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Abstract

Evaluation of pest abundance is an important task of integrated pest management. It has recently been shown
that evaluation of pest population size from discrete sampling data can be done by using the ideas of numerical
integration. Numerical integration of the pest populationdensity function is a computational technique that
readily gives us an estimate of the pest population size, where the accuracy of the estimate depends on the
number of traps installed in the agricultural field to collect the data. However, in a standard mathematical
problem of numerical integration it is assumed that the dataare precise, so that the random error is zero when
the data are collected. This assumption does not hold in ecological applications. An inherent random error
is often present in field measurements and therefore it may strongly affect the accuracy of evaluation. In our
paper, we offer a novel approach to evaluate the pest insect population size under the assumption that the data
about the pest population include a random error. The evaluation is not based on statistical methods but is done
using a spatially discrete method of numerical integrationwhere the data obtained by trapping as in pest insect
monitoring are converted to values of the population density. It will be discussed in the paper how the accuracy
of evaluation differs from the case where the same evaluation method is employed to handle precise data. We
also consider how the accuracy of the pest insect abundance evaluation can be affected by noise when the data
available from trapping are sparse. In particular we show that, contrary to intuitive expectations, noise does not
have any considerable impact on the accuracy of evaluation when the number of traps is small as is conventional
in ecological applications.
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1 Introduction

Pest insect management in agriculture has the obvious goal of preventing or minimising the damage pests cause
to crops. In past decades the integrated pest management (IPM) approach emerged which incorporates several
different tactics that work cooperatively together to protect crops from pest attack in a more sustainable way [17].
An important part of any IPM programme is the monitoring of the pest insect abundance in an agricultural field.
The decision of whether or not to implement a control action is then made by comparing the abundance of pests
against some threshold level,i.e. the limit at which intervening becomes worth the effort or expense. Since the
basic principle of IPM is that a control action is only used ifand when it is necessary, accurate evaluation of pest
insect abundance remains key to the decision process [6, 20].

Trapping is a widely used sampling technique for pest insectabundance evaluation [1, 14, 16, 19]. Traps
are installed in the field, exposed for a certain amount of time, after which the traps are emptied and the pests
are counted. Under the assumption that trap counts can be converted into the pest population density at the trap
locations it is possible to obtain an estimate of the total pest population size [7, 32]. However, optimising the
accuracy of such an evaluation remains a complex and difficult problem where two main aspects must be kept in
mind. First, the accuracy can be affected by how the sampled data are collected. There has been intensive research
on what is the optimal number of sample units required to achieve a specified precision (e.g see [2, 11, 24]). The
sampling plan, i.e., the prescribed locations at which samples are to be taken, is also in the focus of ecological
research [14, 16], where comparison of various patterns of trap locations in the field have been made in order to
understand how the sampling plan may affect the accuracy [1].

The second, equally important aspect of the accuracy problem is how the collected data are processed. A
conventional approach is to calculate the arithmetic mean number of pest insects from trap counts [9]. From the
mean number of pests per unit area, an estimate of the number of pests in the entire agricultural field is obtained
by scaling to the area of the agricultural field [35]. Alternatively, the problem of pest abundance evaluation can
be considered as a numerical integration problem and in recent years intensive study of numerical integration
methods for ecological applications has been carried out [12, 25, 26, 28, 29, 30]. It was discussed in our recent
paper [27] that the application of numerical integration techniques often results in a more accurate evaluation
of pest abundance than straightforward statistical computation of the mean density. Since numerical integration
methods have been emerging as a promising approach to evaluating pest abundance, in the present paper we focus
our attention on them further. Namely, we consider the application of numerical integration techniques to the
problem where the data used for evaluation are not exact values of the pest population density.

A standard assumption in numerical integration is that the method deals with exact data,i.e. an inherent random
error is zero when data are collected. Meanwhile, an inherent random error is often present in field measurements
and, along with evaluation error, contributes to the accuracy issues when the pest abundance is calculated. An
evaluation error, also known asan approximation error in the theory of numerical integration is the error arising
because a continuous density function is replaced in the evaluation procedure with a discrete function whose values
are available at trap locations only. The approximation error depends on the number of traps used in monitoring
and the theory states that the approximation error will be reduced to zero if we can hypothetically make the number
of traps infinitely large [10]. At the same time the conventional definition of the approximation error implies that
the data used for its computation are precise.

Inherent random errors are errors caused by unknown and unpredictable changes in data measurements [3, 37].
In ecological applications the source of that uncertainty can vary from a simple miscounting of the number of
insects in a trap to some environmental conditions in an agricultural field that are responsible for generating an
error in a trap count (e.g., a trap can undergo occasional interference of a bigger animal in the field). Trap counts
are converted into the density values at the trap locations,and therefore the density values further used to evaluate
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pest abundance are also affected by the random error. Clearly, the impact of a random error on the accuracy of the
evaluation of pest insect abundance should be taken into account to ensure that a correct pest management decision
is made. Thus in our work we study the accuracy of evaluation of pest insect population size under the assumption
that every trap count has a random error.

It is worth mentioning here that the problem of validation ofthe measured data has already received attention
in the ecological literature. However, with regard to the trapping procedure, the mainstream of research has
been focused on accurate conversion of the trap counts into the values of the true population density [5, 13, 31].
Meanwhile, once such a conversion has been made, the estimate of the pest abundance is assumed to be based
on exact data and, to the best of our knowledge, no attempt hasbeen made so far to incorporate the random
measurement error into the evaluation procedure. In the discussion in this paper we do not consider the problem
of converting trap counts into a discrete population density function. In other words, further in the text we assume
that the number of insects caught in each trap already represents the value of the absolute population density in its
catchment area but each trap count has an inherent random error.

Numerical integration methods are convenient for the studyof noisy data because their formulation allows one
to easily control the contribution of the random error into the approximation of the pest insect abundance. It will
be demonstrated in our paper how random error in collected trap counts can be converted into random error in
a pest abundance estimate. We therefore explain how to calculate the mean as well as a credible interval of the
evaluation error, when the discrete density function is randomly perturbed.

Another topic discussed in our paper is the impact of the error induced by noise on the accuracy of evaluation
when the data are sparse. The problem of sparse data remains extremely important in IPM programmes, as a
widespread situation is that financial, ecological and other restrictions do not allow for a large number of traps
to be installed in an agricultural field. In routine pest monitoring programmes the number of traps rarely exceeds
twenty [19], while in some cases it can be as small as one or a few traps per field [22]. It has been discussed in
[25, 28] that an estimate of pest abundance can be very inaccurate on a coarse grid of traps, especially when pest
abundance is evaluated from a heterogeneous density pattern. Hence the intuitive expectation is that an estimate
of pest abundance based on noisy data will be even worse. However, it will be shown in the paper that, perhaps
counter-intuitively, noise does not have a lot of impact of the accuracy of a pest abundance estimate when the
number of traps is small.

