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Abstract—This paper describes an approach to real-time
human activity recognition using hidden Markov models (HMMs)
and sensorised objects, and its application to rehabilitation of
stroke patients with apraxia or action disorganisation syndrome
(AADS). Results are presented for the task of making a cup
of tea. Unlike speech or other sequential decoding problems
where HMMs have previously been successfully applied, human
actions can occur simultaneously or at least in overlapping time.
The solution proposed in this paper is based on a parallel,
asynchronous set of detectors, each responsible for the detection
of one of the component sub-goals of the tea-making task. The
inputs to these detectors are formed from the outputs of sensors
attached to the objects involved in that sub-goal, plus hand
coordinate data. The sensors, comprising an accelerometer and
three force-sensitive resistors, are packaged in a coaster which
can be easily attached to the base of a mug or jug. In tests on
complete tea-making trials, error rates range from less than 5%
for sub-goals where all of the objects involved are sensorised, to up
to 30% for detectors that rely on hand-coordinate data alone. The
complete set of detectors runs in real-time. It is concluded that
a set of parallel HMM-based sub-goal detectors combined with
fully sensorised objects, is a viable, accurate and easily deployable
approach to real-time object-centred human activity recognition.

I. INTRODUCTION

In the UK alone it is estimated that over 150,000 people
have a stroke each year [26]. Approximately 68% of survivors
suffer from Apraxia or Action Disorganization Syndrome
(AADS), leading to an impairment of cognitive abilities to
complete activities of daily living (ADLs) [3], [5]. For ex-
ample, patients might perform a wrong sequence of actions,
skip steps, or misuse objects with possible safety implications.
Caregivers can provide assistance, but patients who aspire
to independent living may be unwilling to accept this as a
long-term solution. Hence, the objective of the CogWatch
project [11], [27] is to develop an intelligent computer-based
rehabilitation system to re-train patients to carry out ADLs. To
achieve this the system must be able to monitor the patient’s
progress through the ADL and provide appropriate guiding
cues or feedback when an error is detected or anticipated.
Recognising the individual actions that make up the ADL,
and planning the patient’s optimal strategy during the task are
critical. In CogWatch, planning is achieved using a task model
based on a Markov decision process (MDP) or a partially
observable MDP (POMDP) [15]. This paper presents on a
solution to the Action Recognition (AR) problem.

The initial ADL in CogWatch is “making a cup of tea”.
Task analysis [2] is applied to represent tea-making as a
hierarchical ‘task’ tree, with sub-goals such as “Fill Kettle”
(using water from a pre-filled jug) and “Add Teabag” (the
complete list of sub-goals is given in section II).

These sub-goals are recognised from the outputs of sensors
attached to the objects involved, and the location of the hands.
Variations in the sequences of sensor outputs that result from
individual differences in the ways that users execute the task,
variations in the way that the same user executes the same
task on different occassions, or sensor noise are captured using
a statistical model (a sub-goal hidden Markov model (HMM)
(for example, [20])). The partially-ordered structure of the sub-
goal lattice, in which sub-goals occur in overlapping time, or
even at the same time, is accommodated using a parallel set
of asynchronous HMM-based detectors, each responsible for
detecting a specific sub-goal.

Capturing an ADL through sensors [1], [10], [12], [13],
[16], [18], [23], [8], or using HMMs to recognize human
activity [17] are certainly not new, but decomposition of an
ADL into sub-goals and recognition of these sub-goals has
received less attention.

The use of sensorised objects promotes an “object-centric”
view of action recognition, in which a sub-goal is characterised
in terms of how it is “experienced” by the objects involved.
This contrasts with “scene-oriented” approaches, in which an
external video sensor plus image processing is used to identify
and track the hands and objects during a task, or approaches
where sensors are attached to the body (for example [22],
[23]). The object-centred and scene-oriented approaches are
both unobtrusive, since neither requires the user to wear sen-
sors. However, the scene-oriented approach normally requires
careful installation and calibration of cameras, which may be
an issue if the system is intended to be widely deployed and
stand-alone, for example in an ordinary household kitchen.

A popular option for instrumentation is to use Radio
Frequency Identification (RFID) tags to identify which objects
have been picked up [4], [24], however these do not provide
sufficiently rich information and an antenna needs to be worn.

