UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

Defect- and Variation-tolerant Logic Mapping in
Nano-crossbar Using Bipartite Matching and
Memetic Algorithm

Yuan, Bo; Li, Bin; Chen, Huanhuan; Yao, Xin

DOI:
10.1109/TVLSI.2016.2530898

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Yuan, B, Li, B, Chen, H & Yao, X 2016, 'Defect- and Variation-tolerant Logic Mapping in Nano-crossbar Using
Bipartite Matching and Memetic Algorithm', IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 9, pp. 2813-2826. https://doi.org/10.1109/TVLSI.2016.2530898

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
» Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy . . _ o .) .
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

https://doi.org/10.1109/TVLSI.2016.2530898
https://doi.org/10.1109/TVLSI.2016.2530898
https://research.birmingham.ac.uk/portal/en/publications/defect-and-variationtolerant-logic-mapping-in-nanocrossbar-using-bipartite-matching-and-memetic-algorithm(b4644194-f350-4032-8daa-1955649935d5).html

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016

2813

Defect- and Variation-Tolerant Logic Mapping in
Nanocrossbar Using Bipartite Matching
and Memetic Algorithm

Bo Yuan, Member, IEEE, Bin Li, Member, IEEE, Huanhuan Chen, Senior Member, IEEE,
and Xin Yao, Fellow, IEEE

Abstract—High defect density and extreme parameter
variation make it very difficult to implement reliable logic func-
tions in crossbar-based nanoarchitectures. It is a major design
challenge to tolerate defects and variations simultaneously for
such architectures. In this paper, a method based on a bipartite
matching and memetic algorithm is proposed for defect- and
variation-tolerant logic mapping (D/VTLM) problem in crossbar-
based nanoarchitectures. In the proposed method, the search
space of the D/VITLM problem can be dramatically reduced
through the introduction of the min-max weight maximum-
bipartite-matching (MMW-MBM) and a related heuristic bipar-
tite matching method. MMW-MBM is defined on a weighted
bipartite graph as an MBM, where the maximal weight of
the edges in the matching has a minimal value. In addition,
a defect- and variation-aware local search (D/VALS) operator
is proposed for D/VILM and embedded in a global search
framework. The D/VALS operator is able to utilize the domain
knowledge extracted from problem instances and, thus, has the
potential to search the solution space more efficiently. Compared
with the state-of-the-art heuristic and recursive algorithms, and
a simulated annealing algorithm, the good performance of our
proposed method is verified on a 3-bit adder and a large set of
random benchmarks of various scales.

Index Terms—Fault tolerance, logic mapping, memetic

algorithm (MA), nanoarchitecture, nanoelectronics.

Manuscript received September 9, 2015; revised December 10, 2015;
accepted February 1, 2016. Date of publication March 3, 2016; date of current
version August 23, 2016. This work was supported in part by the Engineering
and Physical Sciences Research Council under Grants EP/J017515/1 and
EP/K001523/1; in part by the China Post-Doctoral Science Foundation
under Grants 2014M560520 and 2015T80666; in part by the National
Natural Science Foundation of China under Grants 61203292, 61329302,
61473271, 61503357, 61511130083, and 91546116; and in part by
the Fundamental Research Funds for the Central Universities under
Grant WKO110000046. The work of X. Yao was supported by the
Royal Society Wolfson Research Merit Award. (Corresponding author:
Huanhuan Chen.)

B. Yuan and H. Chen are with the School of Computer Science, UBRI,
University of Science and Technology of China, Hefei 230026, China (e-mail:
yuanbo@ustc.edu.cn; hchen@ustc.edu.cn).

B. Li is with UBRI and the Chinese Academy of Sciences Key Laboratory
of Technology in Geo-Spatial Information Processing and Application System,
University of Science and Technology (USTC), Hefei 230026, China (e-mail:
binli@ustc.edu.cn).

X. Yao is with UBRI and the Centre of Excellence for Research in Computa-
tional Intelligence and Applications, School of Computer Science, University
of Birmingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2016.2530898

NOMENCLATURE
Weighted bipartite graph of crossbar architecture.
Bipartite graph of logic function.
Population size.
Parents.
Offspring.
Iteration counter.
Fitness value.
Greedy strength factor.
Probability of crossover.
Pyt Probability of mutation.
Pis Probability of local search.

ST wuz Q0

PCI”OSS

I. INTRODUCTION

ANOELECTRONICS [1], [2] has emerged with the hope
Nof extending Moore’s law beyond CMOS in the long-
term future. It is expected to achieve much higher device
density and operation frequency than that of conventional
CMOS technologies. Recently, the world’s first program-
mable nanoprocessor consisting of programmable, nonvolatile
nanowire transistor arrays (PNNTAs) [3] has been pub-
lished. This paper represents an important breakthrough of
logic circuits built from the bottom-up paradigm [4] and
shows tremendous opportunities for future computing systems.
However, the nanochips produced from both the bottom—up
process [4] and nanoimprint techniques [5] are inherently
prone to high defect density and extreme parameter variation.
This is because of the extremely small size of the nanode-
vices and the difficulty in controlling the fabricating process
precisely.

The exact level of defect density is still unknown, but it is
reasonable that 1%—15% of the resources, e.g., wires, switches,
transistors, and so on, on a nanochip will be defective [6]. The
Quantum Science Research group at Hewlett-Packard fabri-
cated an 8 x 8 crossbar architecture using molecular switches
at the crosspoints by nanoimprint lithography, where 15% of
the switches were defective [5]. The researchers at Harvard
and MITRE characterized the threshold voltage values of
nodes from the fabricated PNNTA structure in both active
and inactive states. They found that only 86% of nodes in
active state and 87% of nodes in inactive state met the voltage
requirements [3].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

2814

Parameter variation, e.g., fluctuations in length, width,
oxide thickness, flat-band conditions, and so on, impacts
both conventional and emerging technologies [7]. As device
scaling, some individual parts of the device are made up
of fewer atoms. If merely a single atom is out of place,
the device characteristics are significantly changed. Variations
in the geometry of the devices induct serious performance
variations of the circuits. For example, density variations in
carbon nanotubes growth can compromise the reliability of
carbon nanotube field-effect transistor (FET) and result in
increased delay variations [8]. Another example is the fin
FET (FinFET) device, it has been shown through practical
measurements and theoretical formulations [9] that quantum
effects have great impact on the performance of FinFET,
while the body thickness primarily determines these
effects.

As stated above, design process is significantly complicated
due to the lack of determinacy; besides, it is expected to
be wore as device scaling. To deal with such a high defect
density and extreme parameter variation simultaneously, one
promising design paradigm for logic function implementa-
tion on nanochips is the defect- and variation-tolerant logic
mapping (D/VTLM): given a nanoarchitecture and a logic
function to be implemented on it, find a mapping of the
logic function to the architecture with consideration of defects
and variations.

Without consideration of the variations, the defect-tolerant
logic mapping (DTLM) problem is equivalent to the sub-
graph isomorphism problem (SIP): return a subgraph of the
(bipartite) graph G that is isomorphic to the (bipartite)
graph G>. SIP is a well-known NP-complete problem [10].
While considering the variations, the D/VTLM problem is an
extended version of SIP, which can be defined as: return a
subgraph of G that is isomorphic to G», and the subgraph
has a minimal cost (e.g., path delay) among all subgraphs
of G that are isomorphic to G».

A number of methods have been proposed to deal with the
DTLM problem, such as the recursive algorithm [11] based
on backtracking and pruning, as well as various heuristic
algorithms [12]-[15]. However, the runtime of the recursive
algorithm is acceptable only for small-scale problems due to
the recursive nature, while all the heuristic algorithms rely on
fixed heuristics that show strong bias in favor of only small set
of problems. The D/VTLM problem is highly complicated due
to the additional consideration of variations, not only a valid
mapping should be found, but also the path delay should be
optimized. A simulated annealing algorithm (SA) [16] was first
suggested due to its capability of exploration. The SA method
has good effort on variation tolerance, but its efficiency is poor
due to the huge search space. Recently, a set of integer linear
programming (ILP) formulations were introduced in [17], but
the ILP-based method has good results only on small-scale
problems.

The mapping flow proposed in [18] is an efficient
trail for DTLM by using the divided and conquer
strategy that maximum-bipartite-matching (MBM) is intro-
duced to reduce the search space. Inspired by this, this
paper proposes a new matching problem and method.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016

Specifically, the min—max weight MBM (MMW-MBM) prob-
lem is defined in this paper for the first time, and a heuris-
tic MMW-MBM method is also presented. MMW-MBM is
defined on a weighted bipartite graph as an MBM, where the
maximal weight of the edges in the matching has a minimal
value among all MBMs of the given graph. A naive way
to find the MMW-MBM is to find all MBMs in a given
graph first, and then select the one whose maximal edge
weight is minimal. Instead of using such an enumeration
method, a heuristic method for the MMW-MBM problem
is developed to improve the time efficiency. Based on the
MMW-MBM model and the heuristic algorithm, the problem
of D/VTLM can be transferred to a pin assignment optimiza-
tion problem.

For real-world optimization problems, it is often effec-
tive to incorporate problem-specific knowledge into local
search strategies, which are referred to as memes in the
case of memetic algorithms (MAs) [19], [20]. This paper
proposes one such operator, called defect- and variation-
aware local search (D/VALS). The key idea is inherited
from the greedy reassignment (GR) local search operators
for DTLM [18] and VTLM [21], which is to reassign the
values of parts of the individual by taking advantage of the
greedy information extracted from the problems. However,
instead of individually utilizing defect information [18] or
variation information [21], the D/VALS operator is capable
of utilizing the combined information of both defect and
variation.

