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Forecasting the variability of dwellings and residential land is important for estimating the future potential of envi-
ronmental technologies. This paper presents an innovative method of converting average residential density into a
set of one-hectare 3D tiles to represent the dwelling stock. These generic tiles include residential land as well as the
dwelling characteristics. The method was based on a detailed analysis of the English House Condition Survey data
and density was calculated as the inverse of the plot area per dwelling. This found that when disaggregated by
age band, urbanmorphology and area type, the frequency distribution of plot density per dwelling type can be rep-
resented by the gamma distribution. The shape parameter revealed interesting characteristics about the dwelling
stock and how this has changed over time. It showed a consistent trend that older dwellings have greater variability
in plot density than newer dwellings, and also that apartments and detached dwellings have greater variability in
plot density than terraced and semi-detached dwellings. Once calibrated, the shape parameter of the gamma distri-
butionwas used to convert the average density per housing type into a frequency distribution of plot density. These
were then approximated by systematically selecting a set of generic tiles. These tiles are particularly useful as ame-
dium for multidisciplinary research on decentralized environmental technologies or climate adaptation, which re-
quires this understanding of the variability of dwellings, occupancies and urban space. It thereby links the
socioeconomic modeling of city regions with the physical modeling of dwellings and associated infrastructure
across the spatial scales. The tiles method has been validated by comparing results against English regional housing
survey data and dwelling footprint area data. The next stepwould be to explore the possibility of generating generic
residential area types and adapt the method to other countries that have similar housing survey data.

© 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

There has been an increasing emphasis on understanding the build-
ing stock and how to reduce the consumption of energy and production
of waste (Kohler & Hassler, 2002). Much of this research has focused on
the buildings themselves and predominantly their energy consumption
(Kavgic et al., 2010). This has normally used typologies that correspond
with the classification of national housing stock data such as dwelling
types, age bands and fabric. Examples include building energy models
(Firth, Lomas, & Wright, 2010; Cheng & Steemers, 2011) and studies
of the building stock and energy efficiency such as McKenna, Merkel,
Fehrenbach, Mehne, and Fichtner (2013); Ballarini, Corgnati, and
Corrado (2014); Filogamo, Peri, Rizzo, and Giaccone (2014) and Mata,
Sasic Kalagasidis, and Johnsson (2014).

However, there is increasing recognition that decentralized supply
technologies are also important for helping to meet government envi-
ronmental targets but uncertainty about whether properties have the
. This is an open access article under
space required for installation has been identified as a barrier to imple-
mentation (DECC, 2012, Sept. 20th). For example, the dimensions of
gardens, roof space or cluster sizewill affect the feasibility of some tech-
nologies such as ground source heat pumps, rainwater harvesting and
recycling. Modeling tools have been developed to assess the potential
of environmental technologies (Hofierka & Kanuk, 2009; Girardin,
Marechal, Dubuis, Calame-Darbellay, & Favrat, 2010; Lukac, Zlaus,
Seme, Zalik, & Stumberger, 2013; Makropoulos, Natsis, Liu, Mittas, &
Butler, 2008; Robinson et al., 2007) but these detailed simulations for
relatively small areas require inputs on future urban form.

Planning policies, building regulations and incentive schemes are
applied at national or regional level and require a long time scale and
considerable investment to take effect. The outcome will depend on
urban density, occupancies and whether dwellings are as existing or
new build. Urban densities and occupancies will vary spatially within
a city region as a result of the socio-economic pressures that drive the
property market and shape urban form. Human factors are thought to
account for a substantial amount of the variability of energy use in
buildings. Yu, Fung, Haghighat, Yoshino, and Morofsky (2011) and
Pereira and Assis (2013) showed how the increases over time in house-
hold energy consumption are spatially correlated with socio economic
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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changes in income. A forecasting capability is therefore needed at re-
gional scale to test the longer term impacts and cost effectiveness.

Regional-scale land use-transport forecasting models can provide a
detailed top-down simulation of the supply and demand for land and
floor space at the building parcel scale (Abraham, Weidner, Gliebe,
Willison, & Hunt, 2005). This included GIS-based micro-scale modeling
offloor space types and rental values for landparcels,withfloor space cat-
egorized according to general building types. This reproduces the spatial
layout and overallfloor space but does not represent the size and variabil-
ity of buildings. This reliance on mapping limits the capability to forecast
the future urban form. In another example, a regional scale macro-model
was linked to anUrbanSimmodel (Waddell et al., 2003),which simulated
neighborhoods as 2.25 ha grid cells chosen from a set of 25 development
types further defined by a range of residential units and non-residential
floor space to create typical contiguous urban areas. These models aim
to represent the actual land parcels and this leads to difficulties matching
the data sources which makes the models very resource intensive to cre-
ate and operate over large areas within a macro-modeling framework.

Computer graphic simulation methods are available to study built‐
form and its potential for sustainable technologies (Meinel, Hecht, &
Herold, 2009; Vanegas et al., 2010; Wiginton, Nguyen, & Pearce, 2010;
Jacubiec & Reinhart, 2013). They rely on location specific inputs of
road networks and user specified attributes of land parcels and building
shapes usingmapping and aerial imaging. The outputs can be similar in
complexity to the actual physical built environment, thus limiting the
practical size of study area. An alternative is to use a theoretical
simulation of built form. Some are based onmetaphors for the urbande-
velopment process such as (Crompton, 2012) who compared the vari-
ability of buildings to the variability of Lego™ pieces. Others such as
Tuhus-Dubrow and Krarti (2010) have used optimization methods to
estimate the most energy efficient building form. These theoretical ap-
proaches are not subject to the livability and commercial constraints
that shape actual dimensions and are not empirically validated. Neither
the graphic or theoretical simulation methods have the capability to
forecast urban densities and occupancies.

Themost promising approach for linking across the spatial scales is to
use a statistical method of representing the variability of land per dwell-
ing. Zhou and Kockelman (2008) recognized the advantages of this ap-
proach but were unable to fit a statistical function to their single family
residential parcel size data. This is possibly because they were studying
only one city and using GIS data instead of housing survey data.

The following sections of this paper present a unique method of es-
timating the variability of dwellings and residential land from themean
residential density. The parametric variability of dwellings and associat-
ed land is then represented by systematically selecting a set of discrete
one hectare 3D tiles. The final part of the paper validates this ‘tiles’
method and discusses how this enables the modeling of dwellings and
environmental technologies to be integratedwith a regional forecasting
model. This attains the important and previously difficult to achieve
objective of linking models across spatial scales.

It is expected that this paper will be of interest for spatial modeling
and urban simulation, particularly for forecasting the impacts of build-
ing scale interventions such as sustainable technologies and climate
change mitigation.

2. Method

2.1. Research context

This research was part of a project that tested spatial planning poli-
cies in combination with scenarios for decentralized sustainable tech-
nologies for London and its surrounding regions over a 30 year time
horizon. The aim was to explore how the density and clustering of
development would affect the potential of ‘green’ technologies for
buildings, energy, transport, water and waste. This required a regional
modeling framework with a forecasting capability.
2.2. Spatial interaction model

A regional Land Use Interaction and Social Accounting model (LUISA)
was developed to forecast the spatial allocation of industry, employment,
households and population. This was an aggregate static model based on
input–output socioeconomic accounting tables linked to random utility
discrete choice modeling of spatial allocation and travel behavior
(Echenique, Grinevich, Hargreaves, & Zachariadis, 2013). Rents arise
when there are constraints on the amount of production that can be
assigned to a location. In order to balance demand and supply, the pro-
duction prices and disutilities need to adjust, by generating rents. This
process is dealt with endogenously within the model, using an iterative
procedure. The model has bimodal accounting of monetary and non-
monetary disutility. The total monetary disutility includes the rents and
building construction costs, and the total non-monetary disutility in-
cludes qualitative aspects such as what consumers of land are willing to
tolerate in order to have a lower monetary rent, for example living in a
high rise building.

