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Abstract 

Purpose of review:  

The purpose of this article is to review recent advances in our understanding of innate 

lymphoid cell function and to speculate on how these cells may become activated and 

influence the immune response to allogeneic tissues and cells following transplantation. 

 

Recent findings: Innate lymphoid cells encompass several novel cell types whose wide 

ranging roles in the immune system are only now being uncovered. Through cytokine 

production, cross-talk with both hematopoietic and non-hematopoietic populations and 

antigen presentation to T cells, these cells have been shown to be key regulators in 

maintaining tissue integrity, as well as initiating and then sustaining immune responses. 

 

Summary: It is now clear that innate lymphoid cells markedly contribute to immune 

responses and tissue repair in a number of disease contexts. Whilst experimental and 

clinical data on the behaviour of these cells following transplantation is scant, it is highly 

likely that innate lymphoid cells will perform similar functions in the alloimmune response 

following transplantation and therefore may be potential therapeutic targets for 

manipulation to prevent allograft rejection. 
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Abbreviations: ILCs, innate lymphoid cells; NK, natural killer; LTi, lymphoid tissue inducer; 

TNF, tumour necrosis factor; TSLP, thymic stromal lymphopoietin; NCR, NK cell receptors; 

CHILP, common progenitor to all helper-like ILCs; PLZF, pro-myeloid leukaemia zinc finger; 

BM, bone-marrow; HSC, haematopoietic stem cell; GVHD, graft versus host disease; APC, 

antigen presenting cells; MNPs, mononuclear phagocytes; AMM, alternatively activated 

macrophages; mLN, mesenteric lymph node. 

  



Introduction 

The term Innate Lymphoid Cells (ILCs) describes a heterogeneous collection of immune cells 

united by both their differentiation from a common lymphoid progenitor and their lack of a 

Rag-dependent antigen specific receptor [1].  Recently, ILC subsets have been further 

defined based on the differential expression of transcription factors and importantly, 

function. Many of the effector functions ascribed to ILCs have the capacity to significantly 

impact subsequent adaptive immune responses and as such are likely to modulate 

alloimmune responses, in addition to the already described roles for these cells in chronic 

inflammatory disease and immunity to pathogens. Therefore, the aim of this review is to 

provide an overview of the biology of ILCs and to describe the known functions of these cells 

that may be pertinent to the immune response to transplants. 

 

Origin, development and characterisation of innate lymphoid cells 

ILCs have now been identified throughout the body, and although enriched at mucosal 

barriers such as the intestine and lung, they have also been described in skin, primary and 

secondary lymphoid tissue and a growing list of organs such as liver, kidney and pancreas 

[2,3]. Whilst natural killer (NK) and lymphoid tissue inducer (LTi) cells were described many 

years previously [4-6]  a series of publications in 2010 [7-9] reported several novel immune 

cell populations, with the ILC nomenclature formally described in 2013 [2]. Under this 

classification, three groups of ILCs that mirror established groups of effector CD4 T cells 

were defined based upon their cytokine secretion and transcription factor expression 

(Figure 1).  

 



Group 1 ILCs are able to produce IFN and tumour necrosis factor (TNF), comprising 

Tbet+Eomes+ NK cells and a distinct Tbet+Eomes- ILC1 population. These cells respond to IL-

12, IL-15 and IL-18 and promote immunity to viruses, fungi and intracellular bacteria and 

parasites [10,11, 12••]. 

 

The group 2 ILCs promote type 2 inflammation, and are defined by their expression of 

GATA-3 expression and production of the type 2 cytokines IL-4, IL-5, IL-9 and IL-13 in 

response to IL-2, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) [7,8,13-15]. They 

have also been demonstrated to produce amphiregulin, a member of the epidermal growth 

factor family, which is important for tissue remodelling and repair [16]. Recently the ILC2 

compartment was further divided into IL-25 responsive inflammatory ILC2 (iILC2), which lack 

expression of ST2 (IL-33R), and ST2+ natural ILC2 (nILC2) that respond principally to IL-33 

[17••]. 

 

The third group of ILCs (ILC3) express the retinoic acid orphan receptor (ROR) splice variant 

RORt and produce IL-22, Csf2 and to a lesser extent IL-17 [18, 19••]. This group includes LTi 

cells in the embryo, their phenotypically-equivalent (LTi-like) cells in the adult and distinct 

populations described principally in the small and large intestine, which differ in their 

expression of surface markers such as NK cell receptors (NCR) and additional production of 

IFN [9,20]. Furthermore, there is clear evidence that some ILC3s can down regulate RORt 

expression and develop an ILC1 phenotype. ILC3s respond to cytokines such as IL-1β and IL-

23. These cells are also clearly influenced by the presence of commensal bacteria, likely 

through indirect stimulation with the cytokines above, but perhaps also direct recognition. A 

basic description of ILC groups is summarised in Figure 1. This simple framework has 



facilitated enormous advances in understanding the development and differentiation of ILC 

populations, adding layers of complexity to this basic description.  

