiGO server and tested for selected 
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GO terms (Fig. 3). hESCs are enriched in proteins related to the chromosome and methylation 

processes (Supporting Table S-4). Proteins enriched in CD34
+
 cells are grouped into three 

categories: a. vesicle-mediated transport or localized in membrane-bound vesicles; b. nitric 

oxide metabolic processes, that is in agreement with the endothelial phenotype of this 

population
59, 60

; and c. proteins localized in the cytoskeleton or are related with biological 

adhesion and locomotion. On the other hand, in CD34
-
 cells we identify more proteins related 

with biological adhesion and locomotion, compared to hESCs, however to a lower extent than 

in the CD34
+
 cells. Overall, GO-slim analysis, suggests that the characteristic phenotypic shift 

from that of the hESCs to that of the CD34
+
 or CD34

-
 populations, is underscored by two main 

processes, adhesion/migration and vesicle-mediated transport. 

Pathway Enrichment Analysis 

We then sought to determine differentially activated pathways between hESCs and 

CD34
+
/CD34

-
 cells in our experimental dataset. For this we used WebGestalt, an in silico tool 

for functional annotation, which incorporates information from different public resources for the 

biological interpretation of the omics data.
61, 62

 Differentially synthesized proteins from hESCs, 

CD34
+
 and CD34

-
 cells were uploaded as one dataset in WebGestalt (Supporting Table S-3). 

Enrichment was performed in pathways included in the publicly curated database Wikipathways 

(see Supporting Experimental Procedures). Annotation enrichment could identify fifteen 

pathway terms that were statistically over-represented within the list of the differential proteins 

from all three cell populations (Table 1). These pathways represent: i) adhesion and mechano-

transduction, ii) signaling and iii) regulation or metabolism.  

Manual curation of the proteomics results – Cell characterization 

As a next step to improve our understanding about the phenotype of the three cell 

populations analyzed here, we checked manually for references of the differentially synthesized 
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proteins in the literature. Since hESCs are well described, we focused more in the CD34
+
 and 

CD34
-
 cells. 

Our proteomic analysis revealed that 84 proteins were significantly more abundant in the 

isolated CD34
+
 cells (Supporting Table S-4). Typical vascular markers such as KDR, PROCR, 

NOS3, CD44, CDH5 are included in that list, as was expected. The vascular progenitor status of 

the isolated CD34
+
 cells is also supported by the fact that of the 84 up-regulated proteins we 

identified, 33 are known to be essential for vasculogenesis/angiogenesis, vascular homeostasis 

and endothelial function in general (Supporting Table S-5, Fig. 4B). Isolated CD34
+
 cells 

showed elevated synthesis of 7 proteins that are expressed in immature smooth muscle cells and 

play a role in vascular smooth muscle differentiation and function (PALD1, HDAC7, TLN1, 

VASP, CRIP2, LMNA, CORO1C) (see references in Supporting Table S-6; Fig. 4C), 

suggesting that CD34
+
 cells exhibit a bipotent phenotype that can differentiate to both mural 

(vascular muscle cells and pericytes) and endothelial cells depending on the conditions (Fig. 5,I 

and II). Indeed, treatment of CD34
+
 cells with PDGF generates cells that express the sm22 

protein, characteristic for smooth muscle cells (Supporting Fig. S-2). Support for the bipotent 

phenotype of CD34
+
 cells derives from the expression pattern of the PALD1 protein, which 

during vascular development is expressed in endothelial cells of the embryo, but in adulthood 

its expression is confined selectively to arterial smooth muscle cells.
63
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Discussion 

Cell-based vascular engineering to regenerate and remodel damaged or structurally 

abnormal vessels, and the affected tissues thereof, constitutes an important area of research 

requiring further basic research before clinical translation. Regenerating tissues over 100–200 

µm exceeds the capacity of nutrient supply and waste removal by diffusion, thus requiring an 

intimate supply of vascular networks
7, 8

 to ensure survival of the implant in vivo.
64

 Pre-

vascularized tissue-engineered constructs (TECs) consisting of mature vessels should be able to 

connect in a very short time to the vessels of the host providing immediate blood supply to the 

TEC. Despite the abundance of preclinical animal studies
65-67

, there are still incomplete data and 

a lack of concrete guidelines concerning the generation of pre-vascularized TECs for preclinical 

evaluation. However, the current use of vascular cells differentiated from hESC/hiPSC are 

superior to the adult stem cell-derived VPCs. This is due to the higher proliferative potential and 

plasticity, because scaling TECs to human size requires maintaining constant physical 

conditions and cellularity over larger dimensions. 