For practical purposes the case study area was divided into zones,
within which locations were assumed to be homogenous. Once con-
structed, the model was calibrated so that its outputs matched the
base year data on spatial production and consumption and prices per
zone. The regional economic and demographic projections, future land
availability and transport improvements are then input to the model
to test scenarios for the forecast year. The forecasts included households
and population per zone by socio-economic classification. The challenge
was to convert these aggregate outputs per zone into a realistic estimate
of the future dwelling stock and occupancies so that scenarios could be
tested for decentralized sustainable technologies. It was important that
this included the variability of land per dwelling because this affects the
potential for sustainable technologies.

2.3. Analysis of the English House Condition Survey data

The English House Condition Survey (EHCS) is a detailed source of
data on the English housing stock that includes both the building and
plot dimensions. The 2007 EHCS contained 16,194 sample dwellings
and the sampling takes into account the location and tenure. It com-
prises a household interview, a physical inspection and a market valua-
tion. The physical inspection provides detailed information about the
building dimensions and plot size, building fabric and service systems
of each sample dwelling. The plot is the private land that belongs to
the dwelling (generally referred to in the USA as the lot) or if the private
land belongs to a small number of dwellings the plot includes the pro-
portion attributed to the surveyed dwelling.

The variables used to categorize the dwellings can be found in
the survey guidance document (DCLG 2007) and further informa-
tion can be found on the Department for Communities and Local
Government website (DCLG 2013). The EHCS variables chosen to
categorize the dwellings for this analysis were the dwelling type,
urban morphology, area type, region, and age band, which are de-
scribed in Appendix A.

The EHCS datawas firstly prepared for the purposes of analysis by cal-
culating the plot area per dwelling based on the EHCS plot dimensions
(Fig. 1).

The plot area was estimated as:

ai ¼ W � F þ Bþ Rð Þ ð1Þ

where:

ai = plot area of a house or an apartment block i (m2)
W = plot width (m)
F = depth of land at the front (m)
B = depth of the building (m)
R = depth land at the rear (m).



Fig. 1. Plot dimensions from EHCS data used for calculating the plot density.
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The ‘plot density’ in dwellings per hectare was calculated as:

μ i ¼ u � 104
� �

=ai ð2Þ

μi = plot density of dwelling i
Fo
r a house
 u = 1

r an apartment
 u = number of apartments within the block
Fo
Fig. 2. Examples of frequency dis
Plot density μ per dwellingwas used as themetric instead of average
dwelling density because the paper analyzes the variability of individual
dwellings rather than neighborhoods. This plot density μ metric there-
fore gives a higher numerical value than the average residential area
density normally used by planners because it excludes publically acces-
sible areas and rights of way.

Each surveyed dwelling is allocated a grossing factor by the EHCS to
convert the survey sample to an estimate of the English housing stock.
The EHCS surveyed sample of dwellings was converted into an estimate
of the English dwelling stock, as follows:

Hi ¼ hi �wi ð3Þ

where:

hi = Dwelling i surveyed by EHCS
wi = EHCS grossing factor to convert the sample dwelling into the

dwelling stock
Hi = Number of dwelling equivalent to surveyed dwelling hi.
Hence:

Ai ¼ ai �wi ð4Þ

where:

Ai Total plot area of dwelling equivalent to surveyed dwelling hi.

The frequency distribution of the plot densities μi of dwellings Hi is
positively skewed and similar to the gamma distribution (as shown in
Fig. 2). However, there is some ‘lumpiness’ in the distribution. If the
tributions of plot density μ.



Table 1
Dwellings Hi represented by the selected sample compared to total English dwellings.

Dwelling type Dwellings represented in
the analysis

Total English
dwellings

Percentage

Detached 2,402,435 3,971,028 60%
Semi-detached 5,002,086 6,102,855 82%
Mid-terraced 1,628,060 2,184,612 75%
End-terraced 3,153,252 4,055,534 78%
Low density apartments 2,268,311 2,695,686 84%
High density apartments 189,821 317,697 60%
Bungalow 1,181,580 2,026,165 58%
Converted apartments 529,769 722,679 73%
Total dwellings 16,355,314 22,076,256 74%
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dwellings are disaggregated into houses and apartments then the distri-
butions have a broadly similar shape but with different mean and scale.
It was found that further disaggregation into different dwelling types,
area types and age band achieves density distributions that becomepro-
gressively smoother andmore distinct. This thereby increases the likeli-
hood of fitting a density distribution function to the empirical data.

The variables that affect density were identified by analyzing the
EHCS data using a generalized linear model (GLM). This estimated the
significance of the correlation between the dependent variable and
each independent variable whilst taking into account the variability of
the other independent variables. The chosen specification of the GLM
for this application used gamma regression with plot density μ as the
dependent variable. The EHCS variables used as predictors were dwell-
ing type, age band, area type, morphology and region. Further informa-
tion about this type of model can be found in Chapter 8 of McCullagh
and Nelder (1989).

This GLM analysis of the independent variables found that dwelling
type, age band, area type, and urban morphology were all significantly
related to the dependent variable of dwelling plot density. The region
variable showed a ‘north south divide’ and the three northern regions
(regions 1 to 3) had slightly higher densities than the rest of the country
(around 2 dwellings per hectare higher). A possible reason is that a
greater proportion of housing in the north was built for industrial
workers, but this hasn't been investigated further. The three northern
regions account for around one third of English housing and the differ-
ence in density is quite small so it was decided not to disaggregate the
data by regions in order to avoid further reducing the sample sizes for
analysis.

Importantly, the GLM analysis found no consistent trend in density
per dwelling type over time. In fact, the analysis shows that densities
have fluctuated with periods of lower than average density pre-1850
and from 1919 to 1980, and periods of higher than average density
from 1850 to 1918, possibly due to industrialization, and from 1981 to
2007 possibly due to planning constraints. Hence, although plot densi-
ties per dwelling type have fluctuated over time, there is no evidence
that a method derived from the analysis of existing housing stock can-
not be used to forecast the density distributions of future housing
stock. Overall residential densities have increased in England over this
long timescale due to urbanization but this has mainly been achieved
by having a greater proportion of apartments and terraced dwellings
per area type, rather than by an increase in density per dwelling type.

Based on the above findings, the next step of the analysis aggregated
the EHCS data into the possible combinations of age-band (9 bands),
morphology (4 types), and area type (6 types). Each combination was
regarded for this analysis as equivalent to an ‘aspatial development
type’ c and was analyzed per dwelling type d. Dwellings were regarded
as outliers and excluded if their plot density μi exceeded the upper quar-
tile plus 1.5 times the inter-quartile range, or was less than the lower
quartile minus the 1.5 times the inter-quartile range. The outliers
weremainly dwellingswith a plot size the same or smaller than its foot-
print, which may be due to it being part of a mixed-use building or of
unusual construction. Many of these combinations of dwelling type
and aspatial development type were either unusual or inconsistent
and so only had small/zero samples per dwelling type (such as apart-
ments in a rural area, or a rural area with urban morphology, etc.).
Those combinations with a remaining sample hdi of less than 24 dwell-
ings were excluded from the analysis. There were 108 remaining com-
binations of dwelling type and the aspatial development type for the
next step of fitting a density distribution function. Table 1 shows that
after applying thewi grossing factors, 74% of the total English dwellings
remained for analysis.

2.4. Fitting a probability distribution to the EHCS dwelling stock data

For each combination of dwelling type d and aspatial development
type c, the frequency distribution of the plot density μ was found to
have a similar shape to the gamma distribution for k N 1. The general
probability density function (PDF) of the gamma distribution is:

f μ; k; θð Þ ¼ 1

θkΓ kð Þ
μk−1 e− μ=θ for μ N 0 and k; θ N 0 ð5Þ

where:

μ ~ Γ(k, θ) ≡ Gamma (k, θ)
k = shape parameter
θ = scale parameter.