Although the objective of CogWatch is the wider devel-
opment of technology for cognitive rehabilitation of stroke
patients, the focus of the present paper is the development
of the required action recognition system, based on HMMs
and instrumented objects. The Task Model, which uses the
outputs of the action recognition system to monitor the pa-
tient’s progress through the task and detect errors, is described
elsewhere [15]. The paper is organised as follows. Section
II describes the task. Section III describes our approach to
instrumentation of objects. Section IV describes how features
are extracted from the sensors. Sections V and VI describe the
action recognition system, and sections VII and VIII present an
experimental evaluation of the system. A discussion of results
is presented in Section IX. Section X presents our conclusions.



Fig. 1. A jug fitted with a CogWatch Instrumented Coaster (CIC) and an
‘open’ CIC, showing the accelerometer, PIC, Bluetooth module and battery

II. ANALYSIS OF TEA-MAKING

CogWatch provides assistance for four types of tea-making
“black tea”, “black tea with sugar”, “tea with milk” and “tea
with milk and sugar”. Using task analysis [14], each variant
is decomposed into a hierarchy of sub-goals, tasks and sub-
tasks. At the first level, eight sub-goals were identified, plus a
common error (9) and a potential hazard (10). These are:

1) “Fill Kettle” (using water from a pre-filled jug)
2) “Boil Water”
3) “Pour Kettle” (i.e. pour boiling water into the mug)
4) “Add Tea-bag”
5) “Add Sugar”
6) “Add Milk”
7) “Remove Tea-bag”
8) “Stir”
9) “Toy Milk” (pour milk outside the mug)

10) “Toy Kettle” (pour boiled water outside the mug)

This list is a high-level description of the sub-goals of tea-
making. It is not a prescription for a linear sequence. The
execution of sub-goals may overlap, so that one sub-goal
begins before another is complete (for example, the user may
execute several sub-goals during “Boil Water” , or if both
hands are used “Add tea-bag” could start during “Pour kettle”).
Even when the sub-goals do occur in sequence the order
may vary. Hence a particular instance of tea-making is more
accurately represented as a partially-ordered lattice of sub-
goals. This complicates AR (Section V) and makes it difficult
to use sequential information, for example in the form of a
syntax or grammar, to improve recognition accuracy.

III. INSTRUMENTATION AND SENSORS

A. The CogWatch Instrumented Coaster (CIC)

The objects involved in the tea-making task are a kettle,
water jug, mug, milk jug, spoon and containers for the tea-
bags, sugar and used tea-bags. In the current system only the
kettle, mug and milk jug are instrumented. To avoid patient
confusion, the objects must appear normal and function as
expected. Hence the sensors need to be small and discrete.
The chosen solution is to package the sensors and circuitry
into an instrumented ‘coaster’, the ‘CogWatch Instrumented
Coaster (CIC)’, that is fitted to the underside of the object
(figure 1). This is inspired by the MediaCup concept [8]. The
CIC contains a 3-axis accelerometer, 3 force sensitive resistors
(FSRs), a PIC, a Bluetooth and a battery. For the kettle, which
is ‘cordless’ with a separate base, the CIC was split into two

Fig. 2. Outputs from the mug (top two graphs) and kettle (bottom two graphs)
during an execution of the “Pour kettle” sub-goal.

packages, with the accelerometer attached to the kettle body
and the FSRs attached to the base. The accelerometer is an
Analog Devices ADXL335, providing acceleration measure-
ments on 3 axes in a range of ±3g. Its function is to respond
to changes in motion, tilting, and disturbances of the object
due to the addition of materials, stirring, collisions or (in the
kettle) vibration during boiling. The FSRs can detect whether
the object is standing on a surface of lifted in the air, changes
in weight due to the addition or removal of materials, and
more subtle changes in weight distribution across the base of
the object (making it possible, for example, to detect stirring).

Figure 2 shows example outputs from the CICs attached
to the mug (top two graphs) and kettle (bottom two graphs)
during an execution of the “Pour kettle” sub-goal. The output
of an individual CIC at any time is a six dimensional vector,
comprising x, y, z accelerometer outputs plus the outputs of
the three FSRs. The data from the FSRs attached to the mug
(second graph from top) show the increase in weight of the
mug as it is filled. The data from the kettle FSRs (bottom
graph) clearly show the points where the kettle is lifted from
and then returned to the table

B. Kinect-based Hand-tracking

In addition to outputs from CICs, the system uses hand-
coordinate data captured using Kinect [6], using software based
on the ‘Kinect-Arms’ libraries [9].