 

Klose et al. [12••] recently defined the common progenitor to all helper-like ILCs (CHILP), a 

lineage- Id2+ IL-7Rα+ CD25- α4β7
+ progenitor population in bone marrow and fetal liver able 

to give rise to all groups of ILC, with the exception of conventional NK cells, which are 

distinct from helper ILCs by virtue of their cytotoxic activity. Downstream of the CHILP, and 

distinguished by expression of transcription factor pro-myeloid leukaemia zinc finger (PLZF), 

is a progenitor unable to develop into either conventional NK cells or LTi cells, but able to 

form the remaining ILC populations [21••]. Therefore current understanding indicates a 

succession of several ILC progenitor populations with progressively limited precursor 

potential. It is now also clear that all helper ILC populations require GATA-3 for their 

development, not just ILC2 [22•,23•]. Given several excellent reviews on ILC differentiation 

[3,24,25], here we will focus on recent advances in our understanding of ILC function, the 

potential roles of these cell in immunity, and how these cells may influence innate and 

adaptive immune responses to solid organ transplants.  

 

ILCs  regulate barrier integrity and tissue formation/repair 

The prototypic ILC, the LTi cell was first identified for its role in the formation of lymph 

nodes (LNs) and Peyer’s patches, a developmental process restricted to the embryo and 

neonate [6]. At this time, LTi cell provision of (LTα1β2) to specialised stromal organiser cells 

that express LTβR, results in their production of the homeostatic chemokines CCL19, CCL21 

and CXCL13, recruiting lymphocytes to the anlagen [26] (Figure 2A). After birth, LTi cells are 



further required for the generation of isolated lymphoid follicles within the intestine. 

Interestingly, within adult secondary lymphoid tissue, LTi-like cells persist in the same 

microenvironments as stromal cells that phenotypically resemble the stromal organiser 

population in the embryo, suggesting continued interactions between these populations 

might be involved in tissue homeostasis [27,28]. ILC3s have been shown to aid tissue repair 

in the spleen following viral infection [29], indicating a specific role for these cells following 

tissue damage (Figure 2A). Whilst there is no clear consensus on whether ILC3 are involved 

in tertiary lymphoid tissue (TLT) formation [30], ILC3s may facilitate the generation of TLT 

which is pertinent to transplantation as TLT has been reported to be present in many 

allografts undergoing chronic rejection [31,32]. However, as yet studies have not looked for 

the presence of ILCs in TLT in transplants or assessed whether they contribute to the 

formation of such structures. 

 

A major function of ILCs is the maintenance of epithelial integrity and its repair following 

insult (Figure 2A) [16,33,34]. In the intestine, IL-22 is necessary for epithelial integrity to 

bacterial infection [35] and ILC3s, the dominant ILC population in this tissue, are a key 

source of this cytokine [34]. In the absence of ILC3s, there is impaired containment of 

commensal bacteria within this site and dissemination of specific species [33]. It was 

recently identified that production of IL-22 by ILC3s, in addition to lymphotoxin α1β2 signals, 

induces intestinal epithelial Fut2 expression and fucosylation of these epithelial cells, 

provides a substrate for commensal bacteria. This in turn can inhibit colonisation by 

pathogens such as Salmonella typhimurium [36•], underlining the importance of ILC3s in 

normal intestinal homeostasis (Figure 2B). 



 

Within the lung, IL-22 derived from ILC3s also serves a protective role limiting inflammation 

in allergic disease and also following Streptococcus pneumoniae infection [37,38]. It was 

recently shown that in obesity associated asthma there was dysregulation of the normal ILC 

populations in the lung with IL-1β-driven expansion of IL-17A producing ILC3s causing airway 

hyper-reactivity [39]. It is not only ILC3s that contribute to tissue integrity and within the 

lung. Amphiregulin, produced by ILC2s, was shown to restore the loss of airway epithelial 

integrity observed following depletion of ILCs [16], indicating an important role for ILC2s in 

preserving lung epithelium. [40] 

 

Interestingly, a role for ILC3s in maintaining barrier integrity has been described in 

allogeneic bone-marrow/haematopoietic stem cell (BM/HSC) transplantation where the 

presence of activated, donor-derived NCR+ ILC3s in the peripheral blood correlated with 

decreased incidence of graft versus host disease (GVHD) in patients receiving an allogeniec 

HSC transplant [41•]. Furthermore, Hannash et al found that recipient ILC3s produce IL-22 

which promotes gut epithelial barrier integrity and limits GVHD in a mouse model [42]. This 

is clearly relevant to intestinal as well as HSC transplantation but whether ILCs present in or 

homing to other organs initiate the same repair mechanisms after solid organ 

transplantation remains to be seen. 

