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Abstract

Evaluation of pest abundance is an important task of intedq@est management. It has recently been shown
that evaluation of pest population size from discrete sargmlata can be done by using the ideas of numerical
integration. Numerical integration of the pest populatiteamsity function is a computational technique that
readily gives us an estimate of the pest population size revtiee accuracy of the estimate depends on the
number of traps installed in the agricultural field to colldre data. However, in a standard mathematical
problem of numerical integration it is assumed that the datgorecise, so that the random error is zero when
the data are collected. This assumption does not hold irogmall applications. An inherent random error
is often present in field measurements and therefore it mapgly affect the accuracy of evaluation. In our
paper, we offer a novel approach to evaluate the pest inspetigtion size under the assumption that the data
about the pest population include a random error. The etiafuis not based on statistical methods but is done
using a spatially discrete method of numerical integratibiere the data obtained by trapping as in pest insect
monitoring are converted to values of the population dgnkitvill be discussed in the paper how the accuracy
of evaluation differs from the case where the same evaluatiethod is employed to handle precise data. We
also consider how the accuracy of the pest insect abundaatieaéon can be affected by noise when the data
available from trapping are sparse. In particular we shai; tontrary to intuitive expectations, noise does not
have any considerable impact on the accuracy of evaluati@mthe number of traps is small as is conventional
in ecological applications.
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1 Introduction

Pest insect management in agriculture has the obvious §@aéwenting or minimising the damage pests cause
to crops. In past decades the integrated pest managemfit ifproach emerged which incorporates several
different tactics that work cooperatively together to pobtcrops from pest attack in a more sustainable way [17].
An important part of any IPM programme is the monitoring af fhest insect abundance in an agricultural field.
The decision of whether or not to implement a control actethen made by comparing the abundance of pests
against some threshold levele. the limit at which intervening becomes worth the effort operse. Since the
basic principle of IPM is that a control action is only usediid when it is necessary, accurate evaluation of pest
insect abundance remains key to the decision process [6, 20]

Trapping is a widely used sampling technique for pest inabcihdance evaluation [1, 14, 16, 19]. Traps
are installed in the field, exposed for a certain amount oéfiafter which the traps are emptied and the pests
are counted. Under the assumption that trap counts can berted into the pest population density at the trap
locations it is possible to obtain an estimate of the totalt population size [7, 32]. However, optimising the
accuracy of such an evaluation remains a complex and difficablem where two main aspects must be kept in
mind. First, the accuracy can be affected by how the sam@tdate collected. There has been intensive research
on what is the optimal number of sample units required toeaeha specified precisioe.§ see [2, 11, 24]). The
sampling plan, i.e., the prescribed locations at which daesnare to be taken, is also in the focus of ecological
research [14, 16], where comparison of various patternggpflocations in the field have been made in order to
understand how the sampling plan may affect the accuracy [1]

The second, equally important aspect of the accuracy proidehow the collected data are processed. A
conventional approach is to calculate the arithmetic mesnb®r of pest insects from trap counts [9]. From the
mean number of pests per unit area, an estimate of the nurhpests in the entire agricultural field is obtained
by scaling to the area of the agricultural field [35]. Alteimely, the problem of pest abundance evaluation can
be considered as a numerical integration problem and imtgaars intensive study of humerical integration
methods for ecological applications has been carried djt24, 26, 28, 29, 30]. It was discussed in our recent
paper [27] that the application of numerical integratiooht@ques often results in a more accurate evaluation
of pest abundance than straightforward statistical coatjmut of the mean density. Since numerical integration
methods have been emerging as a promising approach to gvglpast abundance, in the present paper we focus
our attention on them further. Namely, we consider the appbn of numerical integration techniques to the
problem where the data used for evaluation are not exaceésaliithe pest population density.

A standard assumption in numerical integration is that tethod deals with exact data, an inherent random
error is zero when data are collected. Meanwhile, an inheagrdom error is often present in field measurements
and, along with evaluation error, contributes to the aaguiasues when the pest abundance is calculated. An
evaluation error, also known as approximation error in the theory of numerical integration is the error arising
because a continuous density function is replaced in tHea&an procedure with a discrete function whose values
are available at trap locations only. The approximatiooredepends on the number of traps used in monitoring
and the theory states that the approximation error will deced to zero if we can hypothetically make the number
of traps infinitely large [10]. At the same time the convenébdefinition of the approximation error implies that
the data used for its computation are precise.

Inherent random errors are errors caused by unknown anédicfable changes in data measurements [3, 37].
In ecological applications the source of that uncertairgg gary from a simple miscounting of the number of
insects in a trap to some environmental conditions in arcaljural field that are responsible for generating an
error in a trap count (e.g., a trap can undergo occasioraifémence of a bigger animal in the field). Trap counts
are converted into the density values at the trap locatimd therefore the density values further used to evaluate



pest abundance are also affected by the random error. El#slimpact of a random error on the accuracy of the
evaluation of pest insect abundance should be taken intwmatito ensure that a correct pest management decision
is made. Thus in our work we study the accuracy of evaluatigest insect population size under the assumption
that every trap count has a random error.

It is worth mentioning here that the problem of validatiortted measured data has already received attention
in the ecological literature. However, with regard to thepping procedure, the mainstream of research has
been focused on accurate conversion of the trap countshateaiues of the true population density [5, 13, 31].
Meanwhile, once such a conversion has been made, the estih#ie pest abundance is assumed to be based
on exact data and, to the best of our knowledge, no attempbéms made so far to incorporate the random
measurement error into the evaluation procedure. In theusisson in this paper we do not consider the problem
of converting trap counts into a discrete population dgrsinction. In other words, further in the text we assume
that the number of insects caught in each trap already repiethe value of the absolute population density in its
catchment area but each trap count has an inherent random err

Numerical integration methods are convenient for the stfdyisy data because their formulation allows one
to easily control the contribution of the random error irfie pproximation of the pest insect abundance. It will
be demonstrated in our paper how random error in collectgu dounts can be converted into random error in
a pest abundance estimate. We therefore explain how tolagddhhe mean as well as a credible interval of the
evaluation error, when the discrete density function islcanly perturbed.