IV. FEATURE EXTRACTION

The raw data (comprising hand coordinates from Kinect,
and FSR and accelerometer data from the three CICs) are
streamed to the system and synchronised at 50Hz. Each sub-
goal is characterised by a different combination of raw sensor
data and features extracted from the raw sensor data. For
example, detection of the sub-goal “Pour Kettle” uses the
outputs from the kettle CIC, the FSRs in the CIC attached
to the mug, and hand position.

Hand position is given relative to x and y axes parallel to
edges of the table and centred at the centre of the table. A
2D “Gaussian neighbourhood” associated with each object, is
used to indicate when the hand is in the vicinity of that object.
The mean and covariances of the Gaussian neighbourhood for
an object is calculated using the location of the hand when
it is stationary and interacting with that object. The hand is
assumed to be stationary if the difference between successive



samples is less than 3mm. The distance that the hand has
travelled between times t and t+ 1 is the Euclidean distance:

d(ht, ht+1) =
√
(h1,t+1 − h1,t)2 + (h2,t+1 − h2,t)2.

Here ht = (h1,t, h2,t) is the position of the hand at time t.

A number of features are extracted from the raw data for
AR. For example, to calculate the change in weight of the mug
a low pass filter is used to smooth the data from FSRs in the
CIC attached to the mug, before the derivative is calculated.
Also, the FSR data obtained from the FSRs under the kettle
and in the CIC attached to the milk jug is used to determine
whether or not that object has been picked up. Variance in
the energy of the outputs from the accelerometer attached to
the kettle body, caused by vibration of the kettle during the
process of heating the water, is used to determine whether the
water in the kettle had reached boiling point and hence detect
the sub-goal “Boil Water”.

The feature vector yt at time t is calculated from a window
comprising sensor outputs at times t− 20, ..., t.

V. HMM-BASED ACTION RECOGNITION

Hidden Markov models (HMMs) are a generic frame-
work for statistical sequential pattern processing, but they
have received most attention in the area of automatic speech
recognition (ASR) (for example, see [7]). However, there are a
number of important differences between AR and ASR which
determine the design of our HMM-based AR system:

• In ASR words occur one-after-another, whereas in AR
actions can occur in overlapping time, so that the
natural structure is a partially-ordered lattice rather
than a sequence. Overlap may occur, for example, if
the subject uses both hands, or executes one or more
sub-goals while the kettle is boiling. Therefore a con-
ventional ASR decoder, which will compute the most
probable sequence of actions, is not appropriate for
AR. This partially-ordered structure also complicates
the inclusion of sequential constraints in the decoder.

• In ASR the same features are used by all HMMs,
whereas in AR different subsets of features are ap-
propriate for recognising different sub-goals.

• In AR there is no accepted equivalent to a ‘phone set’.

The key process in a typical HMM-based ASR system is
a Viterbi decoder [7]. Given a sequence of feature vectors
y = y1, ..., yT the Viterbi decoder finds the sequence of
HMMs M = M1, ...,MN such that an approximation to the
probability p(M |y) is maximised. Since y is fixed, from Bayes’
rule this is equivalent to finding M such that p(y|M)P (M)
is maximised. The probability P (M) is based on a language
model which defines the probability of any given sequence
of words. In speech recognition, the language model and the
individual HMMs are compiled into a single network and the
most probable path through this network is found using Viterbi
decoding. However, because the execution of sub-goals is
realised as a partially-ordered lattice, an alternative architecture
is needed for AR.

VI. DETECTOR STRUCTURE

1) Detector architecture: The AR system comprises five
independent real-time HMM-based detectors which together
can identifying occurrences of the eight sub-goals of tea-
making at any time during completion of the task. These
detectors run in parallel and are mutually independent. Each
detector takes as input those parts of the feature vector that
are useful for detecting its sub-goal(s). A detector consists of
one or more multiple state HMMs, each representing a unique
sub-goal, and these HMM states are associated with Gaussian
mixture models (GMMs). In addition, the detector includes a
single state “background” (or “toying”) HMM, whose state is
associated with a multiple-component GMM.