2 Quantifying the uncertainty in the pest abundance evaluation problem

In this section we briefly recall a numerical integration technique for the problem of pest abundance evaluation. We
consider a trapping procedure in an agricultural field and assume first that the trap counts are precise. We explain
how exact information about the pest population density at trap locations can be transformed into a numerical
integration problem. We then assume uncertainty in field measurements and incorporate a random error into the
numerical integration problem.

2.1 Computation of pest abundance by numerical integration

For the sake of convenience we focus the discussion in this paper on the one-dimensional case1. Let the domainD
where the traps are installed be represented by the interval[a, b]. Since an obvious linear transformation maps the
domainD onto the interval[0, 1], below we consider a total numberN of traps installed across the unit interval.

1A detailed explanation of numerical integration techniquefor two-dimensional problems with precise data can be foundin [27, 29]
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The locationxi of a trap is represented by the indexi, thusfi corresponds to the pest population density at that
trap location.

Methods of numerical integration are applied when an integrandf(x) defined over the interval[0, 1] is only
available at pointsxi, i = 1, . . . , N . If we knew the pest insect spatial density distributionf(x) at any point of the
domain[0, 1], then the pest abundanceI in the field would be computed as the integral of the continuous density
functionf(x),

I =

1
∫

0

f(x) dx.

However, the pest population density function is only givento us as a discrete set of data, that isf(x) ≡ fi, where
i = 1, . . . , N . Consequently the above integral cannot be evaluated exactly and must instead be approximated by
means of numerical integration.

For the rest of the section 2.1 we assume that we knowprecise (i.e., unperturbed) values of the population
densityf(x) at trap locationsxi, i = 1, . . . , N . A general numerical integration formula is then written as(e.g see
[10])

I ≈ Ia =

N
∑

i=1

wifi, (1)

whereIa is an approximation of the exact integralI, andwi, i = 1, . . . , N , represent weight coefficients that
define a particular method of integration. The values of the weightswi are dependent on the numberN of traps
and on their location. In the case that the traps are located arbitrarily, there is no ready-to use formulas for the
weight coefficients and they must be calculated in advance inorder to employ the formula (1) (e.g., see [30]).
When a systematic sampling plan is used whereby the traps have an equal distance between them, the problem of
numerical integration is reduced to using a chosen method from the Newton-Cotes family of numerical integration
methods and the weight coefficients are readily available inthe literature. The trapezoidal rule is, perhaps, the
most well-known member of the Newton-Cotes family with the weights defined as

wi = ℎ/2 for i = 1 andi = N and wi = ℎ for i = 2, . . . , N − 1, (2)

whereℎ > 0 is the fixed distance between traps.
For any chosen method of numerical integration and any fixed numberN of traps used to collect the data, the

accuracy of an approximationIa is assessed by analysing the approximation error. The relative approximation
errorErel is defined as

Erel(N) =
∣I − Ia∣

∣I∣ , (3)

where clearly the lower the relative error, the more accurate the estimationIa of the pest abundanceI. To ensure
the correct pest management decision is made,e.g whether or not to apply pesticides, the estimate should be
sufficiently accurate. We therefore require the estimated pest abundance to be within a specified estimate tolerance
� of the true pest abundance,i.e. we require the relative errorErel to satisfy the following condition:

Erel(N) ≤ �. (4)

Clearly, the approximation error (3) depends on the numberN of traps where the valuesfi are available. In
ecological applications the numberN is usually small and that may result in a big approximation error Erel(N)

[25, 27]. Hence an estimate tolerance of� ∼ 0.2 − 0.5 is already considered acceptable in many ecological
problems [23, 34]. Furthermore, it has been shown in [28, 27,29] that for any fixedN the errorErel(N) depends
on the spatial pattern of the density function.
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It is important to note here that in ecological problems an estimate of the pest abundance is very often obtained
using the sample mean pest population density [9] which we denote byf̄ . This is defined as follows (e.g see [35])

f̄ =
1

N

N
∑

i=1

fi,

An estimateIa to the true number of pestsI in the field is then given by

I ≈ Ia = Af̄, (5)

whereA is the area of the agricultural field.
Clearly, the method (5) can be incorporated into a general framework of numerical integration (1) with the

weights given bywi = 1/N for i = 1, . . . , N , if the integration is done over the unit interval (i.e.,A = 1).
Identification of (5) within the framework (1) allows us to compare it with other methods of numerical integration.
While the statistical approach (5) provides a straightforward and convenient way to evaluate the pest abundance,
it has been demonstrated in [12, 27, 29] that different choice of weight coefficients in (1) gives us better accuracy
than using the method (5) for the same number of traps. Meanwhile, we shall see later in the paper that consid-
ering the problem of pest abundance evaluation as one of numerical integration has another advantage. Namely,
representation of the estimateIa in the form (1) is extremely convenient when the evaluation of the pest population
size is required based on perturbed datafi. In the next section we introduce the uncertainty of an approximation
Ia generated by the uncertainty in the datafi, i = 1, . . . , N . The weight coefficients in a method of numerical
integration given to us are then used in order to relate the uncertainty in the estimateIa and consequently in the
errorE(N) to the uncertainty in trap counts.

2.2 The uncertainty of pest abundance evaluation from noisy measurements

As could be seen in the previous section, when the pest abundance is evaluated from trap counts, the evaluation
error (3) is always present in the problem. This happens because we replace a continuous density function with a
discrete set of function valuesfi, i = 1, 2, . . . , N . Our previous studies of estimating pest abundance by meansof
numerical integration [27, 29] have been focused on how the error (3) can be controlled based on the assumption
that the pest population densities provided by the trap counts are indeed equal to the true densities. However, this
assumption is not entirely realistic, as measurements of the pest population density are subject tomeasurement
error.