Another topic discussed in our paper is the impact of therénduced by noise on the accuracy of evaluation
when the data are sparse. The problem of sparse data remx&iesely important in IPM programmes, as a
widespread situation is that financial, ecological and othstrictions do not allow for a large number of traps
to be installed in an agricultural field. In routine pest ntoring programmes the number of traps rarely exceeds
twenty [19], while in some cases it can be as small as one awaréps per field [22]. It has been discussed in
[25, 28] that an estimate of pest abundance can be very iretecon a coarse grid of traps, especially when pest
abundance is evaluated from a heterogeneous densityrpatience the intuitive expectation is that an estimate
of pest abundance based on noisy data will be even worse. \owewill be shown in the paper that, perhaps
counter-intuitively, noise does not have a lot of impactlwd ticcuracy of a pest abundance estimate when the
number of traps is small.

2 Quantifying the uncertainty in the pest abundance evaluation problem

In this section we briefly recall a numerical integratiorhigique for the problem of pest abundance evaluation. We
consider a trapping procedure in an agricultural field arstiae first that the trap counts are precise. We explain
how exact information about the pest population densityad tocations can be transformed into a numerical
integration problem. We then assume uncertainty in fieldsmesments and incorporate a random error into the
numerical integration problem.

2.1 Computation of pest abundance by numerical integration

For the sake of convenience we focus the discussion in tipisrn the one-dimensional caseet the domainD
where the traps are installed be represented by the interval Since an obvious linear transformation maps the
domainD onto the interval0, 1], below we consider a total numbarf of traps installed across the unit interval.

A detailed explanation of numerical integration technifpretwo-dimensional problems with precise data can be fanfja?7, 29]



The locationx; of a trap is represented by the indgxhus f; corresponds to the pest population density at that
trap location.

Methods of numerical integration are applied when an itedif (=) defined over the intervadl, 1] is only
available at points;, i = 1,..., N. If we knew the pest insect spatial density distributj{) at any point of the
domainl0, 1], then the pest abundanéen the field would be computed as the integral of the contisudensity
function f(x),

[z/lf(m)dx.
0

However, the pest population density function is only git@ns as a discrete set of data, thaf (s) = f;, where
i=1,...,N. Consequently the above integral cannot be evaluatedlgxamt must instead be approximated by
means of numerical integration.

For the rest of the section 2.1 we assume that we kpiagise (i.e., unperturbed) values of the population

density f(x) at trap locations;;, i = 1,..., N. A general numerical integration formula is then writter{eag see
[10])
N
I~Io=> wif;, 1)
i=1
where, is an approximation of the exact integglandw;, i = 1,..., N, represent weight coefficients that

define a particular method of integration. The values of teghitsw; are dependent on the numh&rof traps
and on their location. In the case that the traps are locatdttaily, there is no ready-to use formulas for the
weight coefficients and they must be calculated in advanaader to employ the formula (1) (e.g., see [30]).
When a systematic sampling plan is used whereby the tragsdraequal distance between them, the problem of
numerical integration is reduced to using a chosen metlord fhe Newton-Cotes family of numerical integration
methods and the weight coefficients are readily availabldnénliterature. The trapezoidal rule is, perhaps, the
most well-known member of the Newton-Cotes family with theights defined as

w; =h/2fori=1andi=N and w;=hfori=2,...,N—1, 2

whereh > 0 is the fixed distance between traps.

For any chosen method of numerical integration and any fixeaber N of traps used to collect the data, the
accuracy of an approximatioh, is assessed by analysing the approximation error. Theavelapproximation
error E,.; is defined as 11,

- ta
i ©
where clearly the lower the relative error, the more aceutta¢ estimatiori, of the pest abundande To ensure
the correct pest management decision is madgwhether or not to apply pesticides, the estimate should be
sufficiently accurate. We therefore require the estimatsd @bundance to be within a specified estimate tolerance
7 of the true pest abundandes. we require the relative errdr,.; to satisfy the following condition:

Erel(N) =

E.q(N) <. (4)

Clearly, the approximation error (3) depends on the nuni¥esf traps where the valueg are available. In
ecological applications the numbaf is usually small and that may result in a big approximatiawreF,..;(N)

[25, 27]. Hence an estimate tolerancerof~ 0.2 — 0.5 is already considered acceptable in many ecological
problems [23, 34]. Furthermore, it has been shown in [2829Fthat for any fixedV the errorE,..;(N) depends

on the spatial pattern of the density function.



Itis important to note here that in ecological problems dmege of the pest abundance is very often obtained
using the sample mean pest population density [9] which wetgeby 7. This is defined as followse(g see [35])

- 1 X
= N ; fis
An estimatel,, to the true number of pesfsin the field is then given by
I~1,=Af, (5)

whereA is the area of the agricultural field.

Clearly, the method (5) can be incorporated into a geneaahdwork of numerical integration (1) with the
weights given byw; = 1/N fori = 1,..., N, if the integration is done over the unit interval (i.el,= 1).
Identification of (5) within the framework (1) allows us tornpare it with other methods of numerical integration.
While the statistical approach (5) provides a straightiovand convenient way to evaluate the pest abundance,
it has been demonstrated in [12, 27, 29] that different @oifowveight coefficients in (1) gives us better accuracy
than using the method (5) for the same number of traps. Meigmwire shall see later in the paper that consid-
ering the problem of pest abundance evaluation as one of nzahategration has another advantage. Namely,
representation of the estimaligin the form (1) is extremely convenient when the evaluatibtme pest population
size is required based on perturbed dgtaln the next section we introduce the uncertainty of an agpration
1, generated by the uncertainty in the défai = 1,..., N. The weight coefficients in a method of numerical
integration given to us are then used in order to relate tlventminty in the estimaté, and consequently in the
error E(N) to the uncertainty in trap counts.