An important issue in vessel regeneration is the initial source of the cells to be used in 

therapeutic approaches. Generation of engineered vessels was achieved using a vast spectrum of 

endothelial cells of different differentiation status such as HUVECs
68

, cord blood-derived 

progenitors
69

 or hESCs
70

 co-implanted with murine MPC 10T1/ cells
68-70

 or human MSCs
71

 

indicating that a functional stable vasculature for tissue engineering requires both ECs and a 

source of mural cells (vascular smooth muscle, MSC, pericyte, or MPC.
72

 Moreover, it is also 

feasible to obtain mural/perivascular cells from hESCs/hiPS cells.
12, 73

 A critical issue in the 

entire approach is the accurate identification of sub-populations of progenitors that have specific 

lineage commitments. Currently, the isolation of vascular progenitor cells relies primarily on the 

expression of the hematovascular stem marker CD34
+
 and the co-expression of a limited 

number of general surface markers such as KDR, CD31, CD144 (VE-cadherin).
65-67

 Since 
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CD34
+
 cells represent a progenitor cell population with therapeutic potential, the detailed 

characterization of its dynamic phenotype becomes crucial. While RNA-based approaches have 

been important in delineating the roles of specific genes in vascular progenitor cell 

characterization
14-19

, proteomics studies help provide a more direct and representative picture of 

the actual differentiation state of the cells. 

Here we modified and refined an existing protocol, for the differentiation of hESCs into 

Vascular Progenitor Cells (VPCs) (CD34
+
 cells)

28
, in defined media, under feeder free 

conditions. After 5 days of culture, two main cell types are generated, the CD34
+
 VPCs and a 

CD34
-
 population. The differentiation phenotype is stable and reproducible, as shown by 

immunophenotyping of 18 known protein markers (Supporting Fig. S-1). Isolated CD34
+
 cells 

show functional characteristics of vascular progenitor cells in an in vitro tube formation assay. 

Differential protein abundance from the initial hESCs to the derived CD34
+
 and CD34

-
 

populations was monitored using high resolution MS combined with multivariate analysis of 6 

biological repeats. PLS regression identified proteins showing the highest variation between the 

biological repeats, using the LFQ abundance values.  Due to the small number of samples 

(biological repeats) over the number of variables (identified proteins), PLS provides a more 

accurate model over the traditional regression methods.
51

 The 250 proteins showing the most 

variation between the groups, were selected using the VIP method
37

, and further validated using 

the non-parametric test Kruscal-Wallis. Nine of the markers tested during immunophenotyping 

were also detected by proteomics in the differentially abundant proteins, thus validating our 

proteomics flow. Among the possible proteins of interest, 63 present in CD34
+
 or CD34

-
 could 

be assigned to known biological functions related to vasculogenesis, providing a broad view of 

this differentiation event and enhancing previous hypothesis. In addition, we identify >150 

proteins showing differential abundance that might help in the understanding of the mechanism 

of vasculogenesis, or could provide possible differentiation markers (Supporting Table S-4).  
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The isolated CD34
+
 population is apparently a vascular progenitor stem cell population 

with commitment to an endothelial cell lineage. Not only it expresses all the known markers 

associated with this status (KDR, FLT1, FLT4, NRP1 and 2, TEK, EFNB2, EPHB4, PECAM1, 

CDH5, ETV2, HIF1A, vWF), but also the great majority of the identified proteins by the 

proteomic analysis is related either to the regulation of angiogenesis/vasculogenesis or vascular 

homeostasis (Supporting Table S-6). A striking observation that further supports the endothelial 

commitment of the CD34
+
 cells is the scarcity in CD34

-
 cells of proteins that are implicated in 

vasculogenesis (Supporting Table S-6). This implies that the CD34
+
 population is undoubtedly 

the one that eventually differentiates to endothelial cells. Among the few proteins with 

increased abundance in CD34
-
 that might be involved in vasculogenesis were CREG1