Let the measured pest population density at trap locationxi be denoted bỹfi. Let alsofi refer to the exact
densityf(x) at the pointxi, as discussed in the section 2.1. Applying a method of numerical integration (1) to the
measured pest densities̃fi, i = 1, . . . , N gives the following estimate of the pest abundance:

Ĩ =

N
∑

i=1

wif̃i. (6)

The relative error of an approximation based on measured data which we denote bỹErel is then given by

Ẽrel =
∣I − Ĩ∣
∣I∣ . (7)

The focus of our investigation is to establish how the introduction of noise to the data set{fi} affects the accuracy
of the estimation, that is to determine how̃Erel differs fromErel.
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The exact value of the pest densityfi at any locationi is not known, hence the need to install traps. Nor can
the exact value of the random measurement error be known either. There is thus anuncertainty associated with the
measured valuẽfi. In our work we simulate the uncertainty by considering any measured value of the pest density
f̃i to be a realisation of a normally distributed random variable Fi with mean�i, and standard deviation�i. The
probability density function is (e.g see [15])

p(f̃i) =
1

�i
√
2�

exp

⎧

⎨

⎩

−1

2

(

f̃i − �i

�i

)2
⎫

⎬

⎭

, (8)

where we assume that the mean is equal to the true pest density, that is�i = fi. The uncertainty in the measured
valuef̃i, which we denote byu(f̃i) can be then quantified by the standard deviation�i of the random variableFi,

u(f̃i) = �i. (9)

If a random variable has the normal distribution, then any single measurement̃fi, i.e. a single realisation of the
random variableFi, lies in the range

f̃i ∈ [fi − z�i, fi + z�i] (10)

with probability

P (z) = erf

(

z√
2

)

, (11)

where the error function erf(z) is given by

erf(z) =
2√
�

∫ z

0
exp

(

−t2
)

dt.

Let us assume that with the same probability, the pest population density obtained via a trap count is within a
fixed percentage of the true density at the trap location. In other words with probabilityP (z) each measured pest
population densityfi lies somewhere within the range,

f̃i ∈ [fi − �mfi, fi + �mfi],

where we refer to�m ∈ [�m1, �m2] ⊂ (0, 1) as themeasurement tolerance. Equating the interval above to that
given by (10) gives the following relation between the standard deviation�i and the measurement tolerance�m:

�i =
�mfi
z

. (12)

It is worth noting here that our definition of noise does not depend on the length of the time interval when traps
are exposed in the field. Generally, a longer time of exposition can be thought of as collecting a bigger number of
samples that, in turn, results in smaller uncertainty in data (i.e. a smaller value of the standard deviation� in the
normal distribution) [36]. However, the measurement tolerance�m we use in the problem is always expressed as a
percentage of the true valuefi at the trap locationxi. Hence a longer (shorter) time of traps exposition is already
taken into account by considering larger (smaller) valuesfi of the density function.

An example of the uncertainty associated with the function values is depicted in Figure 1a. The ecologically
relevant (i.e. non-negative) functionf(x) has been defined as

f(x) =
1

3
sin

(

3�x

2

)

+
2

3
, x ∈ [0, 1],
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Figure 1: Evaluation of pest abundance from noisy data. (a) An example of the pest population density function
f(x). Three equidistant traps are installed over the unit interval to measure the densityf(x). The density valuẽfi,
i = 1, 2, 3 measured at the positionxi of the trap lies within the range (10) with probabilityP (z) as defined by (11).
The lower and upper limits of this range are denotedf̃min

i andf̃max
i respectively. The measurement tolerance has

been set as�m = 0.3 and we have fixedz = 3. (b) The distribution of the estimatẽI of pest abundance computed
from the measured datãfi on a grid ofN = 3 traps. Each realisation is presented as a skewed cross in thefigure,
wherenr = 100 realisations of the estimatẽI are shown. The values̃I are compared with the exact valueI of the
pest abundance (solid line) and the estimateIa computed from the exact datafi (dashed line).

hence the pest abundance isI = 0.737402. The exact pest population densitiesfi correspond to the functionf(x)
evaluated at the trap locationsxi, i = 1, . . . , N which are regularly distributed on the interval[0, 1]. In the example
shown in Figure 1a the number of traps has been fixed asN = 3 hence the traps are located atx1 = 0, x2 = 0.5

andx3 = 1. The estimateIa formulated by numerically integrating the exact datafi, i = 1, 2, 3 via the trapezoidal
rule (2) isIa = 0.701184, while the error isErel = 0.049115 which is much lower than required tolerance� .

We then consider the perturbed data as shown in Figure 1a. Sets of measured data values̃fi are generated by
perturbing the function valuesfi at each pointxi, i = 1, 2, 3, according to the transformation

f̃i = fi + 
�i, (13)

where
 is a random variable taken from the standard normal distribution, and�i is defined according to (12). The
measurement tolerance is set as�m = 0.3. We also fixz = 3, therefore, the probability that each realisationf̃i
lies within the range (10) isP (z = 3) ≈ 0.9973. The transformation is appliednr = 100 times to each valuefi
to generatenr sets of measured data fori = 1, 2, 3. These data sets are integrated for any fixednr using the same
trapezoidal rule (2) to yield estimates of the pest abundance Ĩ.

The distribution of the estimatẽI of pest abundance computed from the perturbed dataf̃i on a grid ofN = 3

traps is shown in Figure 1b. It is clear from the figure that theintroduction of noise can cause the estimateĨ based
on measured data to be further away from the true abundanceI making the accuracy of evaluation very poor for
some realisations of̃I. Hence we want to control a range of the errorẼrel induced by the noise in the datafi and
in the next section we quantify the resulting uncertainty inthe accuracỹErel of the approximated pest abundance.
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zσE − µE
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Figure 2: The probability density function of the quantityE as described by (16). Reflecting the negative con-
tributions in the y-axis yields the folded normal distribution of Ẽrel. The upper and lower limits of the interval
[Ẽmin, Ẽmax] to which Ẽrel belong with probabilityP (z) are defined differently depending on the distance be-
tween the true pest abundanceI and the estimate formulated on exact dataIa: (a) when∣I − Ia∣ ≤ z�Ĩ and (b)
when∣I − Ia∣ > z�Ĩ . See the appendix for the details of how̃Emin andẼmax are calculated.