The cumulative distribution function (CDF) is:

F μjk; θð Þ ¼ γ k; μ=θð Þ
Γ kð Þ ð6Þ

where γ is the lower incomplete gamma function:

γ k; μ=θð Þ ¼
Z μ=θ

0
tk−1e−tdt: ð7Þ

The gamma distribution has the convenient mathematical property
that the mean μ equals the product of the two parameters that define
the distribution. Hence, the expected value of the theoretical mean
plot density μ is:

μ ¼ k � θ: ð8Þ

Subsequent investigation of the literature found that the gamma
distribution has beenwidely studied for its usefulness in curve fitting
to data of extreme events such as accidents, climatology, and hydrol-
ogy. For example, Ison, Feyerherm, and Dean (1971); and Husak,
Michaelsen, and Funk (2006) studied the differences in the shapes
of the gamma distributions fitted to empirical climate data to assess
whether locations have irregular or extreme events by comparing
the parameters k and θ as discussed in Wilks (1995).

An innovative feature of the ‘tiles method’ is that it uses the gamma
distribution from the opposite perspective to the above studies. It firstly
calibrates the shape parameter k using the EHCS data and then specifies

the gamma distribution from the calibrated shape parameter k̂ and
mean density x.

The shape parameter k is estimated using a maximum likelihood es-
timator for the gamma distribution (Thom, 1958). This includes the
sample statistic E which is the difference between the natural log of
the sample mean, and the mean of the logs of the data:

E ¼ ln μð Þ−1
n

Xn

i¼1
ln μ ið Þ ð9Þ



Fig. 3. Shape parameter k by age band for the main dwelling types.
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k ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4E=3

p
4E

: ð10Þ

For the plot density frequency distribution, the shape parameter k
can be conceptualized as the result of successive subdivisions of land
into plots. The shape parameter k represents the degree of similarity
between the plot sizes each time a plot sub-divides, whereas the
scale parameter θ represents the amount of subdivision that has
taken place. The smaller the shape parameter, the more positively
skewed the distribution and the larger the shape parameter, the
more similar it is to the normal distribution.

2.5. Kolmogorov–Smirnov (K–S) goodness of fit test

The estimated gamma distribution is compared against the empiri-
cal density distribution using the Kolmogorov–Smirnov (K–S) one-
sample goodness of fit test (Siegal & Castellan, 1988). The statistical
test needed to be more stringent than the standard K–S test because
the distribution parameters were estimated using the EHCS data and



Table 2

Summary of the calibrated shape parameter k̂ for different ages and types of dwelling.

Dwelling typea Estimate of shape parameter k̂

Pre-1945 1945–1974 1975–1990 Post–1990

Mid-terraced houses 6 8 10 11
End-terraced houses
Semi-detached houses

Detached houses 3 4 5 5.5
Bungalows
Low rise apartments
High rise apartments

a Converted apartments are not included because only 6 of the variable combinations
had large enough sample sizes, which is insufficient to reliably estimate the shape
parameter.

Fig. 4. a: Detached dwellings x ¼ 25 d

Fig. 4. b: Semi-detached dwellings x ¼ 2
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the same data was used to test the goodness of fit. A more stringent K–S
statistic was therefore used based on a version of the Lilliefors test using
critical values for this K–S statistic to assess goodness of fit of gamma
distributions that were originally published in Crutcher (1975) and
reproduced in Wilks (1995).

Both the K–S and Lilliefors tests utilize the following test statistic:

gn ¼ maxμ Fn μð Þ−F μð Þj j ð11Þ

where Fn(μ) is the empirical cumulative probability, which is esti-
mated as Fnðμ iÞ ¼ i

�
n for the i′th smallest data value in the sample

n of hi and F(μ) is the theoretical cumulative gamma distribution
function (CDF) evaluated at μi. Thus the K–S test statistic gn looks
for the largest difference, in absolute terms, between the empirical
and the fitted CDFs for the sample of size n.
ph; k̂ ¼ 5:5 (built since 1990s).

5 dph; k̂ ¼ 11 (built since 1990s).
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The null hypothesis is that the observed data are drawn from the
chosen theoretical distribution. If the discrepancy gn exceeds the critical
value then this is cause for rejection of the null hypothesis and implies
that the theoretical distribution is not doing an adequate job of model-
ing the empirical density distribution.

3. Results of fitting the gamma distribution to the data

3.1. Results of the K–S test

Appendix B summarizes for each combination of dwelling type and
independent variables the sample size, number of outliers, estimated
Fig. 5. Percentage of dwelling
gammadistribution parameters, and the significance of theK–S statistic.
This shows that the gamma distribution was a good fit for almost all of
the combinations and in most cases the null hypothesis could not be
rejected. Of the total 108fitted gammadistributions, the null hypothesis
could be rejected at the 20% level in 47 cases; (i.e., with only 80% confi-
dence that the samplewas not drawn from the fitted theoretical gamma
distribution) at the 10% level in 18 cases, and at the 5% level in 9 cases
and at the 1% level in 17 cases. Hence there were only 17 remaining
out of the 108 cases where there was 99% confidence that the dwellings
were not drawn from a gamma distribution and these were spread rel-
atively evenly across the dwelling types. It is surprising that the gamma
distribution fits the empirical data so well given that plot sizes vary
types per density band.



Fig. 6. Estimate of mean density per dwelling type from the average residential density.
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greatly between dwellings. This high success rate in fitting the gamma
distribution and its convenient mathematical properties made it a suit-
able basis for representing the distribution of residential plot densities.

3.2. The calibrated shape parameters of the gamma distribution

The shape parameters of the fitted gamma distributions from
Appendix B are plotted in Fig. 3 and show a clear relationship between
the shape parameter k and the age band of the dwelling: The older the
dwelling, the smaller the shape parameter. This indicates that newer
dwellings have a more uniform division of plot size whereas older
dwellings have a less equitable distribution of plot size.

The shape parameters for detached houses, bungalows and apart-
ments are approximately half the size of those for semi-detached and
terraced houses indicating that apartments and detached houses
have a greater variability in plot size for a givenmean density. Apart-
ments are often built in areas where space is constrained and can
vary greatly in density per plot, and similarly detached houses and
bungalows can have large variability in plot size, whereas plot sizes
for semi-detached and terraced houses tend to be more uniform.

Table 2 summarizes these calibrated shape parameters k̂ for the dif-
ferent dwelling types.

The analysis found no relationship between the shape parameter k
per dwelling type and either the area types or the morphologies. How-
ever, the aspatial neighborhood types with samples large enough for
analysis had a relatively narrow range of area types per dwelling type,
for example apartments were in urban areas, whereas detached dwell-
ings were in suburban and rural areas.

3.3. Estimating the gamma distribution from the mean density

For a given dwelling type and location, the mean density x is:

x ¼ H
A
: ð12Þ

It can be intuitively deduced that x is themode of the plot densities μ
(i.e., the maximum value of the probability density function of μ).