2.2 Theuncertainty of pest abundance evaluation from noisy measurements

As could be seen in the previous section, when the pest aboada evaluated from trap counts, the evaluation
error (3) is always present in the problem. This happensusecae replace a continuous density function with a
discrete set of function values, i = 1,2, ..., N. Our previous studies of estimating pest abundance by nodans
numerical integration [27, 29] have been focused on how tiw €3) can be controlled based on the assumption
that the pest population densities provided by the trap tsoame indeed equal to the true densities. However, this
assumption is not entirely realistic, as measurementseopést population density are subjectnteasurement
error.

Let the measured pest population density at trap locatidne denoted byf;. Let alsof; refer to the exact
density f (x) at the pointz;, as discussed in the section 2.1. Applying a method of nwaldritegration (1) to the

measured pest densitigsi = 1, ..., N gives the following estimate of the pest abundance:
~ N ~
i=1
The relative error of an approximation based on measuredvdaich we denote by, ; is then given by
~ 11— 1]
rel — (7)
1]

The focus of our investigation is to establish how the inticithn of noise to the data sgf;} affects the accuracy
of the estimation, that is to determine hdvy,; differs from E, ;.



The exact value of the pest densjtyat any location is not known, hence the need to install traps. Nor can
the exact value of the random measurement error be knowereithere is thus anncertainty associated with the
measured valug;. In our work we simulate the uncertainty by considering amasured value of the pest density
fi to be a realisation of a normally distributed random vagail with meany;, and standard deviation,. The
probability density function isgg see [15])

~ 2
T L fi— i

where we assume that the mean is equal to the true pest dehattis;; = f;. The uncertainty in the measured
value f;, which we denote by.( f;) can be then quantified by the standard deviatipof the random variablé;,

u(fi) = ;. 9)

If a random variable has the normal distribution, then anglsi measurement;, i.e. a single realisation of the
random variable-;, lies in the range

fie [fi — 204, fi + z04] (10)
with probability
z
P(z) = erf <%> : (11)

where the error function gff) is given by

erf(z) = % /OZ exp (—t2) dt.

Let us assume that with the same probability, the pest ptipaldensity obtained via a trap count is within a
fixed percentage of the true density at the trap location therovords with probabilityP(z) each measured pest
population densityf; lies somewhere within the range,

fi € Ufi = vinfi, fi + v fil,

where we refer tas,, € [vm1,vme2] C (0,1) as themeasurement tolerance. Equating the interval above to that
given by (10) gives the following relation between the stdddeviations; and the measurement tolerangg:
mei

z

It is worth noting here that our definition of noise does nqgieted on the length of the time interval when traps
are exposed in the field. Generally, a longer time of expmsitian be thought of as collecting a bigger number of
samples that, in turn, results in smaller uncertainty iradaé. a smaller value of the standard deviatioim the
normal distribution) [36]. However, the measurement theer,,, we use in the problem is always expressed as a
percentage of the true valye at the trap locatior:;. Hence a longer (shorter) time of traps exposition is alyead
taken into account by considering larger (smaller) valfjesf the density function.

An example of the uncertainty associated with the functialues is depicted in Figure la. The ecologically
relevant {.e. non-negative) functiorf (xz) has been defined as

fla) = 3 sin (3%’“") P2 aep
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Figure 1: Evaluation of pest abundance from noisy data. (agxample of the pest population density function
f(z). Three equidistant traps are installed over the unit imlexvmeasure the densif(z). The density valug;,

i = 1,2,3 measured at the positian of the trap lies within the range (10) with probabili(z) as defined by (11).
The lower and upper limits of this range are denoﬁﬁtﬁ” andfim“r respectively. The measurement tolerance has
been set as,, = 0.3 and we have fixed = 3. (b) The distribution of the estimateof pest abundance computed
from the measured dat@ on a grid of N = 3 traps. Each realisation is presented as a skewed cross figtine,
wheren, = 100 realisations of the estimafeare shown. The valuesare compared with the exact valli®f the
pest abundance (solid line) and the estimigteomputed from the exact dafa(dashed line).

hence the pest abundancd is- 0.737402. The exact pest population densitigscorrespond to the functiofi(x)
evaluated at the trap locations, i = 1, ..., N which are regularly distributed on the intery@l 1]. In the example
shown in Figure 1a the number of traps has been fixel as 3 hence the traps are locatedat= 0,25 = 0.5
andzs = 1. The estimatd, formulated by numerically integrating the exact déta = 1, 2, 3 via the trapezoidal
rule (2) isl, = 0.701184, while the error ist,.; = 0.049115 which is much lower than required tolerance

We then consider the perturbed data as shown in Figure 1s.08eteasured data valugsare generated by
perturbing the function valueg at each point;, i = 1, 2, 3, according to the transformation

fi= fi +0i, (13)

wherev is a random variable taken from the standard normal digtdbpands; is defined according to (12). The
measurement tolerance is set.gs = 0.3. We also fixz = 3, therefore, the probability that each realisatifn
lies within the range (10) i®(z = 3) ~ 0.9973. The transformation is applied. = 100 times to each valug;
to generate:, sets of measured data for= 1, 2, 3. These data sets are integrated for any fixedsing the same
trapezoidal rule (2) to yield estimates of the pest abunelanc

The distribution of the estimateof pest abundance computed from the perturbed fiata a grid of N = 3
traps is shown in Figure 1b. It is clear from the figure thatitieduction of noise can cause the estimatmsed
on measured data to be further away from the true abundantaking the accuracy of evaluation very poor for
some realisations df. Hence we want to control a range of the erfgy,; induced by the noise in the dafaand
in the next section we quantify the resulting uncertaintshimaccuracy,.; of the approximated pest abundance.
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Figure 2. The probability density function of the quantiiyas described by (16). Reflecting the negative con-
tributions in the y-axis yields the folded normal distrilout of E,.;. The upper and lower limits of the interval
[Emm, Em,w] to which £, belong with probabilityP(z) are defined differently depending on the distance be-
tween the true pest abundantand the estimate formulated on exact data(a) when|I — 1,| < zo; and (b)
when|I — I,| > zo;. See the appendix for the details of héw,;,, and E,,,.. are calculated.