2.3 Calculation of the evaluation error Ẽrel from noisy data

Consider random perturbation (8) of the density functionf(x). It can be seen from (6) that an estimateĨ of
pest abundance is a linear combination of the measured pest densitiesf̃i. HenceĨ can in turn be considered as a
realisation of a normally distributed random variable which we shall denotẽIF where

ĨF =

N
∑

i=1

wiFi. (14)

The random variablẽIF has mean�Ĩ = Ia, whereIa is the estimated abundance based on the exact pest densities.
Furthermore, the standard deviation�Ĩ is

�Ĩ =

√

√

√

⎷

N
∑

i=1

w2
i u

2(f̃i), (15)

(e.g., see [8]).
We now determine the probability density function of the random variableẼrel. For the sake of convenience

let us first consider the following auxiliary quantity

E =
I − Ĩ

I
. (16)

SinceE is a linear function of a normally distributed random variable Ĩ, it can be considered as a realisation of a
normally distributed random variable with mean�E = 1− Ia/I and standard deviation�E = �Ĩ/I. We note that
in ecological applications the true pest abundanceI is alwaysI > 0. The probability density function is described
by

p(E) =
1

�E
√
2�

exp

{

−1

2

(

E − �E

�E

)2
}

, (17)
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and the quantityE belongs to the range

E ∈ [�E − z�E , �E + z�E ] (18)

with probabilityP (z) given by (11). Examples of the probability density functionof E are shown in Figure 2.
We have

Ẽrel = ∣E∣,
andẼrel becomes a realisation of a random variable with a folded normal distribution (e.g., see [18]). The prob-
ability density function ofẼrel is then formed from that of E by reflecting the the negative contributions in the
y-axis and is given by the following expression

p(Ẽrel) =
1

�E
√
2�

⎡

⎣exp

⎧

⎨

⎩

−1

2

(

Ẽrel − �E

�E

)2
⎫

⎬

⎭

+ exp

⎧

⎨

⎩

−1

2

(

Ẽrel + �E

�E

)2
⎫

⎬

⎭

⎤

⎦ (19)

=
I

�Ĩ
√
2�

⎡

⎣exp

⎧

⎨

⎩

−1

2

(

I(1− Ẽrel)− Ia
�Ĩ

)2
⎫

⎬

⎭

+ exp

⎧

⎨

⎩

−1

2

(

I(1 + Ẽrel)− Ia
�Ĩ

)2
⎫

⎬

⎭

⎤

⎦ ,

where the mean value is

�Ẽrel
=

(

1− Ia
I

)[

1− 2Φ

(

Ia − I

�Ĩ

)]

+
�Ĩ
I

√

2

�
exp

{

−1

2

(

Ia − I

�Ĩ

)2
}

, (20)

and the standard deviation is
�Ẽrel

=
√

�2
E + �2

E − �2
Ẽrel

. (21)

We now seek a range[Ẽmin, Ẽmax] to whichẼrel belongs with probabilityP (z). It can be seen from (17) (see
also Figure 2) that the range of the errorẼrel depends on the quality of approximationIa obtained from the exact
valuesfi of the pest population density. Two separate cases depending on the nature of the probability density
function (17) should be considered.

The first case is when the mass to be reflected in the y-axis in order to obtain the folded normal distribution
(19) contains part but not all of the range (18). That occurs when the distance between the true pest abundanceI

and the estimateIa formed from exact data satisfies the condition∣I − Ia∣ ≤ z�Ĩ (see Figure 2a). This condition
requires a certain level of accuracy of the approximation formed from exact data (i.e. the approximationIa is
required to be sufficiently close toI).

We then consider the scenario when∣I − Ia∣ > z�Ĩ , i.e. a poor approximation is obtained on integrating exact
data. The mass to the left of the y-axis is either entirely exclusive of the interval (18) in the case that�E is positive
(see Figure 2b) or, when�E is negative, is entirely inclusive.

Combining the two cases above and making the calculations explained in the appendix we find that̃Erel ∈
[Ẽmin, Ẽmax] with probabilityP (z) when the lower limit is defined as

Ẽmin =

⎧



⎨



⎩

0 for ∣I − Ia∣ ≤ z�Ĩ ,

Erel −
z�Ĩ
I

for ∣I − Ia∣ > z�Ĩ ,

(22)

and the upper limit is given by

Ẽmax =

⎧









⎨









⎩

∣�E∣+ �EΦ
−1

[

2Φ(z) −Φ

(

z + 2
∣�E ∣
�E

)]

, for ∣I − Ia∣ ≤ z�Ĩ ,

∣�E∣+ �EΦ
−1

[

Φ(z)− Φ

(

z − 2∣�E ∣
�E

)

− Φ

(

z +
2∣�E ∣
�E

)

+ 1

]

, for ∣I − Ia∣ > z�Ĩ ,

(23)
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whereΦ andΦ−1 are the standard normal cumulative distribution function and its inverse respectively. We have
thus constructed an� percent credible interval (e.g see [4]), where� = 100P (z), for the errorẼrel of an esti-
mate based on measured data. The quantitiesẼmin, Ẽmax are the lower and upper limits of this credible interval
respectively.

It immediately follows from (22) and (23) that the impact noise in data makes on the approximation error is
defined by the accuracy of the evaluation of pest abundance obtained from exact values of the pest population
density, which in turn depends on the numberN of traps where the data are available. In the next section we
illustrate this conclusion by various numerical examples.

3 Calculating the pest insect abundance from the noisy density function: exam-
ples and discussion

In this section we perform some conventional numerical testcases to verify our approach. We then further inves-
tigate how introducing noise to the density function valuesaffects the accuracy of the estimated pest abundance
and in particular we focus on the instance when the grid of traps is coarse. We follow the same methodology as
used in [28] and begin by considering some continuous functions with various level of spatial complexity where
we require that the exact pest abundanceI is available in closed form. For each test case we generate a regularly
spaced set of traps and unless otherwise stated we take the unit interval [0, 1] to represent the agricultural field.
Therefore, the traps are located as follows:

x1 = 0, xi = xi−1 + ℎ, for i = 2, . . . , N − 1, xN = 1, (24)

whereℎ = (xN − x1)/(N − 1) is the fixed distance between traps. The exact pest population densities are then
given byfi ≡ f(xi), i = 1, . . . , N .

Let us begin with a test case with simple behaviour whereby the functionf(x) has several wide peaks, as can
be seen in Figure 3a:

f(x) = exp (x) sin (3�x)2 + cos (�x)2. (25)

We fix the numberN of traps and generate measured values of the pest density by perturbing each exact pest
densityfi a total ofnr = 100, 000 times according to the transformation (13). We therefore have nr sets of
measured values{f̃i}. For each set of data an estimate of the pest abundance is obtained by implementing the
compound trapezoidal rule (2) and the relative error is thencalculated. To confirm that thesenr = 100, 000

estimates ofẼrel are indeed realisations of a random variable with a folded normal distribution with mean�Ẽrel

and standard deviation�Ẽrel
we calculate the sample mean

�̄Ẽrel
=

1

N

nr
∑

i=1

Ẽreli , (26)

and the sample standard deviation

sẼrel
=

√

√

√

⎷

1

N − 1

nr
∑

i=1

(

Ẽreli − �̄Ẽrel

)2
, (27)

and make a comparison with the theoretical quantities givenby (20) and (21) respectively.
We then establish the following proportion

Pnum =
ñr

nr
, (28)
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Figure 3: The test cases to validate the evaluation errorẼrel. (a), (b), and (c) are defined over the unit interval
[0, 1] by the functions given in (25), (29), and (30) respectively.