Based on MMW-MBM (model and method) and the
D/VALS operator, an MA is constructed to optimize the
logic mapping in the reduced search space of D/VTLM.
The MA employs a genetic algorithm (GA) as global search
and the D/VALS operator as local search. With an appropriate
coordination, the MA can not only exhibit a good explorative
ability as a population-based global search algorithm does
but also deliver a good exploitive performance as a local
search algorithm does. Compared with the state-of-the-art
recursive [11] and heuristic [14] algorithms, and the
SA method [16], the performance of the proposed method
is testified and verified on a 3-bit adder and a large set of
random benchmarks of various scales. Experiment results
show that a good performance on efficiency and effectiveness
can be obtained by the proposed method.

The novelty of this paper can be summarized as follows.
First, MMW-MBM is defined in this paper for the first
time to reduce the search space of the D/VTLM problem.
Second, instead of the enumeration method, a heuristic method
is developed to find a MMW-MBM efficiently. Third, the
D/VALS operator is designed under the considerations of
both defect and variation information, and embedded in an
MA framework.

The rest of this paper is organized as follows. Section II
introduces the problem background and definition.
In Section III, the search space of D/VTLM is reduced
by MMW-MBM model. The detail of the D/VALS operator
and the MA is presented in Section I'V. Experimental studies
and comparisons are given in Section V. Section VI concludes
this paper.

YUAN et al.: D/VTLM IN NANOCROSSBAR USING BIPARTITE MATCHING AND MA

| PR S

X

» 0,
>
» 0,
»
xX— o
\ 4 v v

Fig. 1. 3 x 3 nanocrossbar with two defects.

II. PRELIMINARIES
A. Nanocrossbar Architecture

A nanoelectronic crossbar consists of two layers of orthog-
onal nanowires. The region where two wires cross is called
junction or crosspoint, which may be configured to implement
a logic device. The assembly process has a stochastic nature
that the probability of aligning three-terminal devices will be
very low, while a two-terminal connection can be established
more easily. Therefore, two-terminal devices, such as nanowire
FETs, diodes, and molecular switches, are preferred [6].

In this paper, both the stuck-at-open defects and the stuck-
at-close defects are considered. The stuck-at-open defect is
representative of and most common in nanocrossbar archi-
tectures [22]. A stuck-at-open defect means that there is
either a nonprogrammable switch or missing a switch at the
crosspoint; thus, the two cross wires at this crosspoint are
always disconnected. A stuck-at-close defect means that the
switch at the crosspoint is permanently programmed, and the
entire input wire and the output wire are unused. It is notable
that the defect modeling of nanoelectronics is still an ongoing
research problem. Without loss of generality, we may assume
that the defects are independent and uniformly distributed as
previous works did [23], [24]. This is a commonly employed
assumption for theoretical research [25], which allows us
to focus upon the essence of the proposed method instead
of the physical details of the defects. It is notable that the
approach presented in this paper can easily be extended to
other defect types (nanowire open defect and nanowire bridg-
ing defect [26]) and other defect distributions (e.g., clustered
distribution [27]) by modifying the following graph model
slightly as discussed in [28].

An example of a defective 3 x 3 nanoelectronic crossbar is
shown in Fig. 1. The crossbar consists of two sets of orthog-
onal nanowires. The vertical nanowires are the inputs (is),
whereas the horizontal nanowires are the outputs (0s). There
is a programmable switch at each crosspoint. The nonpro-
grammable defective switches at the crosspoints are each
represented by an X.

B. Problem Definition

A given 2-D crossbar with defects and delay variations
can be represented by a weighted bipartite graph, as shown
in Fig. 2. A weighted bipartite graph of an m x my crossbar
is an undirected weighted bipartite graph G1(I/, O, C, W)
with partitions / and O, having |[I| = m; and |O| = m3.

2815

Fig. 2. Weighted bipartite graph of the nanocrossbar in Fig. 1.
Fig. 3. Bipartite graph of logic function: F = v{vy + vpv3.

I represents the set of input nanowires, and O represents the
set of output nanowires. C consists of representative edges for
all the programmable crosspoints in the crossbar. W is the set
of delay variations correspond to the crosspoints.

A two-level logic function in a sum-of-products form can
be represented by a bipartite graph G2(V, P, E), as shown
in Fig. 3. In this scenario, V represents the set of logic
variables, and P represents the set of product terms. E consists
of representative edges for the corresponding product terms
containing the variables.

When using a crossbar structure to implement a two-level
logic function, the logical relationships between the variables
and the product terms in the logic function can be represented
by the connections between vertical and horizontal nanowires
in the crossbar. Such logic-function-to-crossbar mapping
problem can be formulated as an extended SIP: returning a
subgraph of G that is isomorphic to G2, and the subgraph
has a minimum cost (e.g., path delay) among all subgraphs
of G that are isomorphic to G».

The D/VTLM problem can be formally defined as the fol-
lowing. Given a defective m| x my crossbar weighted bipartite
graph G (I, O, C, W), and an n| x ny logic function bipartite
graph G,(V, P, E), find a node mapping M (M: V — 1,
P — O; Yiv, p) € E, v € V, p € P, A(M©»),
M(p)) € C) and Cost(M) < Cost(M™) for any node mapping
M* M*:V - I, P — O;Yv, p) e E,veV,peP,
AM*(v), M*(p)) € C).

2816

The Cost(M) is the maximum path delay associated with
the output of a crossbar after logic mapping. It is calculated
in the proposed model as [17]

Cost(M) = \lf\gg}g Cost(M))

where Cost(M),) represents the path delay associated with the
product term p.

1) For FET-based nanocrossbar, the path delay of an

output nanowire is decided by all activated cross-

points
2

veV and e,p€E

Cost(Mp) = Wyeym(p)- 2)

2) For diode-based nanocrossbar, the path delay of an out-
put nanowire is only decided by the activated crosspoint
which has maximum delay

Cost(Mp) = Max

veV and eypeE

Wy oym(p)- (3)

III. MIN-MAX WEIGHT MAXIMUM-
BIPARTITE-MATCHING

In fact, the mapping trail M consists of two mappings, one
is M(v): V — I and the other is M(p): P — O. Therefore,
we can employ two decision vectors to represent the mapping
trial M: input mapping vector (IMV) and output mapping
vector (OMV).

1) IMV [v] = i, the vth variable is assigned to the ith input

nanowire, 1 <v <nj, 1 <i <mj.

2) OMV [p] = o, the pth product term is mapped to the

oth output nanowire, 1 < p <np, 1 <o < my.

It seems that we can search the whole solution space
spanned by IMV and OMYV as previous work did [16], but the
extremely huge size of search space, P(m, n1) x P(ma, n2),
will make the problem very hard to be solved with limited
computational resource, where P(m,n) is the number of
n-permutations of m. In order to solve the problem effi-
ciently, the following parts will show that the problem can
be solved in a divided and conquer way by introducing
MMW-MBM, where IMV is optimized by a metaheuristic
algorithm (Section IV) and OMV is determined by a heuristic
algorithm (Section III).

A. Reducing the Search Space by MMW-MBM Model

As suggested in the previous works on DTLM [12], [14],
when logic variables are previously assigned to input
nanowires (IMV), the solution space of another mapping
vector (OMV) will be restricted severely. For example, con-
sider Figs. 2 and 3, if IMV is set as [1, 2, 3], which means
v1 is assigned to i, vy is assigned to i, and v3 is assigned
to i3, thus p; cannot be assigned to o;, because there is
no edge between iy and o in the crossbar bipartite graph.
Therefore, we can construct a weighted bipartite graph to
model which product terms can be assigned to which output
nanowires and the corresponding cost (path delay), as shown
in Fig. 4. While creating the weighted bipartite graph, we
add one node on the left side for each product term p,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016

Fig. 4. Given IMV = [1, 2, 3], the weighted bipartite graph for product
terms (Fig. 3) and output nanowires (Fig. 2).

and one node on the right side for each output nanowire o.
An edge between p and o indicates that the product term
p is compatible with the defect pattern of the crossbar, and
can be realized by o. The associated weight is the path
delay associated with the output o, which can be calculated
according to (2) [or (3)]. For example, the weight between
p1 = viv2 and 02 1S Wimy(r1)o2 + Wimv(r2)02 = Wilo2 + Wi202,
because vy is assigned to i1 and v, is assigned to iy indicated
by the given IMV = [1, 2, 3].

Then, if we only consider defect tolerance [18], the problem
is to find a complete assignment from the product terms to
the output nanowires which is equivalent to the MBM prob-
lem [29]. Given an undirected bipartite graph G = (U, V, E),
where U and V are disjoint and all edges in E go between
U and V. A matching is a subset of edges Mat € E,
such that for all vertices v € U U V, at most one edge of
Mat is incident on v. We say that a vertex v € U UV is
matched by matching Mat if some edge in Mat is incident
on v; otherwise, v is unmatched. A maximum matching is
a matching of maximum cardinality, that is, a matching Mat
such that for any matching Maf', we have |Mat| > |Mat'|.
The set of dashed lines in Fig. 4 is an MBM in the graph.
The problem MBM can be solved by Hungarian method or
Ford—Fulkerson method [29].

However, if we consider defect tolerance and variation
tolerance simultaneously, the problem is to find a complete
assignment from the product terms to the output nanowires
with minimum cost (1). So, the MBM problem needs
to be extended to a new bipartite matching problem, the
MMW-MBM problem. MMW-MBM can be defined on a
weighted bipartite graph as an MBM, where the maximal
weight of the edges in the matching has a minimal value
among all MBMs of the given graph. One should note that
the MMW-MBM problem is quite different from the maximum
(minimum) weighted bipartite matching, which is defined on
a complete weighted bipartite graph as a complete matching,
where the sum of the weights of the edges in the matching
has a maximal (minimal) value. A naive way to find the
MMW-MBM is to find all MBMs in the given graph first, and
then select the one whose maximal edge weight is minimal.
Instead of using such an enumeration method, a heuristic
method for MMW-MBM problem is presented to improve the
efficiency.