2.3 Calculation of the evaluation error E,., from noisy data

Consider random perturbation (8) of the density functjim). It can be seen from (6) that an estimdtef
pest abundance is a linear combination of the measured eesttigsf;. Hencel can in turn be considered as a
realisation of a normally distributed random variable whice shall denoté; where

N
Ip =) wF,. (14)
i=1

The random variabléz has meam; = I,, wherel, is the estimated abundance based on the exact pest densities
Furthermore, the standard deviatiopis

(15)

(e.g., see [8)).
We now determine the probability density function of thedam variableE,.;. For the sake of convenience
let us first consider the following auxiliary quantity

o (16)

SinceF is a linear function of a normally distributed random valéab, it can be considered as a realisation of a
normally distributed random variable with meap = 1 — I,/ and standard deviatianz = o;/1. We note that
in ecological applications the true pest abundahtealways/ > 0. The probability density function is described

by ,
B 1 . 1 (E—pug

8




and the quantityw belongs to the range

E € up — z0p, up + 20E] (18)

with probability P(z) given by (11). Examples of the probability density funct@iZ are shown in Figure 2.
We have
Erel = |E|>
and E,.; becomes a realisation of a random variable with a folded mbdistribution €.g., see [18]). The prob-
ability density function ofE,.; is then formed from that of E by reflecting the the negativetigoutions in the
y-axis and is given by the following expression

~ 2 ~ 2
- 1 1 Erel — HE 1 Erel +UE
E.) = expy —=— | ————— +expg —=— | ———— 19
P(Erer) - /_27T|: p 2( p— ) } p 2( p— (19)

~ 2 ~ 2
I 1 (I(1—-F —1 1 (I1+F — 1
_ exp{ — = ( rel) a +exp{ — - ( + rel) a ’

where the mean value is

I, I, — 1 o [2 1 /1, —T\?
I T ST

and the standard deviation is

5

— 2 2 2
Op = \/I“E"'UE_'“EM' (21)

We now seek a ranq@mm, Emax] to which E,..; belongs with probabilityP(z). It can be seen from (17) (see
also Figure 2) that the range of the erfoyr.; depends on the quality of approximatidnobtained from the exact
values f; of the pest population density. Two separate cases depgodithe nature of the probability density
function (17) should be considered.

The first case is when the mass to be reflected in the y-axidir o obtain the folded normal distribution
(19) contains part but not all of the range (18). That occunemthe distance between the true pest abundance
and the estimaté, formed from exact data satisfies the conditjon- I,| < zo; (see Figure 2a). This condition
requires a certain level of accuracy of the approximatiaoméad from exact data (i.e. the approximatignis
required to be sufficiently close 0.

We then consider the scenario whén- I,| > zo7;, i.e. a poor approximation is obtained on integrating exact
data. The mass to the left of the y-axis is either entirelyiiestee of the interval (18) in the case that is positive
(see Figure 2b) or, whemg is negative, is entirely inclusive.

Combining the two cases above and making the calculatiopkierd in the appendix we find thét,.; <

[Emm, Epnqz] with probability P(z) when the lower limit is defined as
0 for |I — 1,| < zo7j,
E~min - (22)
ZO'f
Erel — T for |I - Ia| > ZO'f,

and the upper limit is given by

\pg| + op®? [2{)(,2) - <z + 2%)}, for |1 — I,| < zoj,
Ema:c = (23)
2 2
\up| +op®? [q)(z) - (z - M) - <z + M) + 1} , for|I —1I,| > zo7,
OF OF

9



where® and®~! are the standard normal cumulative distribution functiod s inverse respectively. We have
thus constructed an percent credible intervak( see [4]), wherex = 100P(z), for the errorE,; of an esti-
mate based on measured data. The quantifigs,, F,... are the lower and upper limits of this credible interval
respectively.

It immediately follows from (22) and (23) that the impact swiin data makes on the approximation error is
defined by the accuracy of the evaluation of pest abundanizéned from exact values of the pest population
density, which in turn depends on the numbérof traps where the data are available. In the next section we
illustrate this conclusion by various numerical examples.

3 Calculating the pest insect abundance from the noisy density function: exam-
ples and discussion

In this section we perform some conventional numericaldases to verify our approach. We then further inves-
tigate how introducing noise to the density function valaéfects the accuracy of the estimated pest abundance
and in particular we focus on the instance when the grid gistia coarse. We follow the same methodology as
used in [28] and begin by considering some continuous fanstivith various level of spatial complexity where
we require that the exact pest abundaidg available in closed form. For each test case we generagutarly
spaced set of traps and unless otherwise stated we take ithaterval [0, 1] to represent the agricultural field.
Therefore, the traps are located as follows:

r1 =0, azi:mi_1+h,forz’:2,...,N—1, zy =1, (24)

whereh = (xy — x1)/(N — 1) is the fixed distance between traps. The exact pest populdénsities are then
givenbyf;, = f(x;),i=1,...,N.
Let us begin with a test case with simple behaviour wherebyuhction f (x) has several wide peaks, as can
be seen in Figure 3a:
f(x) = exp (z) sin (3mz)? + cos (rz)?. (25)

We fix the numberV of traps and generate measured values of the pest densitgriyrlpng each exact pest
density f; a total ofn,, = 100,000 times according to the transformation (13). We thereforeeha. sets of
measured valuegﬁ-}. For each set of data an estimate of the pest abundance inambtay implementing the
compound trapezoidal rule (2) and the relative error is tbaoulated. To confirm that these. = 100,000
estimates of7,.; are indeed realisations of a random variable with a foldethabdistribution with meam.;
and standard deviation;  we calculate the sample mean

§ I <~z
’uErel = N Z Erelw (26)
=1

and the sample standard deviation

| A B 2
SE’r‘el - m Z (Ereli - NE'!‘@I) ’ (27)