N �Ẽrel
�̄Ẽrel

∣�
Ẽrel

−�̄
Ẽrel

∣

∣�
Ẽ
∣ �Ẽrel

sẼrel

∣�
Ẽrel

−s
Ẽrel

∣

∣�
Ẽrel

∣

3 5.614872e-02 5.607518e-02 1.309661e-03 4.227882e-02 4.239840e-02 2.828365e-03
5 4.043406e-02 4.034606e-02 2.176191e-03 3.050063e-02 3.041125e-02 2.828365e-03
9 3.203438e-02 3.204198e-02 2.372352e-04 2.420232e-02 2.419244e-02 4.078940e-04
17 2.277488e-02 2.283417e-02 2.603297e-03 1.720666e-02 1.727488e-02 3.964279e-03
33 1.615665e-02 1.618614e-02 1.825433e-03 1.220652e-02 1.226183e-02 4.531462e-03
65 1.144294e-02 1.149041e-02 4.148032e-03 8.645263e-03 8.672099e-03 3.104113e-03

Table 1: Comparison between the theoretical mean and standard deviation of the quantitỹErel as defined by (20)
and (21), and their numerical counterparts (26) and (27) over several grids ofN traps. The theoretical means
and standard deviations are shown in the columns labelled�Ẽrel

and�Ẽrel
respectively and the sample mean and

standard deviations are labelled�̄Ẽrel
andsẼrel

. The relative difference between the theoretical quantityand its
numerical counterpart is calculated in the last column of the table. Good agreement can be seen thus providing
verification of our approach.

whereñr is the number of the relative errors̃Erel which fall within the range[Ẽmin, Ẽmax] as defined by (22) and
(23) in order to make a comparison with the theoretical probability P (z). The number of traps is then increased as
2N − 1 and the quantities (26)-(28) are recalculated.

We apply the above procedure to the test case (25), where the number of traps is subsequently increased to be
N = 3, 5, . . . , 65. We select the measurement tolerance as�m = 0.3. As can be seen in Table 1, for each value of
N we have good agreement between the sample mean�̄Ẽrel

and the theoretical mean�Ẽrel
, and likewise between

the sample and theoretical standard deviationssẼrel
and�Ẽrel

. We fix z = 3 therefore we have the theoretical

probability thatẼrel lies within the range[Ẽmin, Ẽmax] asP (z) ≈ 0.9973. It can be seen from Table 2 that the
corresponding numerical probabilityPnum as given by (28) is indeed approximately 0.9973. We are therefore
satisfied that the range given by (22) and (23) can be used to make reliable conclusions about the errorÊrel of an
estimated pest abundance based on measured dataĨ.

We now directly compare the quantitiesErel andẼrel in order to understand how using noisy data rather than
exact pest population densities impacts the accuracy of a pest abundance estimate. Let us introduce further test
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N Pnum
∣P (3)−Pnum∣

∣P (3)∣

3 0.99732 1.984965e-05
5 0.99745 1.502016e-04
9 0.99722 8.042106e-05
17 0.99716 1.405835e-04
33 0.99739 9.003915e-05
65 0.99722 8.042106e-05

Table 2: Comparison between the theoretical probabilityP (z) as defined by (11) that̃Erel lies within the range
[Ẽmin, Ẽmax] and the numerical probabilityPnum computed according to (28) over a series of grids withN traps.
We fix z = 3 thusP (z) = P (3) ≈ 0.9973. The relative error between the two quantities is shown in the last
column.

cases with an increased level of spatial complexity to consider alongside that prescribed by the function (25). The
density is either concentrated in a narrow layer as defined bythe following function (see Fig. 3b):

f(x) = (x+ 0.1)−3, (29)

or is located within a small sub-domain of the unit interval and also exhibits oscillatory behaviour (see Fig. 3c):

f(x) = exp (−20x) sin (20�x)2. (30)

For an increasing numberN of traps spaced regularly according to (24), the relative error Erel(N) of an
approximation based on exact data is calculated. The mean value�Ẽrel

of the error of an approximation based on

measured values as well as upper and lower bounds of the interval [Ẽmin, Ẽmax] are found from (20) and (22),
(23) respectively for the same set of values ofN . The measurement tolerance is fixed as�m = 0.3 throughout and
we setz = 3.

The corresponding graphs of the error as a function of the numberN of traps (convergence curves) for each of
the test cases are displayed in Figure 4. An estimate of the integralI is considered to be accurate if it satisfies the
condition (4). We select the tolerance� = 0.25 which lies within the acceptable range for ecological applications
given in section 2, and which has been recommended for routine monitoring [33]. The line� = 0.25 is therefore
also plotted so as to determine when the estimates become sufficiently accurate.

It can be seen in Figure 4a that for the spatially simpler testcase (25), the estimates based on exact data are
sufficiently accurate for the entire range of the numberN of traps considered in the problem. The curveErel always
lies below the line� = 0.25. It is also evident from the figure that the addition of noise to the data significantly
slows the convergence of the pest abundance estimate to the exact value when we increase the number of traps.
Clearly the curve for the mean error based on perturbed data�Ẽrel

(N) has a less steep gradient than itsErel(N)

counterpart. This is because whilst the uncertainty�Ẽrel
associated with the estimate based on measured values

decreases as the number of trapsN increases which is evident in Table 1), the contribution to the mean error
�Ẽrel

from the noise is more dominant than that of the integration error Erel. In other words the uncertainty�Ẽrel

decreases at a slower rate than the integration error decreases. Meanwhile, it is important to note the mean error
�Ẽrel

does converge to zero in the theoretical limit of an infinite number of traps (e.g., see [8]).