 

ILC crosstalk with other innate cells  



Cells of the immune system do not exist in isolation and recent studies have shed light on 

the interactions of ILCs with other innate cell populations. Recent evidence indicates that 

ILC signals to antigen presenting cells (APC) can modulate their behaviour, thus indirectly 

contributing to the initiation or establishment of an immune response (Figure 2B). For 

example, colonic CX3CR1+ mononuclear phagocytes (MNPs), such as macrophages and DC, 

cluster with ILC3s, likely within isolated lymphoid follicles, and produce IL-23 and IL-1β in 

response to bacteria, driving ILC3 production of IL-22 [43]. Production of IL-1β by MNPs also 

stimulates ILC3 production of Csf2, which feeds back to the DC and macrophages enhancing 

their support of intestinal Tregs [19••]. Distinct from such interactions within isolated 

lymphoid follicles, NKp46+ ILC3 require CXCR6 to interact with CXCL16 expressing 

CD11b+CD103- intestinal DC within the lamina propria. These DC also produce IL-23 and the 

crosstalk mediated by CXCR6:CXCL16 was required for IL-22 mediated protection from C. 

rodentium infection [44]. Given the close interplay between ILC and different APC 

populations in the intestine, it seems likely that further examples of crosstalk between these 

populations in maintaining intestinal homeostasis will be discovered.    

 

Within visceral adipose tissue ILC2 are important for maintaining eosinophils and 

alternatively activated macrophages (AAM) via production type 2 cytokines [45]. ILC2 

support for AAM is likely to exist at other sites and Huang and colleagues recently found 

that AAM were induced by IL-25 activated ILC2 and that the induction of such cells afforded 

protection in a model of renal ischemia reperfusion injury [46].   

 

ILCs as antigen presenting cells 



A major recent advance in our understanding of ILC function emerged from the 

demonstration that both ILC2 and ILC3 populations are able to process and present antigen 

in the context of MHCII, thus establishing a mechanism for directly interacting with CD4 T 

cells (Figure 2C) [47, 48••]. What are the consequences of such interactions? Sophisticated 

mouse models that specifically target ILC2s demonstrated a role in the development of 

robust Th2 responses [48••]. ILC2s clearly potentiate the Th2 response, since expulsion of 

the parasite N. brasiliensis is impaired when ILC2s lacked MHCII [48••]. Both human and 

murine ILC2 isolated from secondary lymphoid tissue express intermediate levels of MHCII, 

intermediate levels of CD80, but little CD86 [48••]. Consistent with this, in vitro these cells 

can drive naïve CD4 T cell proliferation [48-50], however, direct evidence that ILC2 drive 

naïve CD4+ T cell proliferation in vivo is currently lacking. ILC2s may signal to CD4+ T cells via 

other costimulatory molecules such as OX40L [50]. Importantly, these are reciprocal 

interactions beneficial to both T cell and ILC2, with IL-2 now known to enhance ILC2 

cytokine production [48••] (Figure 2C).  

 

Amongst the ILC3 group, the LTi-like population are also able to process and present antigen 

in the context of MHCII but lack expression of CD80, CD86 and CD40 and were unable to 

drive naïve CD4+ T cell proliferation in vitro [47]. Strikingly, genetic deletion of MHCII on ILC3 

using RORt cre x fl H2-Ab1fl mice resulted in dysregulated CD4+ T cell responses to 

commensal bacteria in vivo, indicating that ILC3, rather than potentiating T cell responses, 

have a regulatory role although the mechanism remains to be defined [47] (Figure 2C). 

Whether this regulation of the T cell response occurs within the intestine or the draining 

mesenteric LN tissue is unclear, but it is noteworthy that LTi-like ILC3s are located only 



within the interfollicular spaces of the mesenteric LN (mLN) [51], a site through which 

activated CD4+ T cells traffic.  

 

The recent comprehensive analysis of ILC transcriptomes revealed neuropilin-1, known to 

enhance interactions between Treg and DC [52], to be expressed only on LTi-like ILC3s [•53]. 

Since ILC3s are able to traffic from the intestine to the mLN [51], an attractive hypothesis is 

that these cells sample antigen from the intestine, then travel to the draining LNs where 

they regulate CD4+ T cell responses [51]. 