The mode of the gamma distribution has the following property if
k N 1:

x ¼ θ k−1ð Þ: ð13Þ

Alternatively, this can be shown by integration of the probability
density distribution f(μ; k, θ). The number of dwellings cancels out and
the denominator is the integral of the dwelling frequency distribution
divided by plot density μ, as shown below;

x ¼ H
A
¼

Z ∞

0
PDF μ; k; θð Þ

Z ∞

μ¼0

PDF μ; k; θð Þ
μ

¼ 1Z ∞

μ¼0

PDF μ; k; θð Þ
μ

¼ 1Z ∞

μ¼0

1

θkΓ kð Þ
μk−2 e− μ=θ

:

ð14Þ

And this results in Eq. (13) above
Hence:

θ ¼ x
k−1ð Þ : ð15Þ
Substituting Eq. (8) into Eq. (15) gives the followingnew convenient
relationship that will allow the mean plot density to be calculated from
the mean area density:

μ ¼ xþ θ: ð16Þ

Hence, the scale parameter θ can firstly be estimated from Eq. (15)
because x is forecast by an urbanmodel such as LUISA and the shape pa-

rameter k has been empirically calibrated as k̂ using the EHCS data.
Therefore μ can then be estimated from Eq. (16) and the theoretical
gamma distribution can be fully specified as a calibrated function of
plot density. Note that μ and x are different density metrics; x is the con-
ventionalmethod of dwellings divided by the sumof the residential plot
areas, whereasμ is themean value of the plot densities of the individual
dwellings.

3.4. Deriving the distribution of the plot area per dwelling type

The plot area per dwelling is:

a ¼ 1�
μ : ð17Þ

Hence from the PDF of the dwellings, Eq. (5), the area per dwelling
is:

f μj k; θð Þ ¼ 1

θkΓ kð Þ
μk−2 e− μ=θ for μ N 0; θ N 0; and k N 2: ð18Þ

The mean plot area ād per dwelling from Eq. (14) is:

ad ¼
Z ∞

μ¼0

1

θkΓ kð Þ
μk−2 e− μ=θ ¼ 1

k−1ð Þθ : ð19Þ

Hence, the PDF of the plot area per dwelling over the plot density
range μ is:

f μj k; θð Þ ¼ ad
ad

¼ k−1ð Þ
θk−1Γ kð Þ

μk−2 e− μ=θ for μ and θ N 0; and k N 2: ð20Þ



Fig. 7. Schematic illustration of the tiles.
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The following integration produces the CDF of plot area per dwell-
ing:

F μjk; θð Þ ¼
Z x¼μ

x¼0

k−1ð Þ
θk−1Γ kð Þ

xk−2 e− x=θ � d xð Þ

¼ μk−1e−μ=θ

θk−1
� γ k; μ=θð Þ

Γ kð Þ :

ð21Þ

It is interesting to compare this CDF of plot area (Eq. 21) with the
CDF of dwelling frequency (Eq. 5). Fig. 4a shows this comparison for de-
tached dwellings and Fig. 4b for semi-detached dwellings. Both are
shown for the same mean plot density x but these dwelling types differ

on their shape parameter k̂ (Table 2). The 20% lowest density detached
dwellings would occupy 36% of the plot area for detached dwellings
whereas the 20% lowest density semidetached dwellings would occupy

only 30% of the plot area. This illustrates how k̂can indicate the equity in

plot sizes per dwelling type. Those with a smaller k̂, such as detached
dwellings and apartments, have a less equitable division of plot sizes
than terraced and semi-detached dwellings.

4. Usingdiscrete tiles to represent the calibrated density distribution

The next stage was to develop a method of using the preceding cal-
ibrated functions to convert the forecasts of average density per zone of
an urban model, such as LUISA, into discrete representations of the
dwellings and plot sizes.

4.1. Disaggregating dwellings into dwelling types and densities

The EHCS dwelling types were aggregated into the minimum num-
ber of distinct types. These were detached, semi-detached, terraced
houses, purpose-built and converted flats/apartments (with bungalows
divided between detached and semi-detached houses). This was done
to reduce the number of tile types and amount of work involved in de-
signing and modeling the tiles.
4.1.1. Estimate the proportions of each dwelling type per zone
The first step estimated the percentage of each dwelling type for

a given mean area density x using a similar method to Mitchell,
Hargreaves, Namdeo, and Echenique (2011). This combined the
2001 Census dwellings data with the residential land areas of the
Generalized Land Use Database (GLUD) that is based on Ordnance Sur-
vey Mastermap™ (DCLG 2005). Fig. 5 shows how these percentages
varied with plot density and the East and South East of England regions
are similar to the average for England, whereas London has a greater
proportion of apartments for each density band.

Note however that the GLUD data only classifies the dwelling foot-
prints and domestic gardens as residential land whereas the EHCS
data is based on a manual survey that measures the residential plot.
There are therefore some disparities between GLUD and EHCS metrics
especially for high density urban centers. For example, if a mixed-use
building has a non-domestic unit on the ground floor then GLUD clas-
sifies the whole building as non-domestic. Nevertheless, the GLUD
data is broadly consistent with the plot density metric for most of the
case study area.

The relationships illustrated in Fig. 5 were then represented as em-
pirical equations per region so that the forecast number of dwellings
could be split into the number of dwellings by type Hdj based on the
forecast mean residential density xj per zone j.
4.1.2. Estimate the mean density per dwelling type from mean dwelling
density

The next step estimated the mean density of each dwelling type
from the overall mean density x. This analysis aggregated the EHCS
data by region, morphology and area type giving 216 possible ‘aspatial’
location types l (9 × 4 × 6). However, there were some invalid
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combinations, such as rural morphologies in London region, and so only
164 ‘aspatial’ location types had data. The estimated mean density per
dwelling type d in aspatial location l is:

xdl′ ¼
Xn

i¼1
HdliXn

i¼1
Adli

ð22Þ

where:

Hdli = number of dwellings i of type d in aspatial location type l
Adli = plot area of dwellings i of type d in aspatial location type l.

The overall mean density of the aspatial location type l is:

xl ¼
Xn

d¼1
HdlXn

d¼1
Adl

: ð23Þ

Fig. 6 shows that there are clear relationships between the overall
mean residential density xl and the estimated mean residential den-
sity per dwelling typexdl′. These were represented as empirical equa-
tions to convert average density into density per dwelling type. (The
correlation for converted apartments is not as good as the other
dwellings because they are of very variable construction but these
are a small proportion of total dwellings and so this makes little dif-
ference to the results.)

These density estimates per zone of the urbanmodelwere then pro-
portionally adjusted so that the resulting residential area matches the
land input constraints per zone j;

Aj ¼ σ j

Xn

d¼1
Hd j

�
xd j
0 ð24Þ

xd j ¼ σ j
−1xd j0 ð25Þ

where:

Aj = input residential area to urban model for zone j
σj = estimated adjustment factor
xd j = adjusted mean density for dwellings type d.
4.2. The generic tiles

The tiles are a new innovative method of transforming the para-
metric distribution of plot densities into a discrete 3D representa-
tion of built form. They have been created primarily as a medium
for multidisciplinary research on urban planning, buildings and
decentralized environmental technologies. Fig. 7 shows examples
of the tiles which are generic forms that range from low to high
density for each dwelling type. Appendix C shows of two of the
tiles in more detail.
Table 3
Density of the tile boundaries.

Dwelling type

Tile 1 Tile 2

D–Detached 0 13

S–Semi–detached 0 23

T–Terraced 0 52

A–Purpose built apartment 0 200

C–Converted apartment 0 154

a Each dwelling type was allocated an upper boundary to represent the highest feasible densit
The tiles were designed using the EHCS data on the dwelling dimen-
sions, building fabric, floor space, occupancies and plot sizes (DCLG2009).

4.3. Designing the plot density of each tile type

The method of selecting a set of tiles is conceptually equivalent to
fitting a histogram to a gamma distribution as illustrated in Fig. 10.
The frequency distribution of plot densities is represented by the num-
bers of tiles selected from a pre-designed set, which can include frac-
tions of tiles. This is similar in principle to approximate integration
where in this case the subinterval is defined by the plot density bound-
aries of the tile types. The following procedure is carried out for each lo-
cation j and dwelling type d.