For the test case above thẽEmax curve entirely lies below the upper threshold� = 0.25 of the desired accuracy.
The lower bound of the interval[Ẽmin, Ẽmax] is Ẽmin ≡ 0 as the estimate based on exact valuesĨ is within z�Ĩ ,
where we have chosenz = 3, of the exact pest abundanceI right from the initial estimate. The valuẽEmin = 0 is
not displayed since the plots are given on a logarithmic scale.
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Figure 4: (a)-(c) The error for the approximation based on exact dataErel is compared with the mean error�Ẽrel

of an approximation based on noisy data alongside the limitsof the interval[Ẽmin, Ẽmax] for the test cases (25),
(29) and (30) respectively as shown in Figure 3a-3c. The measurement tolerance is fixed as�m = 0.3 andz = 3 in
each case. The legend for each figure is as shown in (a). (d) Mean error�Ẽrel

of an approximation based on noisy

data and the upper limit of the interval[Ẽmin, Ẽmax] for the test case (25) as shown in Figure 3a where values
�m = 0.05, 0.1, 0.3 of the measurement tolerance have been selected. We fixz = 3 as before.
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Meanwhile, for more spatially complex density distributions (29) and (30), the number of trapsN has to be
sufficiently increased before the desired level of accuracyE ≤ � = 0.25 is obtained (see Figure 4b and Figure 4c).
Similarly there needs to be some level of grid refinement before the lower limit becomes̃Emin = 0. Prior to this
occurring the mean error�Ẽrel

lies close to the error for the unperturbed data setErel as indeed does̃Emax. After

the lower limit of the credible interval for̃Erel becomesẼmin = 0, a difference in the convergence rates becomes
evident with the convergence of the perturbed data becomingmuch slower.

One feature of the graph in Figure 4c has to be mentioned here.In the case of the initial estimates formulated
from N = 3 andN = 5 trap counts, it can be seen that the upper and lower limits of the interval[Ẽmin, Ẽmax] lie
extremely close to the error based on exact dataErel. This is an artefact of the way in which each measured value
of pest densityf̃i is considered to be related to the true valuefi; each measured value is considered to be within
some percentage of the true value. The function values at theinitial N = 3 trap locations which we recall are
regularly distributed across the interval[0, 1], are extremely small in magnitude meaning the resulting uncertainty
is also very small. This is also the case on the subsequent grid of N = 5 traps, whereas, when the number of
traps is increased toN = 9 some function values with a larger magnitude are detected and hence the uncertainty
is larger in comparison to that associated with the previousestimate.

So far we have looked at how noise impacts the accuracy of an estimate of the pest abundance for a fixed
measurement tolerance of�m. We now investigate the impact of noise on an estimate’s accuracy as the quantity�m
is varied. Let us again consider the simpler test case (25) asshown in Figure 3a. Figure 4d shows the convergence
curves for different values of the measurement tolerance:�m = 0.05, 0.1 and 0.3 wherez is fixed asz = 3.
It can be seen that increasing the measurement tolerance causes the convergence curve to shift upwards; greater
uncertainty associated with the set of measured values{f̃i} gives rise to greater uncertainty associated with the
estimate formulated from this data set as one would expect. Obviously, the point at which the error becomes
acceptable, that is it falls below the upper threshold of� = 0.25, occurs later meaning a larger number of traps
would be needed to acquire a sufficiently accurate estimate.

3.1 Ecological Test Cases

Although informative, the test cases above were chosen for their mathematically interesting characteristics rather
than their direct relevance to the pest monitoring problem.Therefore, we now turn our attention to some ecologi-
cally meaningful test cases. We require the ability to repeat estimates of the pest abundance for the same density
function for an increased number of traps. It is difficult to find field data in a one-dimensional domain which
would be suitable for our purpose, so therefore we simulate data using the spatially explicit form of the what we
consider the predator-prey model with the Allee effect [21,38]. The dimensionless form of the model is given by
the following system of equations:

∂f(x, t)

∂t
= d

∂2f

∂x2
+ f(1− f)− fg

f + p
,

∂g(x, t)

∂t
= d

∂2g

∂x2
+ k

fg

f + p
−mg .

(31)

wheref(x, t) is the density of the prey which we consider to be the pest insect andg(x, t) is that of some predatory
species at positionx and timet > 0, d is the diffusion coefficient,p is the half-saturation prey density,k is the
food assimilation efficiency coefficient andm is the predator mortality. We fix the time ast = t̃ > 0 and
numerically solve the system of equations (31) to obtain thepest population densityf(x, t̃). Sincet̃ is fixed we
shall henceforth denote this as simplyf(x). This is done for different values of the parameters in the model to
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Figure 5: Ecologically meaningful test cases as generated by the model (31) at different timest and for various
choices of the dimensionless diffusion coefficientd: (a) t = 5, d = 10−4 (b) t = 50, d = 10−4 (c) t = 100, d =

10−5 (d) t = 400, d = 10−5. The reader is referred to [28] for the choices of initial andboundary conditions.

generate four ecologically meaningful test cases which areshown in Figure 5. The monotone test case as shown
in Figure 5a and the single peak test case (see Figure 5b) are fairly simple in terms of spatial complexity. The pest
density function shown in Figure 5c, which we will refer to asthe three peak test case, and the multi-peak test
case (see Figure 5d) are examples of more complex spatial heterogeneity. These test cases are the same as those
discussed in [28], therefore the interested reader is referred to this paper for the the initial and boundary conditions
that were used in their generation and for further details ofthe numerical solution.

The densityf(x) is found by numerically solving (31) at the positions of a large numberNf of regularly
distributed traps; we takeNf = 215 + 1. Since the pest density function for each of the ecological test cases is
obtained as a result of numerical solution, the exact pest abundanceI is not available. The ‘exact’ pest abundance
I is then computed using the compound trapezoidal rule (2) from the exact datafi obtained on a very fine grid of
Nf traps. Once we have found the values of the pest density function f(x) at the trap locationsxi, i = 1, ..., Nf ,
we can find estimatesIa(N) of the pest abundance for any smaller numberN of traps by extracting the relevant
pest density function values from this data set and applyingthe same evaluation rule (2).

Let us fix the number of traps asN = N1. As before we consider each value of the density function as a
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realisation of the normally distributed random variableFi with mean�i = fi and the standard deviation is�i as
defined by (12). For each set of data an estimateĨ is calculated and then correspondinglyẼrel is calculated from
(7). The number of traps is then increased as2N1− 1 and the above is repeated. This is done several times and the
corresponding convergence curves are shown in Figure 6. Themeasurement tolerance is fixed as�m = 0.3 and we
also setz = 3.

