UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

Plenoptic imaging of the retina: can it resolve depth

In scattering tissues?
Marshall, Richard; Styles, lain; Claridge, Ela; Bongs, Kai

DOI:
10.1364/BIOMED.2014.BM3A.60

Document Version
Peer reviewed version

Citation for published version (Harvard):

Marshall, R, Styles, |, Claridge, E & Bongs, K 2014, Plenoptic imaging of the retina: can it resolve depth in
scattering tissues? in Proceedings of Biomedical Optics 2014 ., BM3A.60, Optical Society of America (OSA),
Biomedical Optics 2014, Miami, Florida, United Kingdom, 26/04/14.
https://doi.org/10.1364/BIOMED.2014.BM3A.60

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020


https://doi.org/10.1364/BIOMED.2014.BM3A.60
https://doi.org/10.1364/BIOMED.2014.BM3A.60
https://research.birmingham.ac.uk/portal/en/publications/plenoptic-imaging-of-the-retina-can-it-resolve-depth-in-scattering-tissues(afb80a2a-1f68-4b7c-946a-c986d601c25e).html

Plenoptic imaging of the retina: can it resolve
depth in scattering tissues?

Richard Marshall!, Iain Styles' 2, Ela Claridge! > and Kai Bongs®

! PSIBS Doctoral Training Center, University of Birmingham, Birmingham, UK, B15 2TT
2School of Computer Science, University of Birmingham, Birmingham, UK, B15 2TT
3School of Physics and Astronomy, University of Birmingham, Birmingham, UK, B15 2TT

rjm836 @bham.ac.uk

Abstract: A feasibility study into using plenoptic imaging as an alternative to optical
coherence tomography to diagnose common diseases causing blindness. Simulations have
been run to determine if depth measurements can be made into scattering tissue.

OCIS codes: 110.1758, 170.4460, 170.4470.

1. Introduction

Plenoptic imaging is a relatively new imaging technique, in which both position and direction of a ray of light are
recorded. By capturing this extra information, more comprehensive post processing analysis of the scene can take
place from a single image acquisition, including digital refocusing, change of perspective, increased depth of field,
depth maps and a topographic surface image. Many of these attributes could provide significant advantages for retinal
imaging. Firstly, as all the information is collected in a single image acquisition, this will reduce motion artifacts of the
eye which can occur in methods which require many pictures or have to raster across the retina. The increased depth of
field is achieved with a large numerical aperture, which will reduce acquisition time or increase the intensity of light
recorded compared to a standard image with the same acquisition time and depth of field of the plenoptic image. In
the context of retinal imaging applications, an important aspect is the ability to determine the thickness of the neural
retina. Optically it is a moderately scattering layer (is = 5.735 x 103cm™! at 800nm) 240um thick [1], bound by
two interfaces: the ocular media and the retinal pigment epithelium (RPE). The shape of the retinal surface and the
thickness of the retina are important factors in the diagnosis of common diseases that may lead to blindness such as
diabetes and glaucoma. Currently the main imaging modality is optical coherence tomography (OCT). With the cost of
plenoptic cameras being considerably cheaper than an OCT, plenoptic retinal imaging could prove to be a very useful
technique for ophthalmologists on a budget. However, previous studies into plenoptic imaging have only concentrated
on opaque objects in free-space models. The aim of this investigation is to establish what geometric information can
be obtained by applying plenoptic imaging to scattering media, more specifically of the retina.

2. Plenoptic imaging theory

The plenoptic function is derived from the five dimensional Light Field function, L(x,y,z,0, ) representing both
position and direction of the radiance, however when recorded it is restricted to four dimensions as in the absence of
occluders, the radiance of a single ray of light becomes constant between two points along the length of the ray. One
method of recording these extra dimensions is in the form of a plenoptic camera, in which a microlens array is placed
between the objective lens of the imaging system and the sensor, with the traditional and focused configurations shown
in Fig. 1 [2-4]. In the traditional plenoptic camera, the microlens array is placed on the image plane formed by the
objective lens of the object, and the sensor one microlens focal length from the microlens array. When set up in this
configuration, the pixels under each microlens array represent the directional information, with the spatial resolution
determined by the number of microlenses. In the focused plenoptic camera, the microlens array is placed so that it
forms a relay system with the image plane formed by the objective lens, decoupling the spatial resolution from the
number of microlenses. There is always a trade off between spatial and directional resolution, so choosing the right
configuration depends upon application. In both cases, images that can be digitally refocused and perspective shifted
after the image has been taken are possible, depth maps can be generated, and 3D topographic images can be produced,
all from a single acquisition.
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Fig. 1. Configurations of two different plenoptic cameras: (a) The traditional plenoptic camera. (b)
The focused plenoptic camera.