The gamma distribution for dwellings Hd in zone j was specified by

inserting the mean density x and the appropriate value of k̂ (Table 2)
into Eqs. (15) & (16) to calculate μ and θ. The gamma distribution

CDF Fðμjk̂; θÞ of the plot area frequency (Eq. 21) was then used to cal-
culate the probability that the plot area is of tile type t as follows:

pat ¼ CDF f μ t jk̂; θ
� �

−CDF f μ t−1jk̂; θ
� �

ð26Þ

where:

pat = probability that plot area is of tile type t
μt = upper boundary of the plot density subinterval of tile type t.

(Note that for tmax the probability of μ b μt = 1.)

Hence the total plot area of tiles of type t is:

at ¼ A � pat : ð27Þ

The CDF f ðμjk̂; θÞ of dwelling frequency (Eq. 6) was used to calculate
the probability that a dwelling is of tile type t as follows:

pht ¼ CDF f μ t jk̂; θ
� �

−CDF f μt−1jk̂; θ
� �

ð28Þ

where:

pht = probability that a dwelling is of file type t.

Hence, the number of dwellings of tile type t is:

ht ¼ Hd � pht : ð29Þ
Tiles boundaries µt (dph) 

Tile 3 Tile 4 Tile 5a

18 24 33 100

29 36 46 150

65 81 106 200

265 338 440 2000

228 1000 na na

y of the dwelling type, to improve the reliability of the mean tile density calculation.



Fig. 8. Mean density per tile type plotted against the mean density of the dwelling type.
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Hence, themean density of the subinterval for tile type t is an output
from the above empirically calibrated parametric functions:

xt ¼ ht
at

: ð30Þ

The accuracy of the tiles method depends on specifying a discrete
tile density that is as close as possible to the mean density xt of the tile
subinterval. The sum of the tiles will then closely match the target for
available plot area.

Values of xt were calculated using GLUD Output Area data in the
Wider South East of England case study area. The Output Areas (OAs)
are the smallest areas at which the UK Office for National Statistics pro-
vides geographical data (around 125 households per OA). Using such
small areas provided a rigorous test of the tiles method. The OAs were
selected if they were within an urban boundary and had less than 2%
non-domestic land (19,770 of the OAs in the WSE met these criteria).
This ensured that most of land per OAwas for residential use and there-
by reduced the inaccuracies thatmixed-use buildings cause to theGLUD
estimates of residential land.

The boundaries of the tile subintervals were adjusted so that each
tile type represented approximately the same proportion of dwellings
for the case study area. The finalized boundaries are shown in Table 3.

pht≅
1
nt

ð31Þ

where:

nt = number of tile types.

Fig. 8 shows themean densities per tile type xt versus themean den-
sity of the dwelling type xd per OA. It can be seen that xt was relatively
constant for the intermediate density tiles and was approximately the
mid-point of the density subinterval and so each could be approximated
by a discrete tile density.

However, the mean density was not constant for the lowest and
highest density subintervals because there was a decreasing probability
that the target density would be matched at these extremes by a mix-
ture of tile types. The upper and lower subintervals represent the
most extreme generic built form per dwelling type and the only way
to achieve a more extreme density is to vary either its plot size or num-
ber of storeys. Table 4 shows the discrete tile densities selected to repre-
sent the mean density of each tile type.

Table 5 shows an example of using the tiles for semi-detached hous-
es ofmeandensityx ¼ 30 dph(based on an input plot area of 10 ha and
forecast of 300 dwellings). If their average age is 1945 to 1974 then their

calibrated shape parameter k̂ ¼ 8 from Table 2. The scale parameter θ=
4.3 from Eq. (13). Hence, the mean plot density is μ ¼ 34:3 dph from
Eq. (16), which thereby fully specifies the calibrated gamma distribu-
tion. Fig. 9 shows the CDF of the plot area per dwelling (Eq. 21) with
the tile subintervals from Table 3. The tiles can be used in two alterna-
tive ways to convert the parametric distribution to the discrete tiles
per dwelling type, depending onwhether the aim is to exactlymatch ac-
tual dwelling forecast or the actual inputs on plot area. The method to
match the number of dwellings uses the CDF of plot area, and the
Table 4
Plot densities of the 23 domestic tiles used to validate the tiles method.

Dwelling type Plot density xt per tile type (dph)

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5

D—detached 8 15 21 28 45
S—Semi-detached 18 25 32 40 55
T—terraced 40 57 72 90 118
A—purpose built apartment 140 230 290 370 540
C—converted apartment 100 180 300 na na



Fig. 10. Comparison between the tiles and the PDF for semi-detached (x ¼ 30 dph, k̂ ¼ 8).

Table 5

Example of the tiles method for x ¼ 30 dph,k̂ ¼ 8.

Dwelling type
Tiles (dph) 

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5

Tile Boundaries      (dph) 0 22 29 36 46 150

µ

µ

plot area 0.00 0.29 0.51 0.73 0.91 1.00

dwellings 0.00 0.17 0.36 0.60 0.84 1.00

(from Table 4) 15 25 32 40 55

(eq. 26) 0.29 0.22 0.22 0.18 0.09

0.17 0.19 0.24 0.24 0.16 Total

Estimate of plot area 3.4 2.3 2.2 1.8 0.9 10.5 ha (+5%)

Estimate of dwellings 43.5 55 70.4 72 49.5 290.4 (–3%)

'

'

(from eq. 28)
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method to match the plot area uses CDF of dwellings (Eq. 6). In this ex-
ample, the results are within 5% for plot area and −3% for dwellings
which are typical for the method.

The plot area is estimated as:

A0
d ¼

Xt¼n

t¼1

Hd � pht
xt

: ð32Þ

The dwellings are estimated as:

H0
d ¼

Xt¼n

t¼1
Ad � pat � xt : ð33Þ

Fig. 10 illustrates how the above example compareswith the gamma
distribution PDF of the dwellings (Eq. 5). The tile densities are shown as
broken lines.

5. Validation results for the tiles method

5.1. Comparing the estimates of plot area using the tiles with the GLUD data

The total residential plot area was estimated using the tiles as:

Adt ¼
Xd¼n

d¼0

Xt¼n

t¼0

ht
xt

ð34Þ

where:

Adt = total residential plot area of dwelling type d.

Fig. 11 shows that the tiles give a very close estimation to the actual
GLUD data on residential land per Output Area. The only exceptions are
Fig. 9. Example of a CDF of plot area per dwelling for semi-detached (x ¼ 30 dph, k̂ ¼ 8).
the Output Areas larger than around 10 ha, which are lower density
areas that often have unusually large properties with outbuildings.

5.2. Comparing the regional distribution of generated tiles against empirical
EHCS data

The next step of the validation process generated a set of tiles for the
East of England and compared the results with the East of England EHCS
housing stock data. The EHCS data was firstly disaggregated into 21
aspatial location types based on combinations of the 6 area types and
4 morphologies (3 of these combinations had no dwellings). The only
inputs for the tile generation process were the average plot density
and total number of dwellings of each aspatial location type. Everything
else was then calculated using the previously described tiles method to
generate a set of tiles for each of the 21 aspatial location types. Fig. 12
compares the empirical plot density distributions of the EHCS data for
Fig. 11. Comparison of the total plot area of the tiles vs. GLUD residential area.
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the East of England with the plot density distribution from the tiles and
shows that the tiles method generates a realistic distribution of plot
density per dwelling type.

5.3. Comparing the land areas of the generated tiles against Census Output
Area data

The tileswere then comparedwithGLUDdwelling footprint data per
Census Output Area. This provided an independent validation because
Fig. 12. Results of the validation fo
GLUD dwelling footprint data were not used for either the tile design
or tile generation process. The dwelling footprint areas of the tiles
were summed per Output Area and compared with the GLUD residen-
tial footprint area. GLUD was found to consistently overestimate the
footprint area by around 4 m2 which was found to be due to the inclu-
sion of outbuildings, such as garages and garden sheds. The validation
process therefore deducted 4 m2 per dwelling from the GLUD residen-
tial footprint data before making the comparison with the estimates
from the tiles.
r the East of England region.



