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Abstract 55 

Generally in the Chinese iron and steel industry, the electricity consumption of 56 

cryogenic air separation unit (ASU) is about 14 % of the overall electricity use. To 57 

reduce the electricity consumption, the combined variable oxygen (CVO) supply 58 

method for ASU is proposed. The exergy calculation program for ASU was 59 

developed and the detailed analysis of CVO method was performed. The results show 60 

that the general exergy efficiency (GEE) of ASU combined with a liquefaction unit is 61 

increased by 11 % to 31 %. The consumption of unit oxygen, the total electricity 62 

consumption and the overall consumption of unit oxygen (OCUO) was compared. 63 

The OCUO is a suitable method to evaluate the energy-saving potential of CVO. 64 

Compared with the load regulation method of Automatic Load Control (ALC), the 65 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 4 / 28 
 

OCUO and the unit consumption of compression of CVO reduced more than 4.47 % 66 

and 30 %, respectively. It means that CO2 emission of every reduction 1 % of gaseous 67 

oxygen release in a year in Chinese iron and steel industry will contribute 68 

approximately 0.75 % to the 2020s CO2 emission reduction target of China. 69 

Key words: air separation unit; variable load; exergy analysis; energy 70 

consumption; CO2 emission 71 

1 Introduction 72 

Chinese iron and steel industry has become the largest crude steel producer in the 73 

world since 1996[1], the iron and steel industry requires quantities of high-purity 74 

industrial gas which would be 100 ~ 140 m3 of O2 per ton of steel, 100 ~ 140 m3 of N2 75 

per of ton steel and 3 ~ 4 m3 of Ar per ton of steel. For the process of direct reduction 76 

iron making, the oxygen demand should be 550 to 650 m3 per ton of steel [2]. 77 

According to a report by World Steel Association in 2013, 779.04 million ton of crude 78 

steel in mainland China [3] accounts for 49.23 % of the total production of the whole 79 

world. It means that from 7.79 to 10.91 billion m3 of O2 is consumed by the Chinese 80 

iron and steel industries. The electricity cost of cryogenic air separation unit (ASU) is 81 

more than 10 billion US dollars in 2010[4]. The electricity consumption of the iron and 82 

steel industry is about 15.2 % of the total electricity consumption in China in 2007 [5], 83 

in which the electricity consumption of ASU and the oxygen compression and 84 

transportation pipeline (OCTP) unit is about 14 % of the total electricity consumption 85 

of iron and steel industries in China[6]. The data is steady in recent years. The net 86 
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demand for electricity of the industrial gases industry is 31,460 million kilowatt hours 87 

(kWh) in the USA in 1998[7]. The demand increased to 39,431 million kWh in 2010, 88 

which accounts for 2.8 % of the total electricity purchased by the manufacturing 89 

industry and is an increase of 25.4 % compared with the amount in 1998[8]. Due to the 90 

high electricity consumption of industrial gases industry, it’s meaningful to reduce its 91 

electricity consumption by researching new load regulation method of ASU. 92 

Most of the iron and steel industries in China have their own gas production 93 

plant in which  multiple ASUs operate together to supply whole customers of 94 

industry or other customers rather than supply product via pipeline to multiple 95 

customers [9]. The gaseous production from ASU is compressed into the OCTP unit to 96 

transport to the customers. With large-scale ASU as well as large-scale blast furnaces 97 

and converters, the contradiction between supply and demand of gaseous oxygen (GO) 98 

has become increasingly prominent because oxygen demand in fluctuation, which 99 

causes the oxygen release ratio (ORR, defined as the proportion of  the amount of 100 

released oxygen product to the oxygen production capacity of ASU) of China to 101 

increase. To decrease the ORR in China, three measures were taken. The first is 102 

automatic load control (ALC) technique. The second is the variable oxygen (VAROX) 103 

supply technique made by the Linde Group [10]. The third is using the liquefaction unit 104 

(LU) to liquefy excessive gaseous oxygen (EGO) into a liquid product tank [11~13]. 105 