YUAN et al.: D/VTLM IN NANOCROSSBAR USING BIPARTITE MATCHING AND MA

Algorithm 1 Heuristic Method for MMW-MBM
//The proposed heuristic method for MMW-MBM
Input: Weighted bipartite graph: G= (U, V, E, W)
Output: MMW-MBM: Mat
1: Mat < Ford-Fulkerson Method for MBM (G)
2: Sort E in descending order of their weights W
3: Repeat
4: e « edge in £ with maximal weight
5 E «— E-{e}
6.
7
8

Mat’ < Ford-Fulkerson Method for MBM (G)
If [Mat’| = |Mat| then

: Mat = Mat’
9: Else
10: Break
11: End if
12: UntilE=¢

13: Return Mat

Algorithm 2 Ford-Fulkerson Method for MBM [29]

//Ford-Fulkerson method for MBM

Input: Weighted bipartite graph: G = (U, V, E)

Output: MBM: Mat

1: Construct flow network G'= (V', E") based on G

Maximum flow f < 0

While there exists an augmenting path p do
Augment flow f'along p

End while

Return Mat « f

AN

B. Heuristic MMW-MBM Method

Given an undirected weighted bipartite graph G =
(U,V,E,W), where U and V are disjoint and all edges in E
go between U and V. Our heuristic is to remove the edges
in G step by step in descending order of their weights, while an
MBM algorithm (Ford—Fulkerson method) is used to check the
cardinality of the current MBM until the cardinality reduces.
The heuristic method is iterative, as shown in Algorithm 1.
The algorithm starts with an initial matching Mat obtained
by the Ford-Fulkerson method [29] (line 1), and then sort E
in descending order according to their weights (line 2). At each
iteration, the edge e in E with maximal weight is removed
(lines 4 and 5), and then we obtain a new matching Mat’
by running the Ford—Fulkerson method on the new graph G
(line 6). If the cardinality of Mat' is equate to that of Mat,
we update Mat to Mat' (line 8), otherwise, we break the loop
(line 10) and then return Mat as the MMW-MBM (line 13).
This process is repeated until E is empty.

Given a bipartite graph G = (U, V, E), one can use the
Ford-Fulkerson method [29] to find an MBM, as shown
in Algorithm 2. The trick is to construct a flow network
where the flow corresponds to matching. The corresponding
flow network G’ = (V’/, E’) for G is defined as follows.
Let the source s and sink ¢ be new vertices, and V' =
U U VU{s, t}. The directed edges of G’ are the edges
of E, directed from U to V, along with |U U V| new edges:
E' = {(s,u): u € UYJU{(u, v): u € U, v € V, and

2817

(u,v) € E}U{(v, t): v € V}. To complete the construction, unit
capacity is assigned to each edge in E’. Thus, given an undi-
rected bipartite graph G, one can find an MBM by creating the
flow network G’ (line 1), running the Ford-Fulkerson method
(lines 2-5), and directly obtaining a maximum matching Mat
from the integer-valued maximum flow f found (line 6). The
Ford-Fulkerson algorithm starts with f(u, v) = 0 for all u,
v € V/, giving an initial flow of value O (line 2). At each
iteration, the flow value is increased by finding an augmenting
path that can be thought of simply as a path from the source s
to the sink ¢ along which more flow can be sent and augmented
(lines 3-5). This process is repeated until no augmenting path
can be found. The max-flow min-cut theorem proves that upon
termination, this process yields a maximum flow.

Obviously, the heuristic method would return an MBM of
the input graph, since the resulting matching Mat has the same
cardinality as the initialized MBM obtained from the input
graph (line 1 in Algorithm 1). Besides, the edges in G are
removed according to the descending order of their weights,
so the resulting matching Mat satisfies that the maximal weight
of the edges in Mat has a minimal value among all MBMs
of the input graph. Therefore, the heuristic method can indeed
find an MMW-MBM in the given graph with the advantage of
a high efficiency over the enumeration method.

Given a bipartite graph G = (U, V, E), the time complexity
of the Ford—Fulkerson Method is O(JU U V||E|) [29]. Since
the Ford—Fulkerson Method is used in the inner loop of the
proposed heuristic method, it seems that the heuristic method
would be very time-consuming. For example, one edge is to
be removed from the graph in each loop, so the worst case
time complexity of the heuristic method is O(|U U V||E 2).
Fortunately, in the scenario of the D/VTLM problem, the
graphs to be deal with by the heuristic method are highly
sparse. If we assume that the edge density of the m x m
crossbar bipartite graph G is p, and the edge density of the
n x n logic function graph G, is ¢, the probability that a
product term can be realized by an output nanowire can be
calculated as p?" [12], which is the edge density of the input
graph G in Algorithm 1. Therefore, the time complexity of
the heuristic method is O((m + n)(mnpd™)?).

IV. MEMETIC ALGORITHM FOR D/VTLM

Given an IMV, the search space of OMV can be significantly
reduced by creating the corresponding weighted bipartite
graph modeling of which product terms can be assigned to
which output nanowires and the corresponding path delay.
Furthermore, it is possible to employ the proposed heuristic
method to find an MMW-MBM exactly between product terms
and output nanowires. Therefore, the next problem is how to
choose an optimized IMV, so that the resulting MMW-MBM
not only satisfies full defect tolerance (every product term
corresponds to an output nanowire) but also exhibits good
variation tolerance (minimized path delay). Due to the
NP-hardness of the optimization of IMV, an MA is proposed.
Besides incorporating an evolutionary computation framework
to enhance the global optimization, the proposed MA gains
pretty good performance by incorporating successful elements
of previous effective greedy mapping algorithms.

2818

Algorithm 3 MA for the D/VTLM

//The pseudo-code of MA for the D/VTLM
1: Fori=ItoNdo

2 P; < random permutation 7
3 f(P;) « evaluate P; according to Eq. 4, 5, and 6
4: End for
5. t=0
6: Repeat
7 t=1t+l
8: Fori=1toNdo
9: (Pj, Py) < Selection for Reproduction (P)
10: B; < Crossover (P;, Py, Pcross)
11: End for
12: Fori=1to Ndo
13: B; < Mutation (B;, Py
14: B; < D/VA Local Search (B,, P, 1)
15: End for
16: Fori=1to Ndo
17: f(B;) < evaluate B; according to Eq. 4, 5, and 6
18: End for

19: P « Selection for Survival (P, B, f)
20: Until maximum runtime reached

A. Objective Function

Based on the obtained MMW-MBM, the following objective
function can be defined for the given IMV:

Objective = a - dt + (1 — a) - vt 4)
P P

dt =" mp-wp/ D wp 5)
p=1 p=1

vt = (delay,. — delay,,)/delay (6)

where dr represents the capability of defect tolerance of the
given IMV, while vt represents the capability of variation
tolerance of the given IMV, and a is used to tune the impact
of dt and vt on objective function. m, € {0, 1} represents
if product term p has a corresponding output nanowire o
in the MMW-MBM under the given IMV, while weight w),
represents the impact of product term p on the dr value.
delayys represents the maximal weight of the edges in the
MMW-MBM, while delayc represents the maximal delay of
the output nanowires in the crossbar.

Based on MMW-MBM (model and algorithm), the problem
of D/VTLM is transferred to optimize the pin assignment from
logic variables to input nanowires (IMV) with the evaluation
by (49)-(6).

B. Framework of the MA

The outline of the proposed MA is given in Algorithm 3.
A GA is used to work as the evolutionary computation
framework of the MA due to its success history on many
assignment problems [30]-[34]. The detailed design of the
elementary steps of the algorithm is introduced as follows.

The algorithm starts with an initial population of N (popu-
lation size) random individuals (line 2). Each random indi-
vidual solution is evaluated according to (4)—(6) (line 3).
The encoding of IMV solutions used in the implementation

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016

is straightforward. We encode the permutation 7 (denotes a
permutation of the set M = {1,2...m}) as a vector of input
nanowires, such that the value j of the ith component in the
vector indicates that the input nanowire j is assigned to logic
variable i (z(i) = j). It is notable that the logic function
size n is smaller than the crossbar architecture size m in some
cases, thus IMV is an incomplete permutation. In order to
take advantage of the off-the-shelf crossover operators, such
as CX recombination [30], the complete permutation 7 is used
instead of incomplete permutation. However, only the first n
components will be decoded as IMV for the MMW-MBM-
based fitness evaluation.

During every generation ¢, the population of N individuals
generates N children through the crossover operator (line 10),
the mutation operator (line 13), and the local search operator
(line 14). The offspring is evaluated according to (4)—(6)
(line 17) and then added to the current population. The
CX recombination operator [30] has been testified to be an
effective operator for assignment problems. It preserves the
information contained in both parents in the sense that all
alleles of the offspring are taken either from the first or
from the second parent. The operator does not perform any
implicit mutation, since an input nanowire j that is assigned
to variable i in the child is also assigned to variable i in one
or both parents. In the first phase, all input nanowires found
at the same variable in the two parents are assigned to the
corresponding variables in the offspring. Then, starting with a
randomly chosen variable with no assignment, a nanowire is
randomly chosen from the two parents. After that, additional
assignments are made to ensure that no implicit mutation
occurs. Then, the next unassigned variable to the right (in case
we are at the end of the genome, we proceed at its beginning)
is processed in the same way until all variables have been
considered. Since the logic function size n may be smaller
than or equal to the crossbar architecture size m, we consider
applying a mutation operator in two cases.

1) If n < m, we will randomly select a gene within alleles

1 ~ n to be mutated and exchange its value with another
gene from the last m — n genes.