The results of the ecological test cases reconfirm our earlier findings. If the numberN of traps installed can
resolve the spatial pattern of the density functionf(x) and can therefore provide good accuracy of evaluation,
then noise makes visible impact on the evaluation error. In other words, if for a givenN the distance between the
estimate based on exact dataIa and the exact abundanceI remains withinz multiples of the standard deviation
�Ĩ , then the convergence curve for the estimate based on exact dataErel differs significantly from the mean
estimate�Ẽrel

based on perturbed data. That can been seen in Figure 6a wherethe results for a monotone density
distribution of Figure 5a are presented. For a monotone function the accuracy of evaluation is already good on
coarse grids (e.g., seeN = 5 in the graph) and the errorErel obtained on exact data is several orders of magnitude
smaller than the mean error�Ẽrel

whenN increases. However, it is important to emphasize here that (a) the mean
error is already below the required tolerance even on very coarse grids and (b) as we already mentioned in our
previous discussion, the mean error converges to zero as thenumberN of traps grows infinitely large.

On the other hand, if the estimate based on unperturbed dataIa is already poor, then the introduction of noise
makes little difference to the accuracy of evaluation. Thisbehaviour is shown in Figures 6b-6d where the complex
spatial density distributions are not well resolved on initial grids with a small numberN of traps. As a result, the
curvesErel and�Ẽrel

lie close to each other.
It should be mentioned that, as shown in Figures 6c and 6d for both the three peak and multi-peak test cases,

the quantityẼmin on the initial grid ofN = 3 traps isẼmin = 0 whereas for a number of subsequent grids
it becomes non-zero before eventually returning to zero. Itis by chance only that for these test cases the initial
estimate on a grid ofN = 3 nodes is sufficiently accurate to satisfy the condition∣I − Ia∣ ≤ z�Ĩ ; see also our
discussion of the test case (30). However, the distance between the estimate based on exact dataIa and the exact
abundanceI does not decrease fast enough to remain withinz multiples of the standard deviation�Ĩ until the grid
of traps is sufficiently refined.

A generic behaviour of the approximation error is that the accuracy of approximationIa worsens when the
spatial complexity of the density function increases [27, 28, 29]. Consequently the number of traps for which
the error falls solidly below the required tolerance increases when the spatial density evolves from a monotone
function to a multi-peak density distribution. It can be seen from Figure 6d that for a multi-peak density function
(i.e. the function that presents an ecologically important case of the patchy population density) the impact of
noise is negligible when the number of traps is within the rangeN ∼ 10 used in ecological applications. While
this result should be further validated for two-dimensional density distributions, it may help ecologists to make a
correct decision about accuracy of evaluation on coarse grids of traps.

4 Concluding remarks

In our paper the problem of pest insect abundance evaluationhas been discussed. We have considered a trapping
procedure where information about the pest population density f(x) at trap locations is then used in a numerical
integration problem in order to calculate an estimate of thetotal pest population size. Since a continuous density
functionf(x) is replaced with a discrete set of function valuesfi, i = 1, 2, . . . , N , exact computation of the pest
abundance is impossible and an evaluation (approximation)error is inevitably present in the problem.

The approximation error is the main indicator of the accuracy of an evaluation, and correct estimation of this
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Figure 6: The error for the approximation based on exact dataErel is compared with the mean error�Ẽrel
of an

approximation based on noisy data and the limits of the range[Ẽmin, Ẽmax] for the ecologically meaningful (a)
Monotone, (b) Single peak, (c) Three peak and (d) Multi-peaktest cases as shown in Figures 5a - 5d respectively.
The measurement tolerance is fixed as�m = 0.3 andz = 3 in each case. The legend for all figures is as shown in
(a).

error is extremely important in ecological problems. Accurate evaluation of the total pest population size remains
a crucial requirement in any IPM programme, as it allows one to avoid making an unjustified decision about
control action (e.g., application of pesticides). Generally, the approximation error depends on the numberN of
trap locations where the valuesfi of the density function are available. Also, for any fixedN the approximation
error depends on the spatial pattern of the density function.

The standard definition of the approximation error implies that an approximation of the pest abundance is
based on exact datafi, i = 1, 2, . . . , N . However, random error (noise) should be expected when the information
about the density function is collected. Thus in this paper the aim of our research was to incorporate noise into the
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evaluation procedure and further investigate the approximation error when the pest population density function is
randomly perturbed at any trap location.

The main results of the paper are as follows:

1. We have suggested a novel approach to handling the approximation error when the pest abundance evaluation
is based on randomly perturbed data. Evaluation is not basedon statistical methods but is done using a
numerical integration technique. An advantage of numerical integration methods over a standard statistical
approach is that they offer better accuracy of evaluation for a wide range of spatial density distributions and
are therefore considered as a promising alternative to the existing statistical methods of evaluation.

2. In the paper we have first explained a numerical integration procedure under the assumption that the data
used for evaluation are exact. We then incorporated noise indensity measurements into numerical integration
formulation of the pest abundance problem. The mean approximation error has been obtained along with the
range to whichẼrel belongs with probabilityP (z). In other words we have constructed an� percent credible
interval [Ẽmin, Ẽmax] for the errorẼrel of an estimate based on measured data, where� = 100P (z). The
theoretical results obtained in the paper have been verifiedfor various one-dimensional density distributions
when a selected method of integration (the composite trapezoidal rule) is applied in the problem.

3. We have demonstrated that the error induced by noise in thepest population density data depends on the
accuracy of evaluation obtained when exact density values are considered. In particular, the credible interval
we have established for̃Erel contains zero if the estimate of pest abundanceIa formed in the absence of
noise is sufficiently accurate. Otherwise the lower bound ofthis intervalEmin will be greater than zero.

4. One ecologically important case studied in the paper is approximation on coarse grids where the number
N of traps is small. It has been shown, perhaps contrary to intuitive thinking, that the impact of noise is
negligible when the data available are sparse. In other words, the accuracy of evaluation on coarse grids
can already be so poor that noise in field measurements of the pest population density does not make any
significant contribution. This result has been numericallyconfirmed for ecologically meaningful data.

5. Numerical experiments also revealed that, when we increase the number of traps, noise becomes a dominant
feature of the approximation and the mean error may differ from the approximation error obtained on exact
values of the density function by several orders of magnitude. Our results confirm that the mean error
converges to zero for an infinitely large number of traps. However, the convergence rate of the mean error
is much slower than the convergence rate of the approximation error obtained when exact data are used for
approximation. Some theoretical justification of this phenomenon has been provided in the literature [8], but
this issue requires further study with regard to ecologicalapplications and should become the focus of our
future research. In particular, we intend to compare the results obtained for uncorrelated noise (as discussed
in this paper) with the case when the noise in neighboring traps is correlated.