293A.J. Hargreaves / Computers, Environment and Urban Systems 54 (2015) 280–300
The validation was carried out in 4 stages shown in Fig. 13:

a) Using only the total residential plot area and total number of dwell-
ings per Output Area as the input to generate the tiles. The footprint
areas were estimated based on the average footprint per dwelling
type from the EHCS data.

b) Same as (a) above but using data on the dwelling type per-
centages instead of an estimate — this shows that using the
actual percentages, if available, makes little difference to the
correlation.
c) Same as (a) above but using the actual footprint areas per tile

type — this shows how distinguishing between sizes of
Fig. 13. Results of the validation using the GLUD area of residential building footprints per
Output Area.
dwellings of the same type greatly improves the correlation
even when only using an estimate of dwelling percentages.

d) Same as (c) above but using the actual percentage per dwell-
ing type — this gives a further improvement in the correla-
tion and R2 = 0.82 is surprisingly good for these small
Output Areas.

This shows that the tilesmethod produces amuchmore accurate es-
timate of dwelling footprint areas than using average footprint per
dwelling type. This is reassuring because footprint areas are a proxy
for floor space and roof space, which are important for investigating en-
ergy demands and the potential of sustainable technologies such as
solar energy and water harvesting.

6. Using the tiles for integrating regional scale and building scale
modeling

The residential land areas in the LUISA regional forecasting model
were based on GLUD residential land which as explained earlier, has
broadly consistent metrics with EHCS and so the average densities per
zone of the LUISA model could be converted directly into plot densities.

However urban planners normally measure the densities based on
total residential area, whichmay include pathways, parking, communal
space and roads. These additional areas were therefore subsequently
added to the design of the tiles so that the number of tiles selected
equals the total residential area in hectares. This resulted in two alterna-
tivemeasures of density; the plot density per tile xt that was used in the
preceding method to calculate the number of dwellings per tile type;
and the residential density zt shown in Table 6 that was used to convert
these dwellings into the number of one-hectare tiles;

zt ¼ at :xt
at þ rtð Þ ð35Þ

where:

zt = tile residential density (dph)
at = plot area per dwelling of file type t (m2)
rt = the additional residential land per dwelling tile type t (m2)

nt ¼ ht
zt

ð36Þ

where:

nt = number of tiles of type t (each is one hectare).

One hectare was chosen as the tile size partly for convenience of
accounting so that the number of tiles equals the residential area, but
also because if they were any smaller it would be difficult to visually
illustrate its typical housing layout. The additional areas such as roads,
paths, green space and residential parking were estimated from Google
Satellite maps and Ordnance Survey mapping. Fig. 14 shows how the
percentage of these different residential land types varies with the
mean plot density xt. At low densities xt is similar to zt because the
Table 6
Tile densities of the 23 domestic tiles.

Dwelling type Plot density zt per tile type (dph)

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5

D—detached 7 12 17 22 34
S—semi-detached 15 20 25 30 40
T—terraced 29 39 47 57 70
A—purpose built apartment 67 94 110 130 167
C—converted apartment 69 122 203 na na



Fig. 14. The average proportion of residential land versus the average plot density x of the
tiles.
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buildings and gardens account formost of the tile area but as the density
increases the rest of the residential land such as roads, paths, green
space and other land become a larger percentage of the tile area, and
so xt becomes much larger than zt.

A dataset was produced per tile of consumption, emissions and
costs using building-scale models for energy, water and waste for
combinations of scenario-specific variables, such as technology
scenario and uptake; climate; development type (existing area,
Fig. 15. Comparison of mean plot density and me
redevelopment or new land); area type (central, urban, suburban
or rural), occupancy characteristics and whether the dwellings
were as existing, retrofitted or new build. The tiles were generated
per zone to match each scenario forecast of the regional scale
model and then the tile data was aggregated.

It would be very useful if this tiles method could be further devel-
oped to directly estimate the distribution of residential density rather
than plot density. To investigate this possibility Fig. 15 compares the
mean plot density x� with the mean tile density z� for the main dwelling
types. This relationship is almost linear especially for the detached and
semi-detached dwellings. It is not quite so linear for terraced dwellings
and apartments but this is probably due their greater range of dwelling
types and if disaggregated into end-terrace and mid-terrace and low-
rise and high-rise apartments then this may increase their linearity.

This broadly linear relationship suggests that the plot densities could
be transformed into tile densities and stillfit a gammadistribution. If the
shape parameter kwas then recalibrated it may be possible to estimate
the distribution of residential density z directly from z� and generate
larger tiles as generic neighborhood types. This would be helpful for ex-
ploring the interactions between bottom-up urban design and top-
down socio-economic modeling of city regions, but is beyond the
scope of this current paper.

7. Discussion and conclusions

This paper has presented a new innovative method of analyzing
housing survey data to explore the variability of dwellings plot sizes.
Housing development in England is largely commercially driven but
subject to planning constraints and so land is relatively expensive. The
provision and adaptation of the housing stock is therefore responsive
an tile density for each main dwelling type.



Table A1
Dwelling types.

No. Dwelling type

1 End terrace
2 Mid terrace
3 Semi-detached
4 Detached
5 Bungalow
6 Converted flat/apartment
7 Purpose built apartment, low rise
8 Purpose built apartment, high rise

Table A2
Morphology.

No. Rural urban morphology (COA)

1 Urban N10 k
2 Town and fringe
3 Village
4 Hamlet & isolated dwellings

Table A3
Area types.

No. Nature of area

1 Urban—commercial city/town center
2 Urban—urban
3 Urban—suburban residential
4 Rural—rural residential
5 Rural—village center
6 Rural—rural

Table A4
Definition of the area type in the EHCS Surveyor Briefing Manual.

No. Nature of an area

1 Commercial city/town center — this is the area that would constitute part/all
of the center of a city or town. Areas do not have to be run down to be coded
as city or town center. It is likely that these areas will have a high percentage
of commercial properties such as shops and businesses.

2 Urban — this is the area around the core of towns and cities, and also older
urban areas which have been swallowed up by a metropolis. Areas would be
largely but not exclusively residential.

3 Suburban residential — this is the outer area of towns or cities, and would
include large, planned housing estates on the outskirts of towns or larger
areas of older residential stock.

4 Rural residential — these can be free standing residential areas or suburban
areas of villages, often meeting the housing needs of people who work in
nearby towns and cities.

5 Village center — these are traditional English villages or the old heart of
villages which have been suburbanized.

6 Rural — these areas are predominantly rural e.g. agricultural with isolated
dwellings or small hamlets.
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to buyer demands and may partly explain why the distributions of plot
densities of each dwelling type have a relatively consistent shape that
can be approximated by the gamma distribution.

Older dwellings were found to have a greater variability in plot size
than newer dwellings and the following possible reasons would need
further investigation. Dwellings may have become more uniform
over time due to a tightening of planning regulations and housing
standards, whereas older dwellings are more likely to be the result
of property conversion and thereby become more diverse. It is also
likely that the variability of plot size per dwelling type is correlated
with variability in household income. Greater mobility from wide-
spread car ownership has allowed more social segregation between
area types whereas previously neighborhoods had a wider mix of in-
come levels and consequently a wider variation in plot sizes per
dwelling type.

In reality the density distribution of dwellings does not necessar-
ily follow the gamma distribution on a location specific basis because
the built environment is so variable. However, the tile estimates be-
come very similar to the data when aggregated over larger areas.
Some alternative distributions were tried but none outperformed
the gamma distribution on providing a consistently good fit to the
data. The method could in principle be used for the parametric sim-
ulation of dwellings and plot sizes but it is more practical for multi-
disciplinary research to convert the density distributions into
discrete predesigned 3D tiles.