2) If n = m, we will randomly select two genes and then
exchange their values. The local search operator will be
explained in detail in Section IV-C.

Selection occurs two times in the main loop of the
proposed MA. Selection for reproduction (line 9) is performed
before a crossover operator can be applied, which is based
on a purely random basis without bias to filter individuals,
and selection for survival (line 19) is performed to reduce
the population to its original size, which is achieved by
choosing the best N individuals from the pool of parents and
children [30].

C. Defect/Variation-Aware Local Search

The local search operator developed for the MA can be
regarded as a type of knowledge-guided mutation. Given a
parent chromosome, the operator produces a child chromo-
some that is expected to outperform the parent. The key
idea of the operator is inherited from the previous GR local
search operators for DTLM [18] and VTLM [21]. However,

YUAN et al.: D/VTLM IN NANOCROSSBAR USING BIPARTITE MATCHING AND MA

instead of individually utilizing defect information [18] or
variation information [21], the operator is capable of utilizing
the combined information on both defect and variation. Thus,
the proposed operator is called D/VALS here. There is good
knowledge that has been testified to be effective on some
instances for defect tolerance, that is, a more frequently used
variable needs more functional crosspoints. By assigning the
most frequently used variables in the product terms to the input
nanowires with the smallest number of defects, the greedy
assignment heuristic might find the feasible solution with a
higher probability [13], [14]. In addition, for variation toler-
ance, an intuitive greedy knowledge is that a more frequently
used variable should be assigned to an input nanowire with a
minimal delay [21].

Since the operator is designed to be complementary to
the stochastic search of GA, the incorporation of the oper-
ator should maintain the stochastic search. Besides, strong
greediness will weaken the stochastic nature of global search,
resulting in early convergence. Therefore, a control parameter
is introduced to limit the elements (genes) of the given solution
(parent chromosome) to be operated by the local search. For
example, only nj - 4 variables and their corresponding nj - 4
input nanowires are randomly selected, where n; is the number
of variables, and 0 < A < 1 is called greedy strength factor
here.

In order to release the time overhead added to the iterative
process of GA, the time complexity of the operator should
be as low as possible. In fact, the attributes of variables and
nanowires can be obtained in advance, such as the number of
times to be included by product terms for each variable v, the
number of functional crosspoints on each input nanowire i,
and the path delay associated with each input nanowire i
(under the assumption that all the functional crosspoints
are active), they are marked as Degree(v), Degree(i), and
Delay(i), respectively. The property of an input nanowire
i is measured as: Property(i) = a - Degree(i) — Delay(i),
to consider the defect-tolerant capability (more functional
crosspoints) and variation-tolerant capability (less path delay)
at the same time. Parameter o is used to make sure that the
defect tolerance is the key task, and thus, its value is set as:
o > Maxy;Delay(i). To sum up, the greedy information of the
problem instance only needs to be extracted once before the
optimization.

The outline of the proposed D/VALS is given in
Algorithm 4. Given a pin assignment (IMV), n; x 4 vari-
ables and their corresponding n; x A input nanowires are
randomly selected and remarked as unvisited (line 1). Then,
a defect/variation-aware GR heuristic is applied on these
selected variables and nanowires to get a new solution (IMV).
If there are unvisited variables (line 2), we choose a variable v,
whose Degree(v) is maximal (line 3), and a nanowire i, whose
property is the best (line 4) and then assign i to v (line 5),
and mark v and i as visited (line 6). When the list of unvisited
variables is empty, we get the new pin assignment (line 8).

The importance of the D/VALS operator is as follows.

1) Compared with previous local search methods (such as

the 2-opt [30] and the fast-2-opt [30] heuristics) that
can be commonly used for combinatorial optimization

2819

Algorithm 4 Defect/Variation-Aware Local Search

// Defect- and variation-aware local search for pin assignment
Input: Pin assignment: IMV

Output: New pin assignment: IMV

1: Randomly select n;°A variables and their corresponding
ne A input nanowires, mark them unvisited

2: While there are unvisited logic variables do

3: Find the unvisited variable v with maximum Degree(v)
4: Find the unvisited input nanowire i with maximum
Property(i)

50 IMVv]=i

6: Mark v and i as visited

7: End while

8: Return IMV

problems, D/VALS is problem-specific and much more
efficient. For the 2-opt and the fast-2-opt heuristics, in
one local search process, a number of solutions are gen-
erated by performing random swapping. Thus, frequent
quality evaluations are required to gain information for
guiding search, and the MMW-MBM-based evaluation
is time-consuming. While, for D/VALS, in one local
search process, only one solution is generated by using
the greedy information.

2) The greedy strength factor A provides a flexible con-
trol on the randomness or greediness of the opera-
tor. The randomness/greediness of the operator will
decrease/increase along with the increasing of 1. When
A = 1, the whole IMV will be operated according
to the GR heuristic. In order to coordinate the sta-
tistic search of GA, the factor 1 should be given a
very small value (4 = 0.1 in our scenario). Although
only a small part of the given solution is operated
by the GR, the quality of the new generated solution
will be improved with a high probability. For exam-
ple, for random generated solutions, their fitness (4) is
improved with an average probability of 70%~80% by
performing D/VALS in our experiments on large-scale
benchmarks.

3) The following experiments (Section V) will show the
advantages of introducing the D/VALS operator to the
global optimization.

V. EXPERIMENTAL STUDIES
A. Parameter Setting

In objective function (4), parameter « is set a big value,
o = 0.8, since defect tolerance is the primary task. As sug-
gested in the previous work [18], the value of weight w),
is related to the number of variables v, in product term p,
that is, it is harder to map a produce term p, whose v, is
larger. Therefore, w, is set as v} experimentally. There is
no difference between FET-based nanocrossbar (2) and diode-
based nanocrossbar (3) from the perspective of the mapping
algorithms, and the comparisons between different algorithms
are consistent for both cases, so we record the former (2) in
the experiment section to save space.

2820 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016
TABLE I
EXPERIMENTAL RESULTS OF THE HMA [14], THE RMA [11], THE SA [16], AND THE MA ON A 3-bit ADDER (p, = 10% AND p. = 0.1%)

No HMA [14] RMA [11] SA[16] MA

" | Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD

1 100% 0.012 254.3 65% 0.138 263.0 75% 0.134 219.0 100% 0.444 207.0

2 100% 0.010 299.7 95% 0.135 279.7 95% 0.063 222.4 100% 0.828 209.5

3 100% 0.010 279.2 80% 0.137 273.9 100% 0.098 218.5 100% 0.634 206.7

4 100% 0.010 266.9 95% 0.213 277.0 95% 0.081 216.0 100% 0.630 209.2

5 100% 0.010 284.6 80% 0.137 278.0 100% 0.073 213.6 100% 0.658 207.3

6 100% 0.015 272.9 100% 0.715 268.1 95% 0.085 215.1 100% 0.615 208.4

7 100% 0.010 289.6 90% 3.079 262.7 0% NA NA 100% 4.288 214.8

8 100% 0.010 252.4 100% 0.134 271.1 100% 0.065 216.7 100% 0.781 206.9

9 100% 0.010 271.8 75% 0.457 272.7 0% NA NA 100% 5.208 221.4

10 100% 0.010 280.6 55% 0.165 267.4 0% NA NA 95% 3912 218.3

11 100% 0.010 280.4 90% 1.862 272.6 100% 0.078 222.4 100% 0.675 213.6

12 100% 0.010 282.1 95% 0.134 274.4 100% 0.068 216.4 100% 0.759 209.7

13 100% 0.010 290.2 80% 0.135 270.6 95% 0.069 215.7 100% 0.817 204.4

14 100% 0.010 255.2 55% 2421 268.4 0% NA NA 100% 4.179 217.7

15 100% 0.048 254.4 75% 0.423 277.0 0% NA NA 95% 4.727 217.3

16 100% 0.010 283.4 60% 0.133 271.1 100% 0.063 221.2 100% 0.648 215.1

17 100% 0.010 290.6 85% 0.411 280.4 95% 0.093 227.4 100% 0.525 214.8

18 100% 0.010 276.5 90% 0.135 266.2 100% 0.069 213.7 100% 0.703 210.2

19 100% 0.010 261.4 55% 0.135 269.0 100% 0.075 220.9 100% 0.663 209.5

20 100% 0.010 291.9 55% 0.185 288.6 0% NA NA 100% 4.542 221.8

Since the computational complexity of the stuck-at-open defect densities are 10%, 20%, and 30%. Since

MMW-MBM-based fitness evaluation does not allow
evolving large populations in reasonable time, the population
size N is set N = 10 after testing N values from 2 to 20
experimentally. A large greedy strength factor A will
weaken the stochastic nature of evolutionary algorithm, thus
we set 4 = 0.1 empirically. We set optimal parameters
Peross = 80%, Pmue = 20%, and Py = 100% experimentally
by cross-validation.

All the experiments in this paper are performed on a
platform with two 2.33-GHz Intel Xeon Quad processors
E5410 and 12G memory. However, all tested algorithms
are implemented as monolithic processes, and no CPU core
parallelism is exploited.

B. Case Study of 3-bit Adder

A 3-bit adder, as a widely used benchmark [23], [24], [26],
is first used to test the performances of different algo-
rithms. The adder is implemented by two-level logic in the
sum-of-product form. It requires 16 input wires and 31 output
wires for logic operations, with a minimum crossbar area of
16 x 31 = 496, and uses 147 crosspoints [24]. So, its logic
density approximates to 30%. We attempted to map the 3-bit
adder to 20 random generated 17 x 32 crossbar architectures
with 10%-30% stuck-at-open defect density (p,) and 0.1%
stuck-at-close defect density (p.). Delay variations of the
crosspoints are generated by using a Gaussian distribution
(u =50 and 30 = 30) as [17] did.