3. Plenoptic imaging for retinal diseases

Optical coherence tomography has given a wealth of new information for ophthalmologists, one of which being the
early detection of diabetic macular edema (DME) by visualizing retinal thickening [5]. Fig. 2 (a) and (b) show an
OCT of a normal retina and one thickened by DME respectively. In order for plenoptic imaging to provide information
similar to this, accurate measurements determining the depth of both the retinal surface and of the RPE are essential.
OCT can also help to diagnose glaucoma by looking at the cup-to-disc ratio of the optic disc as shown in Fig. 2 (c).
For computing of this ratio it is necessary to know only the depth of the retinal surface, which is available from the
topographic surface data obtained by plenoptic imaging.

()

Fig. 2. (a) OCT of a normal healthy retina. (b) OCT of a retina with retinal thickening due to DME.
(c) OCT image of the optic disc

4. Capabilities and limitations of plenoptic imaging in the field of retinal imaging

Plenoptic imaging has already proven its capabilities to determine depth and give 3D topographic information
in free space models, however no study has shown how it would perform through scattering media such as the
retina. In order to study this, simulations were performed using MCML, a multi-layered Monte Carlo modeling
software [6]. One of the aims of this study is to determine whether retinal thickening could be detected using plenoptic
imaging, so different experiments were undertaken by varying the thickness of the neural retina, hence changing
the distance between the surface of the retina and the retinal pigment epithelium (RPE). The parameters charac-
terising the properties of retinal layers and used in Monte Carlo (MC) simulation have been taken from Styles et al. [1].

The first experiment is looking at the undeviated (straight through) photons as they travel through the neural retina to
the RPE whilst varying the distance to the RPE. This experiment is important as plenoptic cameras can only deduce
the depth from the last point of scattering, so if few or no photons reach the RPE unscattered, then a quantitative
distance cannot be calculated. Fig. 3 (a) shows the results of this first experiment. The second of these experiments
was to investigate whether the angular distribution of the reflected photons changes as a function of retinal thickness.
As plenoptic imaging records not only spatial information but also angular information, if the angular distribution has



any dependence on thickness, it could be deduced that plenoptic imaging may be able to distinguish between regions
of different depths. The results of this can be seen in Fig. 3 (b).
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Fig. 3. (a) The amount of undeviated photons transmitted through to the RPE at varying distance
from retinal surface to RPE. This experiment was performed at 800nm and with 10,000,000 photons.
(b) The angular distributions of light reflected from the surface of the retina at different thicknesses.
This experiment was performed at 800nm and with 50,000,000 photons

5. Results and Conclusions

This first experiment has given conclusive evidence that plenoptic imaging would not be able to use digital refocusing
to focus on the RPE, as any distance between the retinal surface and RPE above 150um yields no undeviated photons,
and even below this distance, the amount of photons is less than 0.1% of the total transmitted intensity. After analysis
of the results from the second experiment, it can be deduced that whilst magnitude changes as a function of thickness,
their normalised angular distributions are the same. This implies the angular properties of remitted light do not depend
on the thickness of the layer. This along with the results of the previous experiment present quite conclusive evidence
that plenoptic imaging cannot be used to detect diseases such as DME by assessing retinal thickening. However,
as the angular distribution on the surface of the retina is independent of the layers below, plenoptic imaging could
produce topographic images of the surface of the retina, without any errors due to light reflected from layers below
the surface. This could be beneficial in the field of retinal imaging in areas such as the early detection of glaucoma,
which is enhanced greatly by three dimensional quantitative measures of the cup-to-disc ratio, not easily available
using standard retinal photography.
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