This tiles method is a useful extension to urban forecasting models
by allowing the average density forecast per zone to be converted into
a representation of the dwelling stock and residential land. This cap-
tures the variability in garden size, roof areas and floorspace that is
needed to estimate the likely uptake and performance of decentralized
sustainable technologies for energy, water and waste management and
provides more accurate estimates than could be achieved using more
conventional methods such as dwelling typologies, mean densities,
and floor area ratios. The tiles also reflect qualitative aspects, such as
garden size, number of party walls and storeys, which may be useful
for modeling housing choice. Also, their data on building heights and
land cover could be a useful input to the forecasting of urban climate
and flood risk.

Adding more tile types would increase the accuracy of estimating
the dwelling stock. However, this needs to be balanced against the
extra work of designing each tile and modeling its building efficiency,
demand and supply characteristics. Some extra tiles would need to be
added to more accurately represent mixed-use buildings in urban cen-
ters such as inner London. The tiles method is being adapted to non-
domestic buildings and so it may eventually be possible to combine
the domestic, non-domestic andmixed-use tiles within a single estima-
tion process.

Further more detailed validation would be useful by land parcel size
and if possible by dwelling age bands. The next steps are to adapt the
method to other countries that have similar housing survey data and
also to explore the possibility of generating larger generic tiles of resi-
dential areas.
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Table A5
Regions.

No. Government office region

1 North East
2 Yorkshire and The Humber
3 North West
4 East Midlands
5 West Midlands
6 South West
7 East of England
8 South East
9 London

Table A6
Age bands.

No.

1 Pre-1850
2 1850–1899
3 1900–1918
4 1919–1944
5 1945–1964
6 1965–1974
7 1975–1980
8 1981–1990
9 Post-1990

Table B1
Results for semidetached and detached houses.

Dwelling type Age
band

Area
type

Morphology EHCS sample
size n

EHCS
dwellings N

No. of
outliers

Mean plot
density x

Shape
parameter k

K–S max
(gn)

K–S min
(gn)

Significance

Detached 1 6 3 27 45,606 4334 9 2.6 0.142 −0.036 ⁎⁎⁎⁎

1 6 4 56 101,142 12,491 8 1.8 0.133 −0.031 ⁎

2 3 1 27 50,974 2985 34 1.6 0.158 −0.067 ⁎⁎⁎⁎

3 3 1 24 47,069 6775 18 4.5 0.090 −0.035 ⁎⁎⁎⁎

4 3 1 139 262,408 1879 20 3.6 0.040 −0.077 ⁎⁎

5 3 1 133 251,149 11,838 20 6.3 0.044 −0.031 ⁎⁎⁎⁎

5 4 1 26 46,112 0 13 3.4 0.075 −0.084 ⁎⁎⁎⁎

6 3 1 166 321,590 12,056 27 5.6 0.036 −0.078 ⁎

6 4 2 38 67,548 0 26 3.7 0.036 −0.101 ⁎⁎⁎⁎

6 4 3 29 56,307 4330 22 4.7 0.162 −0.087 ⁎⁎⁎

7 3 1 96 178,582 6093 27 5.3 0.051 −0.085 ⁎⁎⁎

8 3 1 187 356,793 10,625 31 7.7 0.026 −0.047 ⁎⁎⁎⁎

9 3 1 237 578,965 17,441 33 7.0 0.041 −0.060 ⁎

9 3 2 25 57,555 0 30 5.1 0.107 −0.150 ⁎⁎⁎⁎

9 4 2 30 75,292 3810 32 4.0 0.100 −0.082 ⁎⁎⁎⁎

Semi-detached 2 2 1 29 56,742 6074 44 4.4 0.152 −0.031 ⁎⁎⁎

2 3 1 58 115,281 5623 43 3.0 0.07 −0.051 ⁎⁎⁎⁎

3 2 1 33 58,944 2710 57 3.6 0.077 −0.093 ⁎⁎⁎⁎

3 3 1 86 161,551 10,223 47 3.8 0.058 −0.054 ⁎⁎⁎⁎

4 2 1 186 263,098 3679 41 7.1 0.057 −0.028 ⁎⁎⁎

4 3 1 852 1,342,522 35,901 38 7.1 0.031 −0.002 ⁎⁎

4 3 2 36 46,647 2275 30 7.5 0.071 −0.067 ⁎⁎⁎⁎

4 4 1 26 42,479 0 36 9.3 0.11 −0.083 ⁎⁎⁎⁎

4 4 2 28 39,509 2279 27 5.2 0.141 −0.133 ⁎⁎⁎⁎

4 4 3 36 40,460 315 24 6.4 0.043 −0.078 ⁎⁎⁎⁎

5 2 1 128 150,172 5318 41 6.4 0.104 −0.094
5 3 1 916 1,205,354 25,811 38 8.4 0.041 −0.009
5 3 2 74 88,101 4692 35 7.3 0.109 −0.023 ⁎

5 4 1 45 58,866 2528 31 7.9 0.11 −0.057 ⁎⁎⁎⁎

5 4 2 67 87,408 358 35 6.4 0.084 −0.146
5 4 3 55 65,707 0 31 6.4 0.077 −0.107 ⁎⁎⁎⁎

6 2 1 34 44,638 1300 50 6.9 0.138 −0.016 ⁎⁎⁎

6 3 1 295 534,875 23,377 42 9.7 0.045 −0.037 ⁎⁎⁎⁎

6 3 2 37 56,288 0 46 6.5 0.114 −0.033 ⁎⁎⁎⁎

6 4 1 17 32,349 4620 35 8.7 0.138 −0.053 ⁎⁎⁎⁎

6 4 2 31 55,169 0 39 7.3 0.098 −0.085 ⁎⁎⁎⁎

7 3 1 104 179,430 8943 45 11.4 0.075 −0.051 ⁎⁎⁎⁎

8 3 1 102 166,062 6240 53 9.6 0.051 −0.045 ⁎⁎⁎⁎

9 2 1 34 47,492 758 62 8.2 0.120 −0.029 ⁎⁎⁎⁎

9 3 1 123 234,160 18,194 55 9.0 0.066 −0.059 ⁎⁎⁎⁎

Key to Significance: [gn] is within the K–S test critical value that the dwelling sample is drawn from the fitted gamma distribution.
⁎⁎⁎⁎ 20% level.
⁎⁎⁎ 10% level.
⁎⁎ 5% level.
⁎ 1% level.

Appendix B. Shape parameters k and goodness of fit tests for the gamma distribution
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Table B2
Results for terraced houses.