The heuristic mapping algorithm (HMA) [14], the recursive
mapping algorithm (RMA) [11], and the SA [16] are three rep-
resentative algorithms for the DTLM and the D/VTLM whose
performances have been testified successfully. Therefore,
they are used for comparison here. We use a cutoff time of
10, 20, and 30 s for the SA and the proposed MA when the

the RMA is a recursive algorithm, we use a four times cutoff
time, 40, 80, and 120 s. The HMA uses greedy pin assignment
and incomplete graph construction strategies, so it is always
the fastest one. All the algorithms are run independently
for 20 times on each test instance. Tables I-III record the
simulation results of different algorithms including the
following.

1) Psucc: The success rate of the algorithm, i.e., the

fraction of the 20 runs that found a valid mapping.

2) AvgT: The average runtime (in seconds) of the algorithm

if it finds valid mappings in 20 runs.

3) AvgD: The average path delay (Delay,s) of the mapping

if the algorithm finds valid mappings in 20 runs.

It is notable that the HMA is a deterministic algorithm, so
the same result will be obtained after being run multiple times.
Besides, the HMA and the RMA are proposed only for defect
tolerance, so they cannot provide mappings with optimized
path delay.

Table I shows the results when the stuck-at-open defect
density of crossbars is 10%. It can be seen that the following
holds.

1) The HMA has a success rate of 100% on all test
instances.

The RMA can find valid mappings on all instances, but
the success rate is relatively low (<60%) on several test
instances (4 out of 20).

The SA fails on several test instances (6 out of 20), but
has high success rate on other instances.

The MA has a success rate of 100% on most test
instances (18 out of 20).

The runtime of these algorithms is acceptable.
Compared with the SA, the path delay is slightly reduced
by the MA.

2)

3)
4)

5)
6)

YUAN et al.: D/VTLM IN NANOCROSSBAR USING BIPARTITE MATCHING AND MA

2821

TABLE 11
EXPERIMENTAL RESULTS OF THE HMA [14], THE RMA [11], THE SA [16], AND THE MA ON A 3-bit ADDER (p, = 20% AND p. = 0.1%)

No HMA [14] RMA [11] SA [16] MA

" | Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD
1 100% 0.095 247.4 50% 8.462 2574 40% 0.288 228.1 100% 0.319 208.7
2 0% NA NA 0% NA NA 0% NA NA 0% NA NA
3 0% NA NA 0% NA NA 0% NA NA 0% NA NA
4 100% 0.011 269.1 0% NA NA 0% NA NA 100% 2.764 218.0
5 100% 0.010 252.3 20% 5.957 271.7 10% 0.336 256.7 100% 0.205 211.1
6 100% 0.065 253.2 20% 7.054 269.4 15% 0.437 240.2 100% 0.199 209.3
7 100% 0.015 276.9 50% 12.777 | 268.5 40% 0.274 235.1 100% 0.187 212.8
8 100% 0.010 274.7 45% 7.464 271.0 50% 0.253 245.2 100% 0.309 210.7
9 100% 0.179 271.4 10% 1.277 263.9 0% NA NA 100% 2.749 224.0
10 100% 0.010 265.0 15% 13.295 | 258.9 0% NA NA 100% 4.532 213.2
11 100% 0.010 251.7 25% 13234 | 2729 0% NA NA 100% 1.770 219.3
12 0% NA NA 0% NA NA 0% NA NA 0% NA NA
13 100% 0.030 272.6 15% 0.143 279.1 0% NA NA 100% 3.285 212.7
14 100% 0.081 248.5 15% 1.598 270.7 0% NA NA 100% 2.324 217.0
15 100% 0.034 248.4 70% 7.228 271.8 20% 0.351 239.3 100% 0.335 208.6
16 100% 0.050 286.1 0% NA NA 0% NA NA 100% 1.651 223.5
17 100% 0.189 309.1 5% 0.159 280.0 0% NA NA 100% 3.238 228.2
18 100% 0.010 259.5 40% 0.381 271.9 45% 0.237 237.3 100% 0.310 207.3
19 0% NA NA 0% NA NA 0% NA NA 100% 4.280 219.6
20 0% NA NA 0% NA NA 0% NA NA 0% NA NA

TABLE III

EXPERIMENTAL RESULTS OF THE HMA [14], THE RMA [11], THE SA [16], AND THE MA ON A 3-bit ADDER (p,

=30% AND p. = 0.1%)

No HMA [14] RMA [11] SA[16] MA

" | Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD
1 100% 0.017 291.5 0% NA NA 0% NA NA 100% 0.243 219.0
2 100% 0.106 271.1 5% 0.146 279.5 0% NA NA 100% 1.537 217.6
3 0% NA NA 0% NA NA 0% NA NA 100% 0.152 218.8
4 100% 0.010 261.7 0% NA NA 5% 1.942 244.9 100% 0.189 216.6
5 0% NA NA 0% NA NA 0% NA NA 100% 9.449 227.0
6 100% 0.044 278.2 0% NA NA 0% NA NA 100% 2.331 218.6
7 0% NA NA 0% NA NA 0% NA NA 100% 5.800 218.6
8 100% 0.159 286.9 0% NA NA 0% NA NA 100% 2.251 223.0
9 100% 0.054 255.1 0% NA NA 0% NA NA 100% 0.125 220.1
10 0% NA NA 0% NA NA 0% NA NA 100% 3.597 223.5
11 100% 0.030 252.6 0% NA NA 0% NA NA 100% 0.115 220.7
12 100% 0.015 281.9 5% 80.3 266.4 5% 1.200 240.7 100% 0.163 213.2
13 0% NA NA 0% NA NA 0% NA NA 100% 0.231 211.2
14 0% NA NA 0% NA NA 0% NA NA 100% 1.275 229.1
15 100% 0.070 263.6 0% NA NA 0% NA NA 100% 0.152 216.4
16 100% 0.087 286.4 5% 14.4 275.1 5% 3.257 251.7 100% 0.136 227.8
17 0% NA NA 0% NA NA 0% NA NA 0% NA NA
18 0% NA NA 0% NA NA 0% NA NA 100% 3.367 225.2
19 0% NA NA 0% NA NA 0% NA NA 100% 3.947 218.9
20 100% 0.279 282.3 0% NA NA 0% NA NA 100% 1.181 228.0

Table II shows the results when the stuck-at-open defect
density of crossbars is 20%. It can be seen that the following
holds.

1) The HMA has a success rate of 100% on most test
instances (15 out of 20).

The RMA can find valid mappings on more than half of
the instances (13 out of 20), but the success rate is very

2)

low.

3) The SA fails on most test instances (13 out of 20),
and has low success rate (<50%) on other
instances.

4) The MA has a success rate of 100% on most test
instances (16 out of 20).

5) The runtime of these algorithms is still acceptable,

although the runtime of the RMA increases a lot.

6) Compared with the SA, the path delay is significantly

reduced by the MA.

Table III shows the results when the stuck-at-open defect
density of crossbars is 30%. It can be seen that the following
holds.

1) The HMA has a success rate of 100% on nearly half of

the test instances (11 out of 20).

2822 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016
TABLE IV
EXPERIMENTAL RESULTS OF THE HMA [14], THE RMA [11], THE SA [16], AND THE MA ON RANDOM BENCHMARKS OF SIZE 16 x 16
No HMA [14] RMA [11] SA[16] MA
" | Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD
1 100% 0.005 577.7 55% 1.964 536.6 100% 0.092 413.5 100% 0.055 420.0
2 100% 0.005 464.8 40% 3.303 494.9 100% 0.106 383.6 100% 0.033 382.0
3 0% NA NA 0% NA NA 0% NA NA 0% NA NA
4 0% NA NA 0% NA NA 0% NA NA 0% NA NA
5 0% NA NA 0% NA NA 0% NA NA 0% NA NA
6 100% 0.011 437.0 65% 5.862 453.4 100% 0.111 366.3 100% 0.028 369.3
7 0% NA NA 0% NA NA 0% NA NA 0% NA NA
8 100% 0.003 546.1 85% 0.446 551.6 100% 0.065 474.5 100% 0.008 463.4
9 100% 0.003 407.9 80% 1.998 457.5 100% 0.069 366.0 100% 0.015 367.8
10 100% 0.003 538.6 65% 8.403 556.7 100% 0.093 468.6 100% 0.010 463.9
11 100% 0.003 501.3 85% 0.373 461.2 100% 0.055 389.6 100% 0.025 388.1
12 100% 0.003 468.3 100% 1.005 457.1 100% 0.057 355.3 100% 0.018 352.7
13 100% 0.018 508.0 55% 4.881 485.2 100% 0.098 415.2 100% 0.050 419.7
14 100% 0.003 540.9 85% 1.090 556.8 100% 0.048 496.3 100% 0.014 491.6
15 100% 0.005 503.6 60% 2.879 470.4 100% 0.070 368.0 100% 0.030 380.0
16 100% 0.003 535.4 85% 1.583 584.8 100% 0.055 442.1 100% 0.025 4423
17 0% NA NA 0% NA NA 0% NA NA 0% NA NA
18 100% 0.009 464.1 85% 6.613 458.6 100% 0.061 393.4 100% 0.030 395.9
19 100% 0.003 504.9 75% 1.497 500.9 100% 0.078 422.8 100% 0.020 425.8
20 100% 0.003 549.5 30% 9.182 541.7 100% 0.181 436.0 100% 0.017 429.6
2) The RMA and the SA can find valid mappings on few and 30 = 30) as [17] did. For benchmark graphs of logic
instances (3 out of 20), but the success rate approximates functions, we set logic density at 40%, a typical value as
to zero (5%). suggested in [16].
3) The MA has a success rate of 100% on most test We use a cutoff time of 10, 20, and 60 s for the
instances (19 out of 20). SA and the proposed MA when the logic function sizes are
4) The runtime of these algorithms is still acceptable, 16 x 16, 24 x 24, and 48 x 48. We attempt to map the logic
except the runtime of the RMA. functions to 20 random generated 16 x 16, 24 x 24, and
5) Compared with the SA, the path delay is significantly 52 x 52 crossbar architectures. Since the RMA is a recursive
reduced by the MA. algorithm, we use a four times cutoff time, 40, 80, and 240 s.
For the 3-bit adder, the above simulation results The HMA uses greedy pin assignment and incomplete graph

(Tables I-III) reveal that the HMA is a good choice for
defect tolerance when the defect density is relatively low
(10% or 20%). The RMA and the SA work well only in
the case of low defect density (10%), and the RMA is very
time-consuming as the defect density increases (30%). The
MA is effective and efficient in all cases, and nearly 100%
success rate can be achieved. Beside, compared with the SA,
the MA can provide better optimizations on path delay.