=1
and make a comparison with the theoretical quantities doye{20) and (21) respectively.
We then establish the following proportion

)
L
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3 | 5.614872e-02 5.607518e-02 1.309661e-03| 4.227882e-02 4.239840e-02 2.828365e-03
5 | 4.043406e-02 4.034606e-02 2.176191e-03| 3.050063e-02 3.041125e-02 2.828365e-03
9 | 3.203438e-02 3.204198e-02 2.372352e-04| 2.420232e-02 2.419244e-02 4.078940e-04
17 | 2.277488e-02 2.283417e-02 2.603297e-03| 1.720666e-02 1.727488e-02 3.964279e-03
33 | 1.615665e-02 1.618614e-02 1.825433e-03| 1.220652e-02 1.226183e-02 4.531462e-03
65 | 1.144294e-02 1.149041e-02 4.148032e-03| 8.645263e-03 8.672099e-03 3.104113e-03

Table 1: Comparison between the theoretical mean and sthddsiation of the quantity,.; as defined by (20)
and (21), and their numerical counterparts (26) and (27) sgeeral grids ofV traps. The theoretical means
and standard deviations are shown in the columns |abﬂ|b=;‘9 and"Em respectively and the sample mean and
standard deviations are labellg, ~ands; . The relative difference between the theoretical quaratity its
numerical counterpart is calculated in the last column eftdble. Good agreement can be seen thus providing
verification of our approach.

wherer, is the number of the relative errof%..; which fall within the rangéE. i, Emaz] as defined by (22) and
(23) in order to make a comparison with the theoretical podibg P(z). The number of traps is then increased as
2N — 1 and the quantities (26)-(28) are recalculated.

We apply the above procedure to the test case (25), wheraithber of traps is subsequently increased to be
N =3,5,...,65. We select the measurement tolerance,as= 0.3. As can be seen in Table 1, for each value of
N we have good agreement between the sample mggpand the theoretical meary, and likewise between
the sample and theoretical standard deviatiops ando; . We fix = = 3 therefore we have the theoretical
probability thatF,..; lies within the rang€FE,,.in, Fmas] @8SP(2) ~ 0.9973. It can be seen from Table 2 that the
corresponding numerical probability,,,, as given by (28) is indeed approximately 0.9973. We are there
satisfied that the range given by (22) and (23) can be usedke retiable conclusions about the ertgy,; of an
estimated pest abundance based on measured .data

We now directly compare the quantitiés,; andE,.; in order to understand how using noisy data rather than
exact pest population densities impacts the accuracy ofagieindance estimate. Let us introduce further test
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‘P(g)_Pnu'nL‘
Prum | Pyl

N
3 | 0.99732| 1.984965e-05
5
9

0.99745| 1.502016e-04
0.99722| 8.042106e-05
17| 0.99716| 1.405835e-04
33| 0.99739| 9.003915e-05
65| 0.99722| 8.042106e-05

Table 2: Comparison between the theoretical probab#fity) as defined by (11) thak,.; lies within the range
[Emm, Em,w] and the numerical probabilit¥,,..., computed according to (28) over a series of grids witkraps.
We fix z = 3 thusP(z) = P(3) ~ 0.9973. The relative error between the two quantities is shown él#st

column.

cases with an increased level of spatial complexity to d@rsalongside that prescribed by the function (25). The
density is either concentrated in a narrow layer as defingtidfollowing function (see Fig. 3b):

fl@) = (z+0.1)7, (29)
or is located within a small sub-domain of the unit intervadl@also exhibits oscillatory behaviour (see Fig. 3c):
f(x) = exp (—20z) sin (207z:)?. (30)

For an increasing numbe¥ of traps spaced regularly according to (24), the relativereE,..;(N) of an
approximation based on exact data is calculated. The méaa MR of the error of an approximation based on
measured values as well as upper and lower bounds of theah{ét,,;,,, E,...] are found from (20) and (22),
(23) respectively for the same set of values\af The measurement tolerance is fixed/gs= 0.3 throughout and
we setz = 3.

The corresponding graphs of the error as a function of thebeu of traps (convergence curves) for each of
the test cases are displayed in Figure 4. An estimate of thgrad I is considered to be accurate if it satisfies the
condition (4). We select the toleranee= 0.25 which lies within the acceptable range for ecological aggtions
given in section 2, and which has been recommended for eutionitoring [33]. The line- = 0.25 is therefore
also plotted so as to determine when the estimates becoffi@enify accurate.

It can be seen in Figure 4a that for the spatially simplerdase (25), the estimates based on exact data are
sufficiently accurate for the entire range of the numieof traps considered in the problem. The cufyg; always
lies below the liner = 0.25. It is also evident from the figure that the addition of noigéhe data significantly
slows the convergence of the pest abundance estimate taxdhew@lue when we increase the number of traps.
Clearly the curve for the mean error based on perturbed,data(N') has a less steep gradient thanfis; (V)
counterpart. This is because whilst the uncertah*@rlel associated with the estimate based on measured values
decreases as the number of trdgsincreases which is evident in Table 1), the contributionhte® tean error
B, from the noise is more dominant than that of the integrativardv,..;. In other words the uncertaintyEml
decreases at a slower rate than the integration error dasedeanwhile, it is important to note the mean error
B, does converge to zero in the theoretical limit of an infinikenber of traps (e.g., see [8]).