Dwelling
type

Age
band

Area
type

Morphology EHCS sample
n

EHCS dwellings
N

No. of
outliers

Mean plot
density x

Shape
parameter k

K–S max
(gn)

K–S min
(gn)

Significance

Mid-terraced 2 2 1 105 300,098 17,624 144 6.0 0.069 −0.011 ⁎⁎⁎⁎

2 3 1 70 197,099 8203 142 5.5 0.108 −0.035 ⁎⁎

3 2 1 97 76,506 6484 148 6.7 0.144 −0.078
3 3 1 80 138,748 8336 132 7.2 0.08 −0.096 ⁎⁎

4 2 1 80 151,658 2511 65 5.0 0.099 −0.061 ⁎⁎

4 3 1 248 164,517 5781 62 8.1 0.018 −0.074
5 2 1 41 130,931 2238 67 5.7 0.108 −0.117 ⁎⁎⁎⁎

5 3 1 208 145,107 3056 57 7.8 0.039 −0.056 ⁎⁎⁎

6 3 1 102 121,261 2519 81 12.3 0.06 −0.034 ⁎⁎⁎⁎

7 3 1 49 113,266 1452 73 8.6 0.094 −0.137 ⁎

8 3 1 109 70,137 6476 96 8.9 0.051 −0.076 ⁎⁎⁎

9 2 1 29 43,095 0 92 11.8 0.123 −0.015 ⁎⁎⁎⁎

9 3 1 79 44,479 4162 92 10.0 0.018 −0.085 ⁎⁎⁎⁎

End-terraced 2 2 1 33 441,549 15,124 419 6.6 0.105 −0.027 ⁎⁎⁎⁎

2 3 1 46 386,688 5098 395 5.8 0.091 −0.010 ⁎⁎⁎⁎

3 2 1 28 344,375 8464 595 5.0 0.105 −0.062 ⁎⁎⁎

3 3 1 80 144,663 11,340 560 5.7 0.12 −0.029 ⁎

4 2 1 97 139,674 13,714 406 9.0 0.094 −0.051 ⁎⁎

4 3 1 43 170,816 10,952 591 5.9 0.143 −0.035 ⁎

5 2 1 148 318,771 8562 446 8.5 0.06 −0.050
5 3 1 355 380,476 16,440 323 7.8 0.075 −0.028
5 3 2 32 359,792 9269 717 6.8 0.086 −0.080 ⁎⁎⁎

6 2 1 166 223,977 4161 428 5.5 0.079 −0.055 ⁎

6 3 1 361 64,047 2151 412 9.7 0.062 −0.020
7 2 1 25 90,211 1511 234 9.9 0.215 −0.072 ⁎

7 3 1 118 65,685 1739 452 11.0 0.048 −0.040
8 2 1 211 25,744 552 391 6.8 0.049 −0.100
8 3 1 24 30,897 0 558 13.0 0.057 −0.090 ⁎⁎⁎⁎

9 2 1 96 45,959 4086 489 10.3 0.061 −0.067 ⁎⁎⁎⁎

9 3 1 187 33,091 0 440 12.5 0.035 −0.022 ⁎⁎⁎

Key: see Table B1.

Table B3
Results for bungalows and purpose built and converted apartments.

Dwelling type Age
band

Area
type

Morphology EHCS
sample n

EHCS
dwellings N

No. of
outliers

Mean plot
density x

Shape
parameter k

K–S max
(gn)

K–S min
(gn)

Significance

Bungalows 5 2 1 33 30,841 – 53 2.3 0.138 −0.054 ⁎⁎⁎

5 3 1 267 332,343 13,688 34 6.1 0.071 −0.065 ⁎

5 3 2 24 23,289 3870 37 2.7 0.07 −0.06 ⁎

5 4 3 34 34,124 1075 25 3.8 0.188 −0.095 ⁎

6 3 1 182 233,786 – 37 4.0 0.127 −0.048
6 4 2 35 44,560 551 32 3.4 0.103 −0.117 ⁎⁎⁎⁎

6 4 3 35 49,117 – 27 6.9 0.131 −0.151 ⁎⁎⁎

7 3 1 71 84,370 9524 34 6.3 0.086 −0.115 ⁎⁎⁎

8 3 1 76 93,262 6430 44 3.5 0.1 −0.078 ⁎⁎

Low rise
apartments

2 2 1 33 276,504 7862 419 2.7 0.105 −0.076 ⁎⁎⁎⁎

3 2 1 46 329,254 5306 395 2.1 0.091 −0.033 ⁎⁎⁎⁎

4 1 1 28 181,938 10,990 595 5.0 0.105 −0.077 ⁎⁎⁎

4 2 1 80 87,963 1912 560 1.9 0.12 −0.085 ⁎

4 3 1 97 195,456 10,080 406 1.8 0.094 −0.016 ⁎⁎

5 1 1 43 219,146 5301 591 4.7 0.143 −0.096 ⁎

5 2 1 148 165,342 15,573 446 3.4 0.06 −0.114
5 3 1 355 139,548 9026 323 3.4 0.075 −0.139
6 1 1 32 109,026 6401 717 3.7 0.086 −0.152 ⁎⁎⁎

(continued on next page)
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Table B3 (continued)

Dwelling type Age
band

Area
type

Morphology EHCS
sample n

EHCS
dwellings N

No. of
outliers

Mean plot
density x

Shape
parameter k

K–S max
(gn)

K–S min
(gn)

Significance

6 2 1 166 124,540 6945 428 4.0 0.079 −0.063 ⁎

6 3 1 361 115,324 1054 412 3.6 0.062 −0.078
6 4 2 25 122,048 8113 234 2.9 0.215 −0.000 ⁎

7 2 1 118 67,856 5937 452 5.1 0.048 −0.126
7 3 1 211 44,433 0 391 5.1 0.049 −0.103
8 1 1 24 45,327 1411 558 5.3 0.057 −0.082 ⁎⁎⁎⁎

8 2 1 96 34,126 2508 489 4.8 0.061 −0.036 ⁎⁎⁎⁎

8 3 1 187 25,936 0 440 4.6 0.035 −0.071 ⁎⁎⁎

9 1 1 26 35,540 1679 487 5.2 0.146 −0.045 ⁎⁎⁎⁎

9 2 1 82 23,211 1154 513 4.8 0.065 −0.069 ⁎⁎⁎⁎

9 3 1 117 27,647 602 427 6.9 0.044 −0.028 ⁎⁎⁎⁎

High rise
apartm'ts

5 2 1 74 73,664 442 1666 2.8 0.099 −0.056 ⁎⁎⁎

5 3 1 35 58,872 4357 1416 4.9 0.158 −0.005 ⁎⁎

6 2 1 92 34,463 0 1676 3.9 0.065 −0.097 ⁎

6 3 1 51 28,291 670 1733 3.8 0.18 −0.027
Converted
apartments

2 1 1 37 202,881 0 144 2.7 0.056 −0.136 ⁎⁎⁎

2 2 1 143 87,718 0 135 3.1 0.045 −0.061 ⁎⁎⁎⁎

2 3 1 50 80,629 0 107 2.9 0.048 −0.068 ⁎⁎⁎⁎

3 2 1 59 77,015 0 104 3.2 0.086 −0.059 ⁎⁎⁎⁎

3 3 1 54 48,241 0 111 2.8 0.037 −0.044 ⁎⁎⁎⁎

Key: see Table B1.

Table C1
Tile D1— detached houses.

Density in dwellings per hectare (dph)
Plot density per dwelling μ 8
Tile density z 7

Land use (%)
Domestic building footprints 8
Domestic gardens 78
Roads and paths 14
Green space 0
Other land (such as parking areas) 0

Basic dimensions per dwelling
Building footprint (m2) 117
Floor area (m2) 234
Building height (m) 6 (2 storeys)

Wall area (m2) Front: 81 Side: 59
Roofs (m2) Top floor: 117 Bottom floor: 0 Pitched roof: 100%
Garden (m2) 1131 Front: 382 (60% soft) Rear: 633 (80% soft) Side: 116 (50% soft)

Appendix C. Examples of tile dimensions
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Table C2
Tile A2— purpose built apartments.

Density in dwellings per hectare (dph)
Plot density per dwelling μ 230
Tile density z 94.2

Land use (%)
Domestic building footprints 20
Domestic gardens 21
Roads and paths 26
Green space 23
Other land (such as parking areas) 10

Basic dimensions per apartment block
Building footprint (m2) 679
Number of apartments 32
Floor area per apartment (m2) 68
Floor area per block (m2) 2168
Building height (m) 12 (4 storeys)

Wall areas (m2) Main facade: 566 Minor facade: 457
Roofs (m2) Top floor: 679 Pitched roof: 90% Flat roof: 10%
Garden (m2) 713 Courtyard 65% soft (35% hard)

Each tile type shows a typical arrangement of the dwelling type and its associated residential area for the tile density but the layouts may vary.
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