C. Random Benchmark Instances

As can be seen from the above simulations, given fixed
crossbar size and defect density, the results of the same algo-
rithm are quite different on different crossbar architectures.
This is because their defect patterns are different. In addition,
this problem also exists for logic function that even if both the
size and the logic density are fixed, the difficult of mapping
different logic blocks is quite different due to the different
logic patterns. To provide a sound and fair evaluation and
comparison of different algorithms, a large set of benchmark
graphs for logic functions and crossbar architectures are gen-
erated randomly as previous works did [13], [16]. For bench-
mark graphs of crossbar architectures, we set stuck-at-open
defect density at 10% and stuck-at-close defect density defect
density at 0.1%. Delay variations of the crosspoints (weights)
are generated by using a Gaussian distribution (u 50

construction strategies, so it is always the fastest one.
All the algorithms are run independently for 20 times on each
test instance. Tables IV-VI record the simulation results of
different algorithms including the following.

1) Psucc: The success rate of the algorithm, i.e., the

fraction of the 20 runs that found a valid mapping.

2) AvgT: The average runtime (in seconds) of the algorithm

if it finds valid mappings in 20 runs.

3) AvgD: The average path delay (Delayy) of the

mapping if the algorithm finds valid mappings in
20 runs.

It is notable that the HMA is a deterministic algorithm, so
the same result will be obtained after being run multiple times.
Besides, the HMA and the RMA are proposed only for defect
tolerance, so they cannot provide mappings with optimized
path delay.

We also perform statistical tests for the runtimes and path
delays of paired evolutionary algorithms (EAs), the SA versus
the MA, on each single benchmark instance. In particular, a
two-tailed 7-test is conducted with a null hypothesis stating
that there is no difference between the two algorithms in
comparison. The null hypothesis is rejected if the p-value is
smaller than the significance level a = 0.05. The runtime (or
the path delay) of the algorithm, that is, statistically shorter
than the other EA, will be highlighted in bold in tables.

YUAN et al.: D/VTLM IN NANOCROSSBAR USING BIPARTITE MATCHING AND MA

2823

TABLE V
EXPERIMENTAL RESULTS OF THE HMA [14], THE RMA [11], THE SA [16], AND THE MA ON RANDOM BENCHMARKS OF SIZE 24 x 24
No HMA [14] RMA [11] SA [16] MA
" | Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD
1 100% 0.008 851.1 15% 14.624 782.7 100% 0.343 661.5 100% 0.078 657.8
2 0% NA NA 0% NA NA 0% NA NA 0% NA NA
3 0% NA NA 0% NA NA 0% NA NA 0% NA NA
4 0% NA NA 0% NA NA 0% NA NA 0% NA NA
5 100% 0.038 631.6 35% 7.047 676.3 100% 0.184 545.6 100% 0.102 562.9
6 0% NA NA 10% 6.042 782.1 100% 0.679 651.3 100% 0.134 663.1
7 0% NA NA 0% NA NA 0% NA NA 0% NA NA
8 100% 0.006 705.7 15% 20.801 746.9 100% 0.335 596.6 100% 0.032 593.9
9 0% NA NA 30% 9.661 794.4 100% 0.346 652.3 100% 0.039 647.5
10 100% 0.006 774.2 30% 4.273 797.8 100% 0.178 685.9 100% 0.030 683.2
11 0% NA NA 0% NA NA 0% NA NA 0% NA NA
12 0% NA NA 0% NA NA 100% 0.953 713.3 100% 0.289 710.3
13 0% NA NA 0% NA NA 0% NA NA 0% NA NA
14 0% NA NA 0% NA NA 0% NA NA 0% NA NA
15 100% 0.032 722.9 10% 0.544 688.9 100% 0.314 600.1 100% 0.081 604.8
16 100% 0.014 775.6 10% 2.598 729.4 100% 0.425 644.3 100% 0.061 605.3
17 0% NA NA 0% NA NA 0% NA NA 0% NA NA
18 0% NA NA 10% 17.498 724.2 100% 0.865 591.4 100% 0.551 599.4
19 100% 0.006 768.1 45% 2.702 719.0 100% 0.215 630.5 100% 0.034 627.9
20 0% NA NA 0% NA NA 0% NA NA 0% NA NA
TABLE VI
EXPERIMENTAL RESULTS OF THE HMA [14], THE RMA [11], THE SA [16], AND THE MA ON RANDOM BENCHMARKS OF SIZE 48 x 48
No HMA [14] RMA [11] SA[16] MA
" | Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD Psucc AvgT AvgD

1 0% NA NA 0% NA NA 5% 54.000 | 1195.6 100% 12.721 | 1176.2
2 0% NA NA 0% NA NA 0% NA NA 45% 42.553 | 1316.2
3 0% NA NA 0% NA NA 5% 24.645 | 1361.1 100% 4.673 1268.5
4 0% NA NA 0% NA NA 10% 27.357 | 12829 100% 10.999 | 1277.7
5 0% NA NA 0% NA NA 0% NA NA 85% 36.701 | 12354
6 0% NA NA 0% NA NA 0% NA NA 65% 35.771 | 1348.8
7 100% 0.067 1254.5 0% NA NA 85% 20.730 | 1153.5 100% 3.525 1137.5
8 100% 0.027 1384.2 0% NA NA 25% 30.223 | 1286.1 100% 6.011 1250.1
9 100% 0.428 1429.0 0% NA NA 45% 18.443 | 1221.6 100% 5.535 1163.1
10 0% NA NA 0% NA NA 25% 33426 | 12294 100% 7.076 1199.3
11 0% NA NA 0% NA NA 0% NA NA 90% 34.249 | 1345.7
12 0% NA NA 0% NA NA 0% NA NA 25% 54.531 | 1245.2
13 0% NA NA 0% NA NA 25% 47.230 | 1259.4 95% 27.234 | 1290.6
14 0% NA NA 0% NA NA 20% 34.672 | 1159.7 100% 5.800 1129.2
15 100% 0.230 1445.5 0% NA NA 25% 37.365 | 1377.8 100% 5.608 1279.6
16 0% NA NA 0% NA NA 20% 36.164 | 1178.6 100% 17.195 | 1162.4
17 100% 0.119 1291.8 0% NA NA 75% 12.084 | 1158.1 100% 0.900 1157.3
18 0% NA NA 0% NA NA 0% NA NA 95% 28.663 | 1265.5
19 100% 0.260 1317.0 0% NA NA 95% 17.003 | 1173.0 100% 2.133 1166.2

Table IV shows the results when we map 16 x 16 logic
functions to 16 x 16 crossbars. It can be seen that the following

holds.

1y

2)

3)

All the algorithms can find valid mapping on
15 test instances, and the HA, the SA, and the
MA have a success rate of 100% on these test
instances, while the RMA has relatively low success
rate.

The runtime of these algorithms is acceptable, although
the runtime of the RMA is several orders of magnitude
of the other algorithms. It is evident that the MA is much
faster than the SA.

There is no obvious difference between the SA and the
MA from the viewpoint of path optimization.

Table V shows the results when we map 24 x 24 logic
functions to 24 x 24 crossbars. It can be seen that the following

holds.

Y

2)

3)

The HA has a success rate of 100% on several test
instances (7 out of 20), while the SA and the MA have
a success rate of 100% on half of the test instances
(11 out of 20).

Although the RMA can find valid mapping on half of
the test instances (10 out of 20), the success rate is very
low (<40%).

The runtime of these algorithms is acceptable, although
the runtime of the RMA is several orders of magnitude
of the other algorithms. It is evident that the MA is much
faster than the SA.

2824

4) There is no obvious difference between the SA and the
MA from the viewpoint of path optimization.

As can be seen from Tables IV and V, all the algorithms
fail on some test instances. One possible reason is that there
is no valid solution at all. Another possible reason is that
the granted runtime of the RMA, the SA, and the MA is not
long enough to fully complete the search. Therefore, we can
check it by using the enumeration method or grant a much
longer runtime to the algorithms. Since it is not the main
concern in this paper, the simulations are omitted to save
space.

Table VI shows the results when we map 48 x 48 logic
functions to 52 x 52 crossbars. It can be seen that the following
holds.

1) The HA has a success rate of 100% on several test

instances (6 out of 20).

2) The RMA fails on all the test instances, although granted
a very long runtime (240 s).

3) The SA can find valid mappings on more than half of the
test instances (14 out of 20), but it is unable to achieve
a high success rate.

4) The MA has a success rate of 100% on more than
half of the test instances (13 out of 20), and high
success rate on other test instances (excluding No. 2
and No. 12).

5) Compared with the SA, the path delay is significantly
reduced by the MA on most test instances.

We tried to map 48 x 48 logic functions to 48 x 48
crossbars, but all the algorithms failed on all test instances.
As pointed in [35], given fixed defect density, the density of
valid mappings increases with the crossbar size, so we consider
a slightly larger size here, 52 x 52.