For the test case above thg,,, curve entirely lies below the upper thresheld- 0.25 of the desired accuracy.
The lower bound of the intervak, iy, Epnaz] is Emin = 0 as the estimate based on exact valliéswithin zo7;,
where we have chosen= 3, of the exact pest abundanteight from the initial estimate. The valué,,;,, = 0 is
not displayed since the plots are given on a logarithmicescal
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Figure 4: (a)-(c) The error for the approximation based aceratal,..; is compared with the mean errpy;

of an approximation based on noisy data alongside the liofitee interval[E,,;,,, Enq. ] for the test cases (25),
(29) and (30) respectively as shown in Figure 3a-3c. The ureaeent tolerance is fixed &s, = 0.3 andz = 3in
each case. The legend for each figure is as shown in (a). (d) Meamﬁm of an approximation based on noisy
data and the upper limit of the intervak,,,;,,, Finq.| for the test case (25) as shown in Figure 3a where values
vm = 0.05,0.1, 0.3 of the measurement tolerance have been selected. We-fig as before.
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Meanwhile, for more spatially complex density distribuo(29) and (30), the number of trapshas to be
sufficiently increased before the desired level of accuracy 7 = 0.25 is obtained (see Figure 4b and Figure 4c).
Similarly there needs to be some level of grid refinementieetioe lower limit becomeg,,,;, = 0. Prior to this
occurring the mean errQr; lies close to the error for the unperturbed datafset as indeed doek,, .. After
the lower limit of the credible interval foF,..; becomest,,.;, = 0, a difference in the convergence rates becomes
evident with the convergence of the perturbed data becominzh slower.

One feature of the graph in Figure 4c has to be mentioned hethe case of the initial estimates formulated
from N = 3 andN = 5 trap counts, it can be seen that the upper and lower Iimiﬂse)i‘rterval[Emm, Emaz] lie
extremely close to the error based on exact data This is an artefact of the way in which each measured value
of pest densityf; is considered to be related to the true vafileeach measured value is considered to be within
some percentage of the true value. The function values anified N = 3 trap locations which we recall are
regularly distributed across the interval 1], are extremely small in magnitude meaning the resultingtamty
is also very small. This is also the case on the subsequahfgiv = 5 traps, whereas, when the number of
traps is increased ty = 9 some function values with a larger magnitude are detectdchance the uncertainty
is larger in comparison to that associated with the prevastisnate.

So far we have looked at how noise impacts the accuracy of tanate of the pest abundance for a fixed
measurement tolerancef,. We now investigate the impact of noise on an estimate’sracglas the quantity,,,
is varied. Let us again consider the simpler test case (28)@sn in Figure 3a. Figure 4d shows the convergence
curves for different values of the measurement tolerangg:= 0.05,0.1 and 0.3 where: is fixed asz = 3.

It can be seen that increasing the measurement toleransescthe convergence curve to shift upwards; greater
uncertainty associated with the set of measured vaﬂyfﬁ}sgives rise to greater uncertainty associated with the
estimate formulated from this data set as one would expetivioDsly, the point at which the error becomes
acceptable, that is it falls below the upper threshold ef 0.25, occurs later meaning a larger number of traps
would be needed to acquire a sufficiently accurate estimate.

3.1 Ecological Test Cases

Although informative, the test cases above were choserh&r mathematically interesting characteristics rather
than their direct relevance to the pest monitoring problétrerefore, we now turn our attention to some ecologi-
cally meaningful test cases. We require the ability to repstimates of the pest abundance for the same density
function for an increased number of traps. It is difficult todfifield data in a one-dimensional domain which
would be suitable for our purpose, so therefore we simulata dsing the spatially explicit form of the what we
consider the predator-prey model with the Allee effect [23], The dimensionless form of the model is given by
the following system of equations:

of(x,t)  O*f fyg
TR roR A Ay sl
(31)
2
dg(x,t) 3g+k fg —

ot o2 T f+4p

wheref(x,t) is the density of the prey which we consider to be the pestirs®lg(z, t) is that of some predatory
species at positiom and timet > 0, d is the diffusion coefficientp is the half-saturation prey density,is the
food assimilation efficiency coefficient and is the predator mortality. We fix the time as= ¢ > 0 and
numerically solve the system of equations (31) to obtainpixt population density(z,). Sincet is fixed we
shall henceforth denote this as simglyz). This is done for different values of the parameters in thelehto
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Figure 5: Ecologically meaningful test cases as generageitidomodel (31) at different timesand for various
choices of the dimensionless diffusion coefficidnfa)t = 5,d = 10~ (b) ¢t = 50,d = 10~ (¢) t = 100,d =
107° (d) t = 400, d = 10~°. The reader is referred to [28] for the choices of initial &adindary conditions.

generate four ecologically meaningful test cases whictshosvn in Figure 5. The monotone test case as shown
in Figure 5a and the single peak test case (see Figure 5kidyesimple in terms of spatial complexity. The pest
density function shown in Figure 5c, which we will refer tothe three peak test case, and the multi-peak test
case (see Figure 5d) are examples of more complex spateblgeneity. These test cases are the same as those
discussed in [28], therefore the interested reader isreafdo this paper for the the initial and boundary conditions
that were used in their generation and for further detaith@humerical solution.

The densityf(x) is found by numerically solving (31) at the positions of eglamumberN; of regularly
distributed traps; we tak&/; = 215 1 1. Since the pest density function for each of the ecologiesil tases is
obtained as a result of numerical solution, the exact pestddncel is not available. The ‘exact’ pest abundance
1 is then computed using the compound trapezoidal rule (2) fite exact datd; obtained on a very fine grid of
Ny traps. Once we have found the values of the pest densityifingx) at the trap locations;, i = 1, ..., Ny,
we can find estimate,(N) of the pest abundance for any smaller numiyeof traps by extracting the relevant
pest density function values from this data set and applfiegsame evaluation rule (2).

Let us fix the number of traps @8 = N;. As before we consider each value of the density function as a
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realisation of the normally distributed random variablewith meanu; = f; and the standard deviation ds as
defined by (12). For each set of data an estinfatecalculated and then correspondingdly,; is calculated from

(7). The number of traps is then increase@ s — 1 and the above is repeated. This is done several times and the
corresponding convergence curves are shown in Figure 6mEasurement tolerance is fixedigs = 0.3 and we

also setz = 3.