74
 LUM

75
 

and the LRP1
76

 (Fig. 4E, Supporting Table S-7). Interestingly, CREG1 and LUM are secreted 

and LRP1 is cleaved
77

 generating a soluble fragment. Therefore, even the CD34
-
 cells might 

contribute to the vasculogenic differentaition of the CD34
+
 cells via a potential cross-talk 

between these cell types mediated by diffusible molecules. Indeed, LRP1 acts as an endocytic 

receptor to Bmper and co-receptor of Bmp4 to mediate the endocytosis of the Mmper/Bmp4 

signaling complex being a critical regulator of vascular development.
76

 The newly identified 

proteins that are co-synthesized together with CD34 and the other known markers of endothelial 

commitment may contribute to a more accurate characterization of this vascular progenitor cell 

population in future studies. 

In CD34
+
 cells seven proteins that have been reported to be expressed in immature smooth 

muscle cells and play a role in vascular mural cell differentiation and function show increased 

abundance (PALD1, HDAC7, TLN1, VASP, CRIP2, LMNA, CORO1C) (Supporting Table S-

6). This suggests that CD34
+
 cells are bipotent: they can differentiate into either endothelial 

cells or vascular muscle cells (mural) depending on the growth conditions (Fig. 4B and C; Fig. 

5, I and II), though concomitant differentiation to both lineages might be possible too. Indeed, 
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when we cultured CD34
+
 cells with PDGFβ/TGFβ they exhibited a characteristic fibroblast-like 

morphology, they lost the expression of CD31 and up-regulated the mural marker SM22-alpha 

(Supporting Fig. S-2B). Thus, when fully de novo vessels are required, both VEGF and PDGF 

will have to be used to treat isolated CD34
+
 progenitors from hiPSC patients, similarly to what 

was done to the hESC-derived CD34
+
 progenitors of the present study. This treatment would 

drive the differentiation to new tight vessels that have both cell types in the correct proportion. 

In contrast, in diabetic retinopathy where the main abnormality is the lack of pericytes, then the 

CD34
+
 progenitor cell (cultured on the correct scaffold) together with PDGF could be sufficient 

to remodel the damaged retina.
78

 

Several cytoskeleton-related proteins are enriched in CD34
+
 cells (Fig. 4D, Supporting 

Table S-6). Specifically, the ERM proteins (ezrin-EZR, radixin-RDX, moesin-MSN) consist of 

actin-binding linkers connecting F-actin and the plasma membrane, directly or indirectly.
79, 80

 

ERM proteins RDX and MSN and the kinase STK10 were over-synthesized in CD34
+
 cells 

(Fig. 4D) as were the ERM interactors surface receptor CD44, the scaffold protein NHERF2 

and the adaptor molecules CRK, VASP, TLN and PXN. Specific kinases, such as LOK/STK10, 

phosphorylate and activate the ERM proteins
79, 80

 upon binding to plasma membrane 

PtsIns(4,5)P2
81

, or alternatively, upon binding to PDZ-domain proteins, such as NHERF2
82

 (Fig. 

5, right panel). Once activated, ERM proteins can bind one of several transmembrane receptors 

such as CD44
83

 and can activate downstream kinases. The activated ERM proteins together with 

the other over-synthesized proteins regulate migration of vascular cells at many levels such as 

the cell-ECM contacts via integrins (PXN and TLN), association to CRK to promote 

migration
84

 and/or the formation of tight bundles of synchronously polymerizing actin filaments 

by the leading edge filopodia with the participation of VASP proteins, which are also over-

synthesised
85

 (Fig. 5, right panel). ERM proteins, such as Ezrin, localize to the apical surfaces 

of many cells and are essential for establishing apical identity. Moreover, they are able to orient 
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the mitotic spindle to guide an asymmetric division that distinguishes the outer trophectoderm 

cells from unpolarized inner cell mass (ICM) cells.
86

 MSN, which shows increased abundance 

in CD34
+
 cells is involved in lumen formation in the newly formed vessels by delivering 

vesicles to the cadherin-based cell junctions to convert them to apical surfaces thereby 

hollowing the cord. This mechanism was validated in animal models both in mouse aorta and in 

zebrafish intersegmental vessels
87

. 