For random benchmarks, the above simulation results
(Tables IV-VI) reveal that the HMA is a good choice for
defect tolerance when the problem scale is relatively low
(16 x 16 or 24 x 24). The RMA works only in the case of
small-scale problem (16 x 16), and the RMA does not work on
large-scale problem (48 x48) even granted a very long runtime.
The SA works well on the defect and variation tolerance when
the problem scale is relatively low (16 x 16 or 24 x 24). The
MA is the best, and nearly 100% success rate can be achieved
on most test instances. Beside, compared with the SA, the MA
is much faster and can provide better optimizations on path
delay on large-scale problems (48 x 48).

It is very difficult to get a high success rate on the same
test instances. We think that the reason is twofold. The first
is the high computational complexity that the problem is
NP-complete. In this case, we can do multiple searches to run
the proposed algorithm more than one time, since the algo-
rithm is a stochastic search in nature (rather than deterministic
search), it will increase the chance to find a valid mapping.
As shown in Fig. 5, the success rate increases significantly
with the increase in the number of runs. On the other hand,
it is possible that there is no valid mapping of the instance
at all, so that we cannot find a valid mapping even using
the enumeration method. In this case, we can use a larger
crossbar to implement the function, or use multiple crossbars
to partition the function.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016

o
3

o
o

Mapping Success Rate
o
(]

I
~
T

0.3 —»—Benchmark No. 2 |
—&—Benchmark No. 6
L Benchmark No. 12
02l . L
12 5 0 20

1
Number of Runs

Fig. 5. Mapping success rate versus the number of runs on three test instances
of size 48 x 48 (No. 2, No. 6, and No. 12 from Table VI).

TABLE VII

EXPERIMENTAL RESULTS OF THE GA AND THE MA ON
RANDOM BENCHMARKS OF SIZE 48 x 48

No. GA MA
Psucc AvgT AvgD Psucc AvgT AvgD
1 10% 30.744 | 12543 100% | 12.721 | 1176.2
2 0% NA NA 45% 42.553 | 1316.2
3 65% 26.770 | 1408.7 | 100% 4.673 | 1268.5
4 55% 37378 | 13614 | 100% | 10.999 | 1277.7
5 0% NA NA 85% 36.701 | 1235.4
6 5% 23.607 | 1375.9 65% 35.771 | 1348.8
7 90% 15.195 | 1198.7 | 100% 3.525 | 11375
8 55% 20.864 | 13154 | 100% 6.011 1250.1
9 70% 18.963 | 1248.9 | 100% 5.535 | 1163.1
10 85% 26.319 | 12469 | 100% 7.076 | 1199.3
11 0% NA NA 90% 34.249 | 1345.7
12 0% NA NA 25% 54.531 | 12452
13 5% 43.442 | 1323.6 95% 27.234 | 1290.6
14 35% 29.310 | 1179.6 | 100% 5.800 | 1129.2
15 45% 23.403 | 1359.5 100% 5.608 | 1279.6
16 10% 43.790 | 1211.0 | 100% | 17.195 | 1162.4
17 100% 0.901 1168.7 | 100% 0.900 | 1157.3
18 0% NA NA 95% 28.663 | 1265.5
19 100% 2.771 1188.3 100% 2.133 | 1166.2
20 40% 17.185 | 1181.5 100% 9.442 | 1147.6

D. Effectiveness of the Defect/Variation-Aware Local Search

In the proposed MA, the D/VALS operator is proposed to
utilize the domain knowledge, so that the MA is expected to
have the potential to search the solution space more efficiently.
A very natural question is whether the proposed D/VALS
operator has any positive contribution to the performance of
the algorithm. To answer this question, we can remove it from
the algorithm, while keeping all the other parts unchanged.
Therefore, another evolutionary algorithm is added to the
comparison, which is a GA following the flow of the MA, but
without the D/VALS operator. The parameters of the GA are
set as the same as the MA.

Table VII shows the results when we map 48 x 48 logic
functions to 52 x 52 crossbars. It can be seen clearly that the
incorporation of the D/VALS operator results in significantly
enhanced results on all test instances. This is consistent with
other results that demonstrated the advantage of using domain
knowledge in evolutionary search [36]. Compared with the
GA, Psucc, AvgT, and AvgD of the MA are improved a lot,

YUAN et al.: D/VTLM IN NANOCROSSBAR USING BIPARTITE MATCHING AND MA

T T — T T T
| |
| |
| | 2.2
GAF | | —_— 1
| |
| |
- ‘ ‘ 4
| |
| |
| | 2.65
SAF | | —_————— 1
| |
| |
Lo |]
| |
| |
| 1 |
MAF ——e— 1
| |
| |
| L |- L L L
0.5 1 1.5 2 25 3 3.5

Fig. 6. Result of the Freidman test for comparing the performance of the
EAs on 20 random benchmarks of size 48 x 48. The dots indicate the average
ranks, the bars indicate the critical difference with the Bonferroni—Dunn test at
significance level 0.05, and compared algorithms having nonoverlapped bars
are significantly different.

even on the instances that are very difficult for the GA. The
comparison between the GA and the MA demonstrates the
advantages of introducing the D/VALS operator.

E. Statistical Comparisons Over Multiple Benchmarks

In Sections V. B-D, we have shown the performance of
the algorithms (the SA, the GA, and the MA) on each inde-
pendent benchmark instance. In order to statistically compare
these algorithms based on multiple benchmark instances, we
perform Freidman test [37], which is based on the ranks
of compared algorithms. Freidman test in conjunction with
Bonferroni-Dunn test [38] is used as post-hoc tests when
all estimators are compared with the control estimator. The
performance of pairwise comparison is significantly different
if the corresponding average ranks differ by at least the critical
difference

CD =¢qavj(j +1)/6T (M

where j is the number of algorithms (j = 3), T is the number
of benchmark instances (7T = 20) for a given problem scale,
and critical values g, can be found in [39]. For example,
when j = 3, goos = 2.241, where the subscript 0.05 is the
significance level.

We rank the algorithms on Psucc, and record the ranking
of each algorithm as 1, 2, and 3. Average ranks are assigned
in the case of ties. The average rank of a single algorithm is
obtained by averaging over all of data sets.

Fig. 6 shows the Friedman test results of the algorithms
on large-scale problems. Since we employ the significance
level 0.05, the critical difference is CD = 0.71 with j = 3
and T = 20. It can be seen that the differences of the MA
versus the SA and the MA versus the GA are greater than the
critical difference, so the differences are significant, which
means the MA is significantly better than the SA and the GA
in these cases.

VI. CONCLUSION

As pointed in [6], although the dominant benefit of nano-
electronics is the enormous integration levels they may be able
to achieve, one of the challenges for nanoelectronics is whether

2825

nanoscale devices can be reliably assembled into architec-
tures. Some small-scale successes have been demonstrated,
and the most promising architectures to date are crossbar-
based [3], [5]. Reliability is a real challenge for nanoelec-
tronics. It seems evident that the manufacturing techniques
may never be able to produce perfect chips, so fault tolerance
will be a key to the success of nanoelectronics. Another
aspect of nanoelectronics that is quite different from current
technologies is the electronic design automation (EDA) flow.
The challenge is to deploy a circuit on a nanoelectronic chip
when each chip is unique.

This paper contributes to EDA methods for the relia-
bility design of nanocrossbar architectures. By introducing
MMW-MBM, a new framework for solving the D/VTLM
problem is proposed. MMW-MBM is a new matching problem
that is defined here for the first time. In order to obtain an
MMW-MBM solution efficiently, a heuristic method is pre-
sented. Furthermore, a new MA is proposed to implement the
framework, in which a novel local search operator, D/VALS,
is designed to make good use of the domain knowledge
extracted from the problems. The performance of the proposed
MA was evaluated on a 3-bit adder and a large set of random
benchmarks. Our experimental results show that the D/VALS
operator can help the algorithm to find near optimal solutions
with a higher success rate and low computational resources.
Compared with the state-of-the-art algorithms, the proposed
MA algorithm has the advantage of getting a good balance
between effectiveness and efficiency on various test instances.

REFERENCES

[11 G. Bourianoff, J. E. Brewer, R. Cavin, J. A. Hutchby, and
V. Zhirnov, “Boolean logic and alternative information-processing
devices,” Computer, vol. 41, no. 5, pp. 38—46, May 2008.

[2] R. Cavin, J. A. Hutchby, V. Zhirnov, J. E. Brewer, and G. Bourianoff,
“Emerging research architectures,” Computer, vol. 41, no. 5, pp. 33-37,
May 2008.

[3] H. Yan et al., “Programmable nanowire circuits for nanoprocessors,”

Nature, vol. 470, pp. 240-244, Feb. 2011.

W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nature

Mater., vol. 6, no. 11, pp. 841-850, 2007.

[5] Y. Chen er al, “Nanoscale molecular-switch crossbar circuits,”’

Nanotechnology, vol. 14, no. 4, pp. 462-468, 2003.

M. Haselman and S. Hauck, “The future of integrated circuits: A survey

of nanoelectronics,” Proc. IEEE, vol. 98, no. 1, pp. 11-38, Jan. 2010.

S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency:

New design paradigm for the nanoscale era,” Proc. IEEE, vol. 98, no. 10,

pp. 1718-1751, Oct. 2010.

J. Zhang, N. Patil, A. Hazeghi, and S. Mitra, “Carbon nanotube circuits

in the presence of carbon nanotube density variations,” in Proc. 46th

ACM/IEEE Design Autom. Conf., Jul. 2009, pp. 71-76.