The results of the ecological test cases reconfirm our edifigings. If the numberV of traps installed can
resolve the spatial pattern of the density functjffx) and can therefore provide good accuracy of evaluation,
then noise makes visible impact on the evaluation errortherowvords, if for a givenV the distance between the
estimate based on exact ddtaand the exact abundanderemains withinz multiples of the standard deviation
o, then the convergence curve for the estimate based on eattd,; differs significantly from the mean
estimateuEm based on perturbed data. That can been seen in Figure 6athbeeasults for a monotone density
distribution of Figure 5a are presented. For a monotonetifumdhe accuracy of evaluation is already good on
coarse grids (e.g., séé = 5 in the graph) and the errdt,..; obtained on exact data is several orders of magnitude
smaller than the mean errpg; whenN increases. However, it is important to emphasize here #éhdahé mean
error is already below the required tolerance even on veayseogrids and (b) as we already mentioned in our
previous discussion, the mean error converges to zero asithberN of traps grows infinitely large.

On the other hand, if the estimate based on unperturbed/g&already poor, then the introduction of noise
makes little difference to the accuracy of evaluation. Hakaviour is shown in Figures 6b-6d where the complex
spatial density distributions are not well resolved oniahigrids with a small numbelN of traps. As a result, the
curvesk,..; andu o lie close to each other.

It should be mentioned that, as shown in Figures 6¢ and 6ddibr the three peak and multi-peak test cases,
the quantityE,,;, on the initial grid of N = 3 traps isE,.;, = 0 whereas for a number of subsequent grids
it becomes non-zero before eventually returning to zerds Ity chance only that for these test cases the initial
estimate on a grid oV = 3 nodes is sufficiently accurate to satisfy the conditibn- 1,| < zo;; see also our
discussion of the test case (30). However, the distancedeetthe estimate based on exact datand the exact
abundancd does not decrease fast enough to remain withimultiples of the standard deviatier} until the grid
of traps is sufficiently refined.

A generic behaviour of the approximation error is that theuaacy of approximatiord, worsens when the
spatial complexity of the density function increases [28, 29]. Consequently the number of traps for which
the error falls solidly below the required tolerance insesawhen the spatial density evolves from a monotone
function to a multi-peak density distribution. It can bersé&®m Figure 6d that for a multi-peak density function
(i.e. the function that presents an ecologically important césthe patchy population density) the impact of
noise is negligible when the number of traps is within thegeaN ~ 10 used in ecological applications. While
this result should be further validated for two-dimensiatensity distributions, it may help ecologists to make a
correct decision about accuracy of evaluation on coarsks gffitraps.

4 Concluding remarks

In our paper the problem of pest insect abundance evaluatisibeen discussed. We have considered a trapping
procedure where information about the pest populationitjeriéz) at trap locations is then used in a numerical
integration problem in order to calculate an estimate oftth& pest population size. Since a continuous density
function f(z) is replaced with a discrete set of function valyesi = 1,2, ..., N, exact computation of the pest
abundance is impossible and an evaluation (approximagiony is inevitably present in the problem.

The approximation error is the main indicator of the accyraican evaluation, and correct estimation of this

16



10
—8— Erel
1072} .
v Emin
- A Emaz
107
-0 -Hg,,
-6
10 :
10° 10" 10°

10" : 5
10° 10! 10° 1075 x ,
N 10 10 10

(© (d)

Figure 6: The error for the approximation based on exact Hatais compared with the mean errpy; of an
approximation based on noisy data and the limits of the raAgg,,, E:.q.| for the ecologically meaningful (a)
Monotone, (b) Single peak, (c) Three peak and (d) Multi-peesk cases as shown in Figures 5a - 5d respectively.
The measurement tolerance is fixedgs= 0.3 andz = 3 in each case. The legend for all figures is as shown in

(a).

error is extremely important in ecological problems. Aatarevaluation of the total pest population size remains
a crucial requirement in any IPM programme, as it allows an@void making an unjustified decision about
control action (e.g., application of pesticides). Gengrahe approximation error depends on the numiveof
trap locations where the valugs of the density function are available. Also, for any fix&dthe approximation
error depends on the spatial pattern of the density function

The standard definition of the approximation error implieattan approximation of the pest abundance is
based on exactdaig, i = 1,2,..., N. However, random error (noise) should be expected whemtbamation
about the density function is collected. Thus in this paperdim of our research was to incorporate noise into the
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evaluation procedure and further investigate the appration error when the pest population density function is
randomly perturbed at any trap location.
The main results of the paper are as follows:

1.

We have suggested a novel approach to handling the appti@n error when the pest abundance evaluation
is based on randomly perturbed data. Evaluation is not basextatistical methods but is done using a

numerical integration technigque. An advantage of numekiitagration methods over a standard statistical
approach is that they offer better accuracy of evaluatiomfwide range of spatial density distributions and

are therefore considered as a promising alternative toxisérey statistical methods of evaluation.

In the paper we have first explained a numerical integrgtimcedure under the assumption that the data
used for evaluation are exact. We then incorporated no@ensity measurements into numerical integration
formulation of the pest abundance problem. The mean appaiion error has been obtained along with the
range to whichZ,.; belongs with probability”(z). In other words we have constructedapercent credible
interval [E,in, Emaz] for the errorE,.; of an estimate based on measured data, where1l00P(z). The
theoretical results obtained in the paper have been vefdradrious one-dimensional density distributions
when a selected method of integration (the composite tagalizrule) is applied in the problem.

We have demonstrated that the error induced by noise ipagkEpopulation density data depends on the
accuracy of evaluation obtained when exact density valteesansidered. In particular, the credible interval
we have established fdt,.; contains zero if the estimate of pest abundangcérmed in the absence of
noise is sufficiently accurate. Otherwise the lower bounthisfinterval E,,,;,, will be greater than zero.

One ecologically important case studied in the paper [pgeqmation on coarse grids where the number
N of traps is small. It has been shown, perhaps contrary tdtiwgthinking, that the impact of noise is
negligible when the data available are sparse. In other sydhg accuracy of evaluation on coarse grids
can already be so poor that noise in field measurements ofestepppulation density does not make any
significant contribution. This result has been numericatipfirmed for ecologically meaningful data.