2) Viterbi decoding: An identical implementation of the
Viterbi algorithm (for example see [7]) runs independently in
each decoder. Briefly, each detector works as follows: At each
time t the detector receives a new feature vector, yt. For each
state i of each of its HMMs, a quantity αt(i) is calculated
which can be thought of as an approximation to the probability
of the best explanation of data y1, ..., yt up to and including
yt ending in state i at time t. Intuitively, if the detector is for
“Add Milk” and the ith state corresponds to tipping the jug,
then αt(i) can be thought of as the probability of the best
explanation of data up to time t culminating in the tipping
action at t. Formally αt(i) is given by the recursion:

αt(i) = maxjαt−1(j)aj,ibi(yt) (1)
ρt(i) = argmaxjρt−1(j)aj,ibi(yt) (2)

where aj,i is the probability of a transition from state j to state
i and bi(yt) is the probability of the sensor data yt given state
i. Note that the ‘preceding’ state j can be in the same HMM
as state i, or, if i is an initial state, j can be the final state
of another HMM in the detector. ρt(i) provides a record from
which the best explanation of the data up to time t in state i
can be recovered.

3) Partial traceback: In the basic implementation of
Viterbi decoding described above, the best explanation of the
data is not recovered until the final time T . However, in a
real-time implementation there is no final time. The memory
required to store the ρt(i)s and αt(i)s will increase and no
output will be produced. The solution is to use a technique
called ‘partial traceback’ [21]. Each detector’s output up to a
time s is generated as soon as its classification of the data
up to that point is unambiguous, in the sense that all of the
ρt(i)s can be traced-back to a common state at time s in the
past. The memory used to store alternative explanations of
the data up to s is then freed. In this way the decoders can
run indefinitely. If the convergence point s is significantly less
than t then there will be a delay in the output of the decoder.
Therefore, care is needed in the construction of the HMMs to
avoid the ambiguity that will cause this to happen.

Whenever a sub-goal HMM provides the most probably
explanation of a section of input, a label indicating that sub-
goal is output. Otherwise the best explanation of the data is
“toying” and nothing is output.

4) Detector structure: The five detectors are as follows:

• The “Front Actions” detector consists of three “sub-
goal” models (corresponding to “Add Sugar”, “Add



Fig. 3. Screen shot showing the output of the real-time action recognition
system.

Tea-bag” and “Remove Tea-bag”) and a background
“toying” model. This detector is primarily influenced
by the Gaussian neighbourhood features for the mug,
tea-bag container, sugar container and used tea-bag
container, which are calculated from Kinect, and the
outputs of the FSRs in the CICs under the mug (see
section IV).

• The “Pour Kettle’ and “Add Milk” detectors each con-
sist of a single sub-goal model (for “Pour Water” or
“Add milk”) and a “toying” model which corresponds
to picking up the kettle or milk jug but not pouring
water or milk into the mug. These detectors exploit the
accelerometer and FSR outputs of the CICs attached
to the kettle or milk jug, to indicate that this object has
been picked up, moved, tilted, moved and put down,
and the synchronised FSRs in the CIC attached to the
mug to detect that at the time that the first object is
tilted the mug begins to get heavier.

• The “Boil Water” detector has a single sub-goal HMM
for “Boil Water” and a “toying” model. The sub-goal
model uses the magnitude of the outputs from the
accelerometer attached to the kettle body to pick up
the movements caused by boiling water in the kettle.

• The “Fill Kettle” detector has a single sub-goal HMM
for “Fill Kettle” and a “toying” model. The inputs
to this detector are Gaussian neighbourhood values
associated with the jug and kettle and the outputs of
the CIC under the kettle to detect movement and an
increase in weight.

• The “Stir” detector has a single sub-goal HMM for
“Stir” and a “toying” model. The inputs to this de-
tector are Gaussian neighbourhood values associated
with the mug and the outputs of the CIC under the
mug to detect movement.

The real-time CogWatch AR uses HMM file formats from
the hidden Markov model toolkit (HTK) [25]. Thus HMM
parameters can be optimised off-line using HTK and then
transferred to the CogWatch AR. Figure 3 shows a screen-shot
from the real-time action recognition system.

5) Scalability: Computational load is approximately pro-
portional to ND ×NF , where ND is the number of detectors,
and NF is the average number of features per detector. As the

task becomes more complex the number of objects (and hence
sensors) and sub-goals will increase, but the number of features
per sub-goal is likely to remain approximately constant. In this
case computational load will scale linearly with the number
of sub-goals. In the limit, the computational techniques that
enable real-time ASR for vocabularies on tens of thousands of
words are applicable to this system. Hence computational load
is unlikely to be an immediate issue.