In the CD34
-
 cells we have identified 5 proteins with increased abundance (CD140B, 

PALLD, CREG1, LRP1, DAG1; Fig. 4E) that are synthesized in vascular smooth muscle cells 

(VSMCs) or play a role in their differentiation and the proper investment of both large and 

small vessels with mural cells.
74, 77, 88-94

 Importantly, hiPSCs-derived contractile and functional 

SMCs were CD34
-73

 indicating that both types of progenitor stem cell (CD34
+
 and CD34

-
) have 

the machinery to differentiate SMCs/PCs. This is in agreement with the fact that during 

development, VSMCs arise from multiple independent origins or different subsets of 

mesoderm-committed cells.
95

 

 The presence of SMC/PC progenitors that are CD34
-
 is raising the question about their 

possible contribution in vessel morphogenesis considering that this stem cell population is 

devoid of commitment to an endothelial cell lineage. In this sense it is not a vascular progenitor 

cell proper as it can differentiate only into the mural component of it. Certainly, contribution to 

vessel formation impacted by the CD34
+
 progenitors is an obvious explanation. However, the 

exact nature of such contribution awaits further future characterization. The isolated CD34
-
 cells 

are a very interesting and important, from the clinical translation point of view, group of 

progenitor populations. The pattern of proteins with up-regulated synthesis in CD34
-
 cells is 

consistent with differentiation of mesoderm to cell populations of the mesenchyme-direction 

that consist of skeletal myogenic /osteogenic/chondrogenic/adipogenic lineages (Supporting 

Table S-7)(Fig. 5,III) suggesting that in CD34
-
 cells there is either a common progenitor that 
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differentiates to all these lineages or one progenitor for each lineage or combinations thereof. 

Many of the 51 proteins showing increased abundance in this cell population, including 6 

membrane proteins (ATP2B1, CRB2, LRP2, MPZL1, NCAM1, PTK7, Supporting Table S-4), 

may prove useful as individual markers of the various cell-subtypes and as surface tags for 

sorting. 

Page 23 of 48

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Tsolis et al Endothelial transition proteomics  

 

24 

Conclusion 

In conclusion, by modifying an established method, we differentiated hESCs to distinct 

CD34
+
 and CD34

-
 cells that could be segregated from each other. CD34

+
 cells were induced to 

differentiate towards the endothelial lineage by VEGF, as evidenced by validation using known 

markers and functional characterization (Fig. 5I), whereas PDGF/TGFβ1 induced the expression 

of mural cell (SMCs/PCs) markers (Fig. 5II). Thus, CD34
+
 cells probably represent a bipotent 

progenitor population that can differentiate either to ECs or SMCs/PCs. Comparative proteomic 

supported this conclusion as most of the specifically over-synthesized proteins in hESC-derived 

CD34
+
 cells were involved in the regulation of vasculogenesis/angiogenesis, including also 

proteins that have been reported to be expressed in immature differentiating SMCs. On the 

contrary, CD34
-
 cells are strikingly devoid of proteins that have any direct regulatory role in 

vasculogenesis/angiogenesis, but do over-synthesize a few proteins that drive mural cell 

differentiation (Fig. 5II). However, the pattern of over-synthesized proteins in CD34
-
 cells is 

consistent with differentiation to the mesenchyme-direction that consist of skeletal myogenic 

/osteogenic/chondrogenic/adipogenic lineages (Fig. 5III). The identified proteins due to the 

rigorous criteria used may serve as markers for further characterization of subpopulations of 

these cells in future studies. 
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Illustrations and figures  

 

Figure 1. Cell differentiation protocol clone characterization.  

A) hESCs were differentiated in CD34
+
 cells, under feeder-free conditions in matrigel-

coated plates, using a modified protocol of Tan et al. 2013.
28

 B) FACS analysis of CD34 and 

CD31 expression on Day 0 (left column) and on Day 4 (right column) of the differentiation 

process, before CD34 magnetic selection. The histograms of the samples stained with the 

isotypic IgGs are shown in light gray, whereas the samples stained with fluorochrome-

conjugated antibodies are overlaid in black. Each histogram is a representative of at least ten 

separate experiments. C) FACS analysis of CD34 and CD31 expression in CD34
+
 and CD34

-
 

cell fraction after CD34 magnetic selection. Representative data from at least ten independed 

experiments are presented as dot plots (FITC, fluorescein isothiocyanate; PE, phycoerythrin). 