Numerical experiments also revealed that, when we isertfee number of traps, noise becomes a dominant
feature of the approximation and the mean error may diffamfthe approximation error obtained on exact
values of the density function by several orders of mageitu@ur results confirm that the mean error
converges to zero for an infinitely large number of traps. Elmv, the convergence rate of the mean error
is much slower than the convergence rate of the approximatimr obtained when exact data are used for
approximation. Some theoretical justification of this pbraenon has been provided in the literature [8], but
this issue requires further study with regard to ecologagadlications and should become the focus of our
future research. In particular, we intend to compare thelteebtained for uncorrelated noise (as discussed
in this paper) with the case when the noise in neighboringstia correlated.

It is worth noting here that the approach developed in thep&pgeneral enough and can be readily extended
to multi-dimensional problems. As soon as the weight cdeffiis in the numerical integration method (1) are
defined, our computation of the mean error along with theibkednterval for E,.; does not rely upon the di-
mension of the physical space. Hence, our future work willdeeised on two-dimensional problems where field
data are available from real-life measurements. Anotheomant direction of future work is to study the impact
of noise when different methods are employed to evaluat@éiseé abundance. In our paper we have only used
the trapezoidal rule (2), while applying other methods ahetical integration (e.g., Simpson’s rule) can give an
estimate of pest abundance that will be more accurate oseapids of traps. It has been shown in the paper
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that the accuracy of approximation on exact data is cruciedmthe ecologically relevant situation of sparse data
is considered. Hence our research will be focused on fudéeful investigation of evaluation methods that can
provide good accuracy on coarse grids of traps.

Appendix. Finding a Credible Interval for the Relative Error in the Presence of
Noise

We seek the upper and lower limit of the inter{lﬁlﬂm, Emax] to which the quantityZ,.; belongs with probability
P(z) given by (11) as discussed in section 2.3. We recall that stisate of pest abundandecalculated from
measured data is a realisation of a normally distributedoamvariable with meap; = I, and standard deviation
o; as defined by (15). Thus any realisatibties within the interval I, — 20,1, + zof) with probability P(z).

We use this credible interval far to construct a credible interval fdt,.;. We consider two cases based on the
distance between the approximate integral formed fromtedata/, and the exact value of the integral Let us
begin by finding the lower limit of the interval,;y,.

Case 1|l — I,| < zoj

In this case, as can be seen from Fig. 7(a), an estimate baseéasured datAwhich belongs to the range
I, — z07,1, + zo;] can coincide with the exact value of the integral. Theretbee lower limit of the range

[Emina Emam] iS:

Ernin = 0. (32)

Case 21 — I,| > zo;

In this instance, from Fig. 7(b) we can see that the rdiige- zo 7, I, + zo;] does not include the exact value of
the integrall. Either we havd, < I in which case we can see that

= | —1,— zof]
min — 9
1]
or we havel, > I, therefore
A ’I — [a + ZO'f’
mn ‘[‘ 9
In both cases
~ ZO'I~
Emin = Erel - T» (33)

which is a strictly positive quantity as the conditioh— I,| > zo; of course means thd,.; > zo;/I, where we
recall that/ > 0.

It should be mentioned that a zero relative error is stillggas in the second case, when the distance between
the approximation based on exact data and the true valueeohtbgral exceeds multiples of the standard
deviationo; , however we choose to fii,.; as

min{E >0: E € [ug — zo0p, ug + zog]},for ug >0,
Emin =
maz{E <0:FE € [ug — zo0p, ug + zog|}|,for ug <0

whereF is defined by (16). In other words we find the value of the qinarii closest to zero which lies within
the range (18) and then take the absolute valug,as (see Figure 2).
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Figure 7: Finding the interviErez, Ema:c] to which E,.; belongs with probability?(z). (a) Case 1}/ —1I,| < zo;.
In this case, the exact value of the integféies within the credible interval fof thus the lower limit of the credible
interval for E,.; is E,.; = 0. (b) Case 21 — I,| > zo;. The exact value of the integréllies outside, thus the
interval [E, i, Fmaz] does not include the zero value.

Let us now consider the upper limi,,,.. of the credible interval of,.;. To find E,,,,, We use the condition
that any single value of lies within the rangéE.i,, Eyaq,] With fixed probability P(z) as defined by (11). As
mentioned aboveE, ., is a realisation of a random variable with a folded normairitistion. This distribution is
formed by reflecting the negative quantities of the distidyu(17) of the auxiliary erroF in the y-axis. Unless the
mean value of this underlying normal distribution.ig = 0, if we takeF, e = e + zog then the probabilityf’
that E,.; lies within the above range will excedd| z). We shall denote the additional contributionfas therefore

P = P(z)+ P*.

We now seek the appropriate value of the upper liB)it,, in order to satisfy the condition tha&t = P(z). Let
us temporarily impose the restrictipr; > 0. As when constructing the lower limi,,,;,,, we consider the cases
when the distance between the approximation based on exick,dand the true value of the integralexceeds
or is within z multiples of the standard deviatiery separately.

Case 11 — I,| < zo;

As shown in Figure 2a the probability* is given by

HE—Z0F
P = / p(E)dE. (34)
—HE—Z0E
In order to satisfy the conditiof = P(z), we must then find,,,,, such that
rE+z0E
/ p(E)dE = P*. (35)
E’ITLG.IE
Using the transformation
E _
F— HE
OF

from (34)and (35) we obtain the following in terms of the stard normal distribution functior:

B(—z) — (‘2“’3 - z> —B(x) - D (M) .

OE OE

20



Rearranging gives

E~max = uE + O'E(I)_1 |:2(I)(Z) - o (Z + 2#—E>:| . (36)
OB

Case 21 — I,| > zo;

Similar calculations for this case as illustrated in FigRbeyield

- 2 2
Eraz = jig + op® ! [@(z) - <z — ﬂ) - (z + ﬂ) + 1} ) (37)
oE OE

Earlier we assumedy > 0. Since the probability density function (19) for the foldeormal distribution is
the same for meany as it is for—uz, we can replace the terpy, for || in equations (36) and (37) so that they
hold for arbitrary. .
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