VII. EXPERIMENTS

A. Data Collection

Recordings were made at three different sites. A total of
38 participants, aged between 18 and 80, completed multiple
individual sub-goals and full tea-making trials. In all cases
synchronised CIC and Kinect outputs were recorded. In the
full trial recordings, subjects were asked to make 4 different
types of tea (as described in section II), as they would normally
make it for themselves. These recordings were subsequently
manually labelled using the data from the Kinect camera
as guidance. In total, there are 1,124 recordings of isolated
actions (4.01 hours) and 70 recordings of complete tea-making
sessions (1.6 hours) (table I).

TABLE I. Data used in AR development. Durations are in hours.

Sub-goal Trials Dur. Sub-goal Trials Dur.

Pour kettle 148 0.50 Stir 138 0.56
Add milk 69 0.22 Toy with kettle 26 0.07
Add sugar 220 0.40 Boil water 125 0.22
Add teabag 237 0.44 Toy with milk 30 0.11
Fill kettle 180 0.73

Remove teabag 168 0.41 Full trial 70 1.6

B. Experimental procedure

Two experiments were conducted, namely recognition of
isolated sub-goals and detection of sub-goals in full-trials. The
isolated sub-goal recognition experiments used five-fold cross-
validation, in which 20%, 20% and 60% of the recordings were
used for testing, development and training, respectively. In the
full trial experiments, all isolated sub-goal recordings were
used for model training. The number of states in the sub-goal
HMMs N (5 ≤ N ≤ 60) and the number of GMM components
in the single-state “toying” model M (1 ≤ M ≤ 512), were
determined empirically on the development data. Each state of
the sub-goal HMM was associated with a single component
Gaussian probability density function (PDF). Best results were
achieved by using N = 20, 20, 50 and 70 states for the sub-
goal model, and M = 256, 512, 512 and 32 GMM components
for the “toying” models for “Front Actions” (“Add sugar”,
“Add tea-bag” and “Remove tea-bag”), ‘Add Milk’, ‘Pour
Kettle’ and ‘Fill Kettle’ detectors, respectively. Figure 4 shows
the effects of the number of sub-goal HMM states N and
GMM components M in the “toying” model on recognition
accuracy for the sub-goal “Add milk”.

C. HMM parameter estimation

HMM parameter estimation was done using the HTK
toolkit [25]. With the exception of the “Pour Kettle” and “Add
Milk” sub-goals, the start and end times of sub-goals were
identified manually. For “Pour Kettle” and “Add Milk” the
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Fig. 4. effects of the number of sub-goal HMM states N and GMM
components M in the “toying” model on recognition accuracy for the sub-
goal “Add milk”.

outputs of the FSR outputs were used to define the start and
finish times as the moments of picking up and putting down
the object. For initialization of an N state sub-goal HMM,
each of the training recordings of sensor data for that sub-
goal was divided into N equal segments, and the data in the
nth segments was used to estimate the mean and diagonal
covariance matrix of the nth HMM state. For the “toying”
model, all of the recordings of the non-target sub-goals in the
training set were used to estimate the mean and (diagonal)
covariance matrix of a single Gaussian PDF.

The parameters of the sub-goal HMMs were optimised
using the Baum-Welch algorithm [25]. The single Gaussian
PDF associated with the “toying” HMM state was repeatedly
divided and optimised using the E-M algorithm [25].

VIII. RESULTS

The results of the recognition experiments on isolated sub-
goals and full trials are shown in tables II and III, respectively.
Detection accuracy for full trials is calculated as follows: A

TABLE II. Results of isolated sub-goal recognition experiments.

Sub-goal %Errors Sub-goal %Errors

Pour kettle 0.32 Add milk 0.21
Add sugar 0.09 Remove tea-bag 0.09
Boil water 1.65 Add teabag 0.09
Fill kettle 0.28

TABLE III. Results of full-trial sub-goal detection experiments (Ins =
number of insertions, %Acc. = % Recognition accuracy, %FA = % Flase

alarms, and %FR = % False rejections).