It is worth noting here that the approach developed in the paper is general enough and can be readily extended
to multi-dimensional problems. As soon as the weight coefficients in the numerical integration method (1) are
defined, our computation of the mean error along with the credible interval for Ẽrel does not rely upon the di-
mension of the physical space. Hence, our future work will befocused on two-dimensional problems where field
data are available from real-life measurements. Another important direction of future work is to study the impact
of noise when different methods are employed to evaluate thepest abundance. In our paper we have only used
the trapezoidal rule (2), while applying other methods of numerical integration (e.g., Simpson’s rule) can give an
estimate of pest abundance that will be more accurate on coarse grids of traps. It has been shown in the paper
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that the accuracy of approximation on exact data is crucial when the ecologically relevant situation of sparse data
is considered. Hence our research will be focused on furthercareful investigation of evaluation methods that can
provide good accuracy on coarse grids of traps.

Appendix. Finding a Credible Interval for the Relative Error in the Presence of
Noise

We seek the upper and lower limit of the interval[Ẽmin, Ẽmax] to which the quantitỹErel belongs with probability
P (z) given by (11) as discussed in section 2.3. We recall that the estimate of pest abundancẽI calculated from
measured data is a realisation of a normally distributed random variable with mean�Ĩ = Ia and standard deviation
�Ĩ as defined by (15). Thus any realisationĨ lies within the interval[Ia − z�Ĩ , Ia + z�Ĩ ] with probabilityP (z).
We use this credible interval for̃I to construct a credible interval for̃Erel. We consider two cases based on the
distance between the approximate integral formed from exact dataIa and the exact value of the integralI. Let us
begin by finding the lower limit of the interval,̃Emin.

Case 1:∣I − Ia∣ ≤ z�Ĩ

In this case, as can be seen from Fig. 7(a), an estimate based on measured datãI which belongs to the range
[Ia − z�Ĩ , Ia + z�Ĩ ] can coincide with the exact value of the integral. Thereforethe lower limit of the range
[Ẽmin, Ẽmax] is:

Ẽmin = 0. (32)

Case 2:∣I − Ia∣ > z�Ĩ

In this instance, from Fig. 7(b) we can see that the range[Ia − z�Ĩ , Ia + z�Ĩ ] does not include the exact value of
the integralI. Either we haveIa ≤ I in which case we can see that

Ẽmin =
∣I − Ia − z�Ĩ ∣

∣I∣ ,

or we haveIa > I, therefore

Ẽmin =
∣I − Ia + z�Ĩ ∣

∣I∣ ,

In both cases
Ẽmin = Erel −

z�Ĩ
I

, (33)

which is a strictly positive quantity as the condition∣I − Ia∣ > z�Ĩ of course means thatErel > z�Ĩ/I, where we
recall thatI > 0.

It should be mentioned that a zero relative error is still possible in the second case, when the distance between
the approximation based on exact data and the true value of the integral exceedsz multiples of the standard
deviation�

Ĩ
, however we choose to fix̃Erel as

Ẽmin =

⎧



⎨



⎩

min {E ≥ 0 : E ∈ [�E − z�E , �E + z�E ]} , for �E ≥ 0,

∣max {E ≤ 0 : E ∈ [�E − z�E , �E + z�E ]} ∣, for �E < 0

whereE is defined by (16). In other words we find the value of the quantity E closest to zero which lies within
the range (18) and then take the absolute value asẼmin (see Figure 2).
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Figure 7: Finding the interval[Ẽrel, Ẽmax] to whichẼrel belongs with probabilityP (z). (a) Case 1:∣I−Ia∣ ≤ z�Ĩ .
In this case, the exact value of the integralI lies within the credible interval for̃I thus the lower limit of the credible
interval for Ẽrel is Ẽrel = 0. (b) Case 2:∣I − Ia∣ > z�Ĩ . The exact value of the integralI lies outside, thus the
interval [Ẽmin, Ẽmax] does not include the zero value.

Let us now consider the upper limit̃Emax of the credible interval of̃Erel. To find Ẽmax we use the condition
that any single value of̃E lies within the range[Ẽmin, Ẽmax] with fixed probabilityP (z) as defined by (11). As
mentioned above,̃Erel is a realisation of a random variable with a folded normal distribution. This distribution is
formed by reflecting the negative quantities of the distribution (17) of the auxiliary errorE in the y-axis. Unless the
mean value of this underlying normal distribution is�E = 0, if we takeẼmax = �E + z�E then the probabilityP̂
thatẼrel lies within the above range will exceedP (z). We shall denote the additional contribution asP ∗, therefore

P̂ = P (z) + P ∗.

We now seek the appropriate value of the upper limitẼmax in order to satisfy the condition that̂P = P (z). Let
us temporarily impose the restriction�E ≥ 0. As when constructing the lower limit̃Emin, we consider the cases
when the distance between the approximation based on exact dataIa and the true value of the integralI exceeds
or is within z multiples of the standard deviation�Ĩ separately.

Case 1:∣I − Ia∣ ≤ z�Ĩ

As shown in Figure 2a the probabilityP ∗ is given by

P ∗ =

∫ �E−z�E

−�E−z�E

p(E) dE. (34)

In order to satisfy the condition̂P = P (z), we must then find̃Emax such that
∫ �E+z�E

Ẽmax

p(E) dE = P ∗. (35)

Using the transformation

E → E − �E

�E
from (34)and (35) we obtain the following in terms of the standard normal distribution functionΦ:

Φ(−z)−Φ

(−2�E

�E
− z

)

= Φ(z)− Φ

(

Ẽmax − �E

�E

)

.
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Rearranging gives

Ẽmax = �E + �EΦ
−1

[

2Φ(z)− Φ

(

z + 2
�E

�E

)]

. (36)

Case 2:∣I − Ia∣ > z�Ĩ

Similar calculations for this case as illustrated in Figure2b yield

Ẽmax = �E + �EΦ
−1

[

Φ(z)− Φ

(

z − 2�E

�E

)

− Φ

(

z +
2�E

�E

)

+ 1

]

, (37)

Earlier we assumed�E ≥ 0. Since the probability density function (19) for the foldednormal distribution is
the same for mean�E as it is for−�E, we can replace the term�E for ∣�E ∣ in equations (36) and (37) so that they
hold for arbitrary�E.
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