D) Matrigel tube formation assay: Representative photographs of CD34
+
 and CD34

-
 selected 

cells after seeding for 18 hours on Matrigel. Capillary-like structures were imaged on Zeiss 

Axiovert 100 using a 5 X objective. E) Cell differentiation was also validated by examining 

several additional markers. The theoretical phenotype is in agreement with our experimental 

data derived from W (Western Blot), F (FACS), I (Immunofluoresence microcopy) and mass 

spectrometry. Additional markers are shown in Supporting Figures S-1 and S-2. 

 

 

Figure 2. Proteomics analysis workflow 

In the present study we performed a proteomic characterization of pluripotent hESCs and 

the two differentiated cell populations of CD34
+
 VPCs and CD34

-
 cells using high resolution 

mass spectrometry combined with label-free quantification and multivariate analysis. 6 

biological repeats for each cell type were analyzed resulting in the identification of ~4.500 
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proteins. A) Plot of the scores from the PLS model for the two main principal components. Each 

dot represents one biological sample. Three distinct clusters are identified, containing the 6 

biological repeats of each cell type. The distance between hESCs and CD34
+/-

 cells is greater 

than the distance between CD34
+
 and CD34

-
 suggesting a bigger variation of the starting 

population with the two differentiated cell types. B) Plot of the loadings (identified proteins) 

from the PLS model for the two main PCs. For the selection of differential proteins we used 

VIP method to select proteins with the highest variation between the different cell types, and 

checked for statistical significance using the non-parametric test Kruskal-Wallis. 236 proteins 

show differential synthesis between hESCs, CD34
+
 and CD34

-
 cells. A part of the differentially 

synthesized proteins is presented in the plot (for complete list see Supporting Table S-3). C) 

Distribution of differential synthesized proteins between the study groups. D) Differential 

proteins were then used for the biological characterization of cells using GO-slim, pathway 

enrichment and manual curation. 
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Figure 3. GO enrichment analysis 

Differentially synthesized proteins were subjected to GO-slim analysis using AmiGO. 

hESCs show higher number of proteins related with chromosome or methylation events. CD34
+
 

cells synthesized more proteins associated with cytoskeleton, adhesion, locomotion or are 

related to membrane-bound vesicles and vesicle mediated transport. The CD34
-
 population 

comprise an intermediate phenotype between hESCs and CD34
+
 cells, but shows significantly 

less proteins compared to the CD34
+
 cells that are related with adhesion/cytoskeleton and 

membrane vesicle transport.  

 

 

Figure 4. Selected proteins of functional interest.  

A) Proteomics results are validated using additional methods. The markers OCT4, ALPL, 

KDR, CD144, CD201, ERG, CD44 and CD140B, show statistically significant differential 

abundance based on the proteomics results, similar with the immunological methods (Fig. 1, 

Supporting Fig. S-1). B) Representative set of proteins abundant in CD34
+
 cells that are related 

with vasculogenesis (see Supporting Table S-5 for additional proteins). C) Abundant proteins in 

CD34
+
 cells that participate in muscle cell differentiation. D) ERM proteins and proteins 

associated with ERM family show higher quantitative value in CD34
+
 cells, suggesting a role of 

ERM protein family in physiological cell function. E) CD34
-
 cells, consist of a mixed 

population. Three secreted proteins (CREG1, LUM, LRP1) are more abundant in CD34
-
 cells 

suggesting a possible paracrine effect of these cells to CD34
+
. In addition, proteins related to 

muscle cell differentiation, bone/cartilage formation and adipogenic differentiation are also 

present in CD34
-
 population. Representative proteins are illustrated in this panel (see 

Supporting Table S-6 for the complete list). 
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Figure 5. Model of transition of hESCs into differentiated cells.  

hESCs differentiate into mesoderm intermediates and then into CD34
+
 VPCs and CD34

-
 

cells, under feeder-free conditions, using defined media. CD34
+
 synthesize known vascular cell 

markers, as well as proteins related to vasculogenesis and smooth muscle differentiation, 

suggesting a bipotent phenotype. Indeed, CD34
+
 can differentiate further to both directions, 

depending on the growth conditions (Supporting Fig. S-2). CD34
-
 cells consist of a mixed 

population over-synthesizing secreted factors that can promote angiogenesis, suggesting a 

paracrine effect on CD34
+
 cells and also synthesizing proteins that can lead to differentiation to 

other lineages (muscle, bone, cartilage). 
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Tables and captions 

Table 1. Enriched pathways.  