 

Our current understanding, particularly in light of their costimulatory molecule profile, 

indicates that ILCs are atypical APCs in T cell responses, rather than direct replacements of 

professional APCs such as the dendritic cell [54]. Further understanding of exactly which 

types of CD4+ T cell interact with ILCs and when, is essential to better define the direct role 

of these cells in CD4+ T cell responses. Hepworth et al., were unable to detect any effects on 

Tregs in RORt cre x fl H2-Ab1fl mice [47], however definitive studies require antigen specific 

populations to be studied. LTi-like cells support memory CD4+ T cells in vivo but, the 

mechanisms controlling this have not been defined [28]. 

 

 Understanding what controls ILC expression of MHCII and costimulatory molecules may 

shed light on the possible mechanisms by which the outcome of T cell:ILC interactions are 

determined. It is known that ILC expression of MHCII, and in the case of ILC2, the 

costimulatory molecules CD80 and CD86 is dependent upon the location from which they 



are isolated [47,48]. Intriguingly, a separate study using RORt cre x fl H2-Ab1fl mice 

indicated a role for splenic ILC3 in enhancing CD4+ T cell numbers [55] suggesting the 

location-specific differences observed in ILC phenotype may impart different effects on T 

cell responses. 

 

ILC modification of adaptive immune responses through soluble molecule production 

T cells activated in a given cytokine milieu preferentially differentiate into functionally 

distinct Th1, Th2 or Th17 T helper cell subsets. Given that ILCs rapidly secrete many 

cytokines known to direct such T cell differentiation (i.e. ILC1 produced IFN, ILC2 produced 

IL-4 and IL-23 produced by ILC3s) one might suspect that ILCs influence adaptive immunity 

through the provision of cytokine which in turn would be dictated by the local balance of ILC 

subsets and signals that differentially activate ILC subsets. Currently there is little evidence 

to support this. However, in type 2 immune responses, IL-13 production by ILC2 is important 

for DC activation and trafficking to the draining LN, where the CD4+ T cell response is 

initiated [56•].  Interestingly, ILC2s can also produce amphiregulin (in response to the 

alarmin, IL-33) which in addition to well characterised functions such as tissue repair and 

homeostasis has been found to enhance the suppressive capacity of Treg upon binding the 

epidermal growth factor receptor  [57,58].  Therefore, soluble factors from ILCs may 

positively or negatively impact adaptive immune responses (Figure 2B). 

 

Conclusion 
 



ILCs have been shown to significantly impact both innate and adaptive immunity via the 

secretion of cytokines and other soluble molecules as well as through direct antigen 

presentation to T cells. Despite the lack of direct evidence, these observations suggest that 

ILCs may also be active following transplantation. However, further studies are clearly 

needed to determine the activation status, transplant/lymphoid tissue trafficking and 

effector function of these cells after transplantation before therapeutic strategies can be 

employed to manipulate these cells to minimise ischemia reperfusion injury and rejection. 

 
 
 
Key points 

 ILCs are a novel immune cell family with a broad range of functions. 

 The effects of ILCs on adaptive immune responses are mediated through a range of 

direct and indirect mechanisms. 

 As APCs, ILCs can directly control CD4+ T cell responses. 

 ILCs may enhance or suppress adaptive immunity. 

 ILCs have the capacity to influence adaptive and innate responses to transplanted 

organs and cells and as such may be therapeutically targeted to attenuate ischemia 

reperfusion injury and rejection and control the repair of transplanted tissue. 
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Figure titles and legends 

FIGURE 1. Schematic showing different ILC subsets developing from the common lymphoid 

progenitor. For each group, the signals to which they respond are shown alongside the 

molecules secreted. Areg amphiregulin; CHILP, common progenitor to all helper-like ILCs; 

CLP, common lymphocyte progenitor; PLZF, promyeloid leukaemia zinc finger; TSLP, thymic 

stromal lymphopoietin. 

 

FIGURE 2. Schematic showing known functions of ILC2 and ILC3 pertinent to transplantation. 

A) Direct interactions of surface receptors. ILC3 provision of lymphotoxin α1β2 in the 

development of lymph nodes and repair of splenic stroma. B) Production of soluble 

molecules by ILCs. ILC3 production of IL-22 enhances intestinal epithelium integrity; ILC2 

production of IL-13 enhancing DC migration or amphiregulin suppressing regulatory T cells. 

C) ILC Presentation of antigen in MHCII. ILC3 regulation of CD4+ T cell responses to 

commensal bacteria; ILC2 enhancement of Type 2 responses. Areg amphiregulin; IEC, 

intestinal epithelial cell; LT, lymphotoxin; MNP, mononuclear phagocyte; NRP-1, neuropilin-

1.  
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