[9] S. Xiong and J. Bokor, “Sensitivity of double-gate and FinFET devices

to process variations,” IEEE Trans. Electron Devices, vol. 50, no. 11,

pp- 2255-2261, Nov. 2003.

M. S. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness. New York, NY, USA: Freeman, 1979.

W. Rao, A. Orailoglu, and R. Karri, “Logic mapping in crossbar-based

nanoarchitectures,” IEEE Des. Test Comput., vol. 26, no. 1, pp. 68-76,

Jan./Feb. 2009.

A. DeHon and H. Naeimi, “Seven strategies for tolerating highly

defective fabrication,” [EEE Des. Test Comput., vol. 22, no. 4,

pp- 306-315, Jul./Aug. 2005.

Y. Yellambalase and M. Choi, “Cost-driven repair optimization of

reconfigurable nanowire crossbar systems with clustered defects,” J. Syst.

Archit., vol. 54, no. 8, pp. 729-741, Aug. 2008.

M. O. Simsir, S. Cadambi, F. Ivan¢i¢, M. Roetteler, and N. K. Jha,

“A hybrid nano-CMOS architecture for defect and fault tolerance,” ACM

J. Emerg. Technol. Comput. Syst., vol. 5, no. 3, Aug. 2009, Art. no. 14.

[4

=

[6

)

[7

—

[8

—_

[10]

(1]

[12]

[13]

[14]

2826

[15] S. Goren, H. F. Ugurdag, and O. Palaz, “Defect-aware nanocrossbar
logic mapping through matrix canonization using two-dimensional radix
sort,” ACM J. Emerg. Technol. Comput. Syst., vol. 7, no. 3, Aug. 2011,
Art. no. 12.

C. Tunc and M. B. Tahoori, “Variation tolerant logic mapping for
crossbar array nano architectures,” in Proc. 15th Asia South Pacific
Design Autom. Conf., Jan. 2010, pp. 855-860.

M. Zamani, H. Mirzaei, and M. B. Tahoori, “ILP formulations for
variation/defect-tolerant logic mapping on crossbar nano-architectures,”
ACM J. Emerg. Technol. Comput. Syst., vol. 9, no. 3, Sep. 2013,
Art. no. 21.

B. Yuan, X. Yao, B. Li, and T. Weise, “A new memetic algorithm with
fitness approximation for the defect-tolerant logic mapping in crossbar-
based nanoarchitectures,” IEEE Trans. Evol. Comput., vol. 18, no. 6,
pp. 846-859, Dec. 2014.

N. Krasnogor and J. Smith, “A tutorial for competent memetic
algorithms: Model, taxonomy, and design issues,” IEEE Trans. Evol.
Comput., vol. 9, no. 5, pp. 474-488, Oct. 2005.

X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey
on memetic computation,” IEEE Trans. Evol. Comput., vol. 15, no. 5,
pp. 591-607, Oct. 2011.

F. Zhong, B. Yuan, and B. Li, “Hybridization of NSGA-II with greedy
re-assignment for variation tolerant logic mapping on nano-scale cross-
bar architectures,” in Proc. Genet. Evol. Comput. Conf. Companion,
Jul. 2014, pp. 97-98.

A. DeHon, “Nanowire-based programmable architectures,” ACM
J. Emerg. Technol. Comput. Syst., vol. 1, no. 2, pp. 109-162, Jul. 2005.
T. Hogg and G. S. Snider, “Defect-tolerant adder circuits with nanoscale
crossbars,” IEEE Trans. Nanotechnol., vol. 5, no. 2, pp. 97-100,
Mar. 2006.

T. Hogg and G. S. Snider, “Defect-tolerant logic with nanoscale crossbar
circuits,” J. Electron. Test., vol. 23, nos. 2-3, pp. 117-129, 2007.

J. Dai, L. Wang, and F. Jain, “Analysis of defect tolerance in molecular
crossbar electronics,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 17, no. 4, pp. 529-540, Apr. 2009.

M. Crocker, X. S. Hu, and M. Niemier, “Defects and faults in QCA-
based PLAs,” ACM J. Emerg. Technol. Comput. Syst., vol. 5, no. 2,
Jul. 2009, Art. no. 8.

M. B. Tahoori, “Application-independent defect tolerance of reconfig-
urable nanoarchitectures,” ACM J. Emerg. Technol. Comput. Syst., vol. 2,
no. 3, pp. 197-218, Jul. 2006.

B. Yuan and B. Li, “A fast extraction algorithm for defect-free subcross-
bar in nanoelectronic crossbar,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 10, no. 3, Apr. 2014, Art. no. 25.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2001.

P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Trans. Evol.
Comput., vol. 4, no. 4, pp. 337-352, Nov. 2000.

S. Salcedo-Sanz and X. Yao, “A hybrid Hopfield network-genetic algo-
rithm approach for the terminal assignment problem,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 34, no. 6, pp. 2343-2353, Dec. 2004.
S. Salcedo-Sanz, Y. Xu, and X. Yao, “Hybrid meta-heuristics algorithms
for task assignment in heterogeneous computing systems,” Comput.
Oper. Res., vol. 33, no. 3, pp. 820-835, 2006.

H. C. W. Lau, T. M. Chan, and W. T. Tsui, “Item-location assign-
ment using fuzzy logic guided genetic algorithms,” IEEE Trans. Evol.
Comput., vol. 12, no. 6, pp. 765-780, Dec. 2008.

C. E. T. Soares, A. C. de Mesquita Filho, and A. Petraglia, “Optimizing
capacitance ratio assignment for low-sensitivity SC filter implemen-
tation,” IEEE Trans. Evol. Comput., vol. 14, no. 3, pp. 375-380,
Jun. 2010.

Y. Su and W. Rao, “Runtime analysis for defect-tolerant logic mapping
on nanoscale crossbar architectures,” in Proc. IEEE/ACM Int. Symp.
Nanosc. Archit., Jul. 2009, pp. 75-78.

J. He, X. Yao, and J. Li, “A comparative study of three evolutionary
algorithms incorporating different amounts of domain knowledge for
node covering problem,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 35, no. 2, pp. 266-271, May 2005.

R. L. Iman and J. M. Davenport, “Approximations of the critical region
of the fbietkan statistic,” Commun. Statist.-Theory Methods, vol. 9, no. 6,
pp. 571-595, 1980.

O. J. Dunn, “Multiple comparisons among means,” J. Amer. Statist.
Assoc., vol. 56, no. 293, pp. 52-64, 1961.

J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2016

Bo Yuan (M’15) received the B.Sc. and Ph.D.
degrees in electronic information science and tech-
nology from the University of Science and Technol-
ogy of China (USTC), Hefei, China, in 2009 and
2014, respectively.

A He is currently a Post-Doctoral Fellow with the

- USTC-Birmingham Joint Research Institute in Intel-
- ligent Computation and Its Applications, School
of Computer Science and Technology, USTC. His
current research interests include evolutionary com-
putation, electronic design automation, and machine

N)

learning.

Bin Li (M’07) received the B.Sc. degree from
the Hefei University of Technology, Hefei, China,
in 1992, the M.Sc. degree from the Institute of
Plasma Physics, Chinese Academy of Sciences,
Hefei, in 1995, and the Ph.D. degree from the Uni-
versity of Science and Technology of China (USTC),
Hefei, in 2001.

He is currently a Professor with the School of
Information Science and Technology, USTC. He has
authored or co-authored over 40 refereed publica-
tions. His current research interests include evolu-
tionary computation, memetic algorithms, pattern recognition, and real-world
applications.

Dr. Li is the Founding Chair of the IEEE Computational Intelligence Society
Hefei Chapter, a Counselor of the IEEE USTC Student Branch, a Senior
Member of the Chinese Institute of Electronics (CIE), and a member of the
Technical Committee of the Electronic Circuits and Systems Section of CIE.

Huanhuan Chen (SM’15) received the B.Sc. degree
from the University of Science and Technology of
China (USTC), Hefei, China, in 2004 and the Ph.D.
degree in computer science from the University of
Birmingham, Birmingham, U.K., in 2008.

He is currently a Full Professor with the UBRI,
School of Computer Science and Technology,
USTC. His current research interests include statis-
tical machine learning, data mining, fault diagnosis,
and evolutionary computation.

Dr. Chen received the 2015 International Neural
Network Society (INNS) Young Investigator Award, the 2012 IEEE Compu-
tational Intelligence Society Outstanding Ph.D. Dissertation Award (the only
winner), and the 2009 CPHC/British Computer Society Distinguished Disser-
tations Award (the runner up). His work Probabilistic Classification Vector
Machines on Bayesian machine learning received the IEEE TRANSACTIONS
ON NEURAL NETWORKS Outstanding Paper Award (bestowed in 2011 and
only one paper in 2009). He is currently the Associate Editor of the IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.

Xin Yao (F’03) is currently a Chair (Professor)
of Computer Science and the Director of the
Centre of Excellence for Research in Computa-
tional Intelligence and Applications with the Uni-
versity of Birmingham, Birmingham, U.K. He has
been invited to give more than 70 keynote and
plenary speeches at international conferences. He
has authored over 400 refereed publications in
international journals and conferences. His current
research interests include evolutionary computation
) i and ensemble learning.

Prof. Yao received the 2001 IEEE Donald G. Fink Prize Paper Award,
the 2010 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION Out-
standing Paper Award, the 2010 BT Gordon Radley Award for Best Author
of Innovation (Finalist), the 2011 IEEE TRANSACTIONS ON NEURAL NET-
WORKS Outstanding Paper Award, and many other best paper awards. He
also received the Prestigious Royal Society Wolfson Research Merit Award
in 2012 and the IEEE Computational Intelligence Society (CIS) Evolutionary
Computation Pioneer Award in 2013. He was the Editor-in-Chief of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION from 2003 to 2008. He
serves as the President of the IEEE CIS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