Differential proteins were subjected in pathway enrichment analysis against Wikipathways 

database, using WebGestalt web tool. Enriched pathways can be grouped in three main 

categories, i) adhesion and mechanotransduction, ii) signaling pathways and iii) regulatory and 

metabolic pathways. 

 

Pathway name # proteins Protein gene names Adjusted 

p-value 

i) Adhesion - Mechanotransduction       

Integrin-mediated cell adhesion 8 VAV3 SRBS1 PAXI TLN1 ITA6 VASP CRK ITA9 7.71E-07 

Regulation of Actin Cytoskeleton 7 PAXI GIT1 GELS CRK RADI MOES PGFRB 0.0001 

Focal Adhesion 13 
CO6A2 PAXI LAMC1 TLN1 VGFR2 ITA6 LAMA1 

VASP CRK LAMB2 CO1A2 ITA9 PGFRB 4.56E-10 

ii) Signaling pathways       

FAS pathway and Stress induction 

of HSP regulation 3 
LMNA HSPB1 SPTAN1 

0.008 

Insulin Signaling 5 SORBS1 MYO1C KIF5B CRK EHD2 0.0062 

AGE-RAGE pathway 3 ALPL MSN NOS3 0.0177 

MAPK signaling pathway 4 CRK PPP5C HSPB1 PDGFRB 0.0226 

Signaling of Hepatocyte Growth 

Factor Receptor 2 
PXN CRK 

0.0276 

iii) Regulatory and metabolic 

pathways       

Glycolysis and Gluconeogenesis 4 PGK1 ENO3 HK2 HK1 0.0008 

Urea cycle and metabolism of 

amino groups 3 
OAT CKB GATM 

0.0008 

Angiogenesis 2 KDR NOS3 0.0177 

miRNA regulation of DNA Damage 

Response 3 
CCNB1 PML CDK6 

0.0177 

Glucuronidation 2 UGP2 HK1 0.0177 

Prostaglandin Synthesis and 

Regulation 2 
ANXA3 ANXA2 

0.0225 

One Carbon Metabolism 2 MTR DNMT3B 0.0276 
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Supporting Information components 

Supporting Experimental Procedures:  

Isolation of CD34
+
 cells 

Matrigel tube formation assay 

Flow Cytometry 

Immunofluorescence analysis 

Western blot analysis 

Quantitative RT-PCR (qRT-PCR) 

Protein extraction from H1 hESCs, CD34
+
 and CD34

-
 cells 

1D-SDS-PAGE and in-gel digestion 

GO slim and pathway enrichment analysis 

Supporting Figures 

Supporting Figure S-1 – Phenotypic characterization of CD34+ cells 

Supporting Figure S-2 – Differentiation potential of CD34+ cells. 

Supporting Figure S-3 – Label-free quantification reproducibility and identification depth. 

Supporting Figure S-4 – Visualization of differentially synthesized proteins. 

Supporting Tables 

Supporting Table S-1 – List of Antibodies used for immunophenotyping. 

Supporting Table S-2 – qRT-PCR primers. 

Supporting Table S-3 –Proteins identified by MS. 

Supporting Table S-4 – Differentially synthesized proteins. 

Supporting Table S-5 – GO-slim analysis. 

Supporting Table S-6 – Known biological roles of proteins that are significantly over-

synthesized in CD34
+
 cells, with corresponding literature references. 
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Supporting Table S-7 – Known biological roles of proteins that are significantly over-

synthesized in CD34- cells, with corresponding literature references. 

Supporting Files 

Supporting files - statistical analysis scripts.zip: R scripts for the calculation of p-values 

and adjusted p-values. 
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Figure 3. Tsolis et al., 2016
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Figure 4. Tsolis et al., 2016
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