Sub-goal Samples Correct Ins %Acc. %FA %FR

Pour kettle 53 53 0 100 0 0
Add milk 38 37 1 94.7 2.6 2.6
Add sugar 56 53 3 89.2 5.4 5.4

Remove tea-bag 60 56 6 83.3 10 6.7
Add tea-bag 60 58 5 88.3 8.3 3.3

Fill kettle 66 59 10 74.2 15.2 10.6
Stir 71 62 24 70 34 13

sub-goal occurring in a full trial is considered to have been
correctly detected if and only if the sub-goal is detected by the

corresponding detector and the detected and actual sub-goals
overlap by 75%. If an actual sub-goal does not overlap with
a detected sub-goal by 75% then a deletion (False Rejection
(FR)) has occurred. If a detected sub-goal does not overlap
with an actual sub-goal by 75%, then an insertion (False Alarm
(FA)) has occurred. The % accuracy is given by:

%Acc =
Samples−Deletions− Insertions

Samples
× 100 (3)

IX. DISCUSSION

A. Recognition of isolated sub-goals

Table II shows that recognition for isolated sub-goals is
very accurate, with an average error rate of just 0.39%. In
other words, if the sub-goal boundaries are known then sub-
goal recognition using the available sensor data is not difficult.

B. Sub-goal detection in full trials

Comparing tables II and III it is evident that the absence
of information about sub-goal start and end times makes
action recognition much more challenging. However, this is
the relevant problem in real applications. The best performance
is achieved for the sub-goals “Add Milk” and “Pour Kettle”.
These are the only sub-goals for which all of the objects that
are involved are fully instrumented (i.e. fitted with a CIC).

Recognition of the sub-goals “Add Tea-bag”, “Add Sugar”
and “Remove Tea-bag” relies mainly on hand coordinate data
from Kinect, plus small perturbations of the outputs from the
CIC sensors attached to the mug caused by the weight-changes
or movement due to adding a sugar cube or tea-bag to the
mug, or removing a tea-bag from the mug. Given the minimal
instrumentation performance is good.

The poorest performance is for “Stir”. However, 50% of
the false alarms occur at beginnings of instances of “Remove
Tea-bag”. Since “Remove Tea-bag” involves putting the spoon
into the mug and moving it to pick up the tea-bag, the outputs
of the mug CIC and the Kinect hand coordinates will be very
similar to those for “Stir”. Hence the insertion of “Stir” is to
be expected. A solution would be to break down the sub-goals
into smaller actions, so that “Stir” and the start of “Remove
Tea-Bag” are both characterised by the same model.

The performance for “Fill Kettle” is also poor, with false
alarm and false rejection rates of 15% and 11%, respectively.
However, it is likely that these would be significantly improved
if the water container were fitted with a CIC. In the current
experiments, “Fill Kettle” relies on hand-location data and the
outputs of the CIC attached to the kettle.

C. Object Centred Action Recognition

The results of these experiments point to an approach
to action recognition based entirely on instrumented objects.
From this perspective, actions are characterised in terms of how
the objects involved “experience” them through their sensors.
Hence it is appropriate to refer to this as an “object-centred”
approach to action recognition, to differentiate it from an
“environment-oriented” approach in which, for example, action
recognition is achieved by the application of image processing
to the scene.



Object-centred action recognition has a number of practical
advantages. It is very easy to deploy in a real environment,
such as a kitchen, because all that is required is the introduction
of instrumented tools and objects into the environment. In
addition, no explicit calibration of the sensors is required.
Any calibration that is required to compensate for drift in the
sensor outputs can be done while the object is at rest, without
involving the user.

D. Application to rehabilitation for AADS

The AR system described in this paper has been incorpo-
rated into the CogWatch system for cognitive rehabilitation of
stroke patients with AADS [11], and future publications will
describe its performance on patient data. The performance of
the AR system described in this paper will improve as a result
of further research. However, some errors are inevitable. In the
CogWatch system the output of the AR system is passed to a
Task Model, based on a Markov Decision Process (MDP) [19]
or Partially Observable MDP (POMDP) [15]. In the case of a
POMDP, the task model includes a statistical characterisation
of the errors that the AR makes and is therefore able to
accommodate them to some degree.

X. CONCLUSION

This paper presents a novel HMM-based architecture for
AR that can accommodate the lattice of sub-goals that de-
scribes an ADL such as tea-making. The results show that
HMMs combined with instrumented objects provide a viable
approach to action recognition. Best performance is obtained
when all of the objects are instrumented. This suggests an
object-centred approach to action recognition, in which an
action is characterised in terms of the ways that the objects
involved “experience” it through their sensors. Object-centric
action recognition is particularly attractive for practical appli-
cations because of its ease of deployment. Future publications
will report the results obtained by the system on patient data.
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