However, the load transition speed of ALC is slow [14, 15] and the ALC should be 106 

configured for each ASU. Moreover, load regulation of ALC and VAROX would 107 
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change the distillation conditions of ASU [16]. In 2010, the average ORR in Chinese 108 

large-scale ASUs is more than 3.0 % [11], with an example of Hangzhou Hangyang Co. 109 

Ltd which uses ALC as its ORR is 3.75 % [17]. The liquefaction capacity is also 110 

limited by the capacity of the liquid product tank. The other countries’ gas production 111 

plant also consumed large amount of electricity purchased by the manufacturing 112 

industry. Therefore, researching new operation strategies to reduce the ORR will 113 

result in substantial economic benefits. 114 

For variable load regulation (VLR) of ASU, the load regulation method to 115 

change the distillation operation conditions such as ALC is called the internal VLR 116 

method. The regulation method to change product flow and pressure in OCTP unit is 117 

called the external VLR method. The variable load regulation method combining 118 

ALC and LU is called Combine Variable Oxygen (CVO) supply method. This novel 119 

method is as follows. Variable load operation of ASU uses ALC, combining 120 

liquefaction unit in which the EGO is liquefied by LU or the cold energy recovery 121 

(CER) unit using cold from liquid oxygen (LO) or liquid nitrogen (LN) from a storage 122 

tank. The exergy analysis of ASU and liquefaction process of CVO is carried out. The 123 

electricity consumption of ASU with CVO is compared and evaluated with the 124 

electricity consumption of ASU with ALC. It provides guidance for reducing of the 125 

electricity consumption of ASU in the next decade. 126 
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2 The proposed variable load regulation method 127 

2.12.12.12.1    ALCALCALCALC    operationoperationoperationoperation    methodmethodmethodmethod    128 

Cryogenic air separation is currently the most efficient technology for producing 129 

large quantities of oxygen, nitrogen, and argon as gaseous or liquid products [18]. The 130 

customer’s demand always has fluctuations. Therefore, ASU must rapidly change the 131 

product to meet the customers’ demand. Otherwise, the EGO has to be released. 132 

Today, the EGO is stored into the OCTP unit including oxygen compressor (OC), 133 

oxygen pipeline and the storage tank of gaseous oxygen (GO) or LO, whose pressure 134 

is maintained at 2.5 to 3.0 MPa. However, the lowest required pressure of GO in 135 

steelmaking process is about 1.2 MPa. The important aim to increase the pressure of 136 

the oxygen pipeline is for more storage of GO for reducing ORR and balancing 137 

between the production and the demand easily. When the demand is larger than the 138 

production, the GO in the sphere tank is quickly sent to the customers. Emergency 139 

vents must be opened to release GO when the pressure exceeds the upper pressure 140 

limits. The electricity consumption of OC could be reduced if we had a quickly load 141 

regulation method of ASU.   142 

There are two reasons which cause the gaseous product to release. First, it is far 143 

more difficult for ASU to rapidly respond to the changing product to meet the 144 

customer demand at the transition speed. The transition speed of ALC is about 145 

4-5minutes per 1 % of rated load. The shorter the transition time of load change, the 146 

lesser the energy consumption [15]. Besides, in many manufacturing processes, gaseous 147 
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product demand is not fixed but intermittent, especially the converter smelting process 148 

where oxygen demand lasts 15 minutes while the whole cycle lasts 30 minutes. 149 

Secondly, the down-regulation of the load according to the demand of one production 150 

may lead to insufficient supply of another gaseous product, because the large-scale 151 

ASU is a multi-product production equipment in which the production and purity of 152 

one product is related to that of the other products. Moreover, the ASU would be 153 

more efficient while it operates under rated load as described by Li [19]. 154 

Therefore, load regulation of ASU is necessary not only to take the distillation 155 

operation stability of ASU and make the balance between the production and demand 156 

for each product of ASU, but also to match the customer demand with the transition 157 

speed of load regulation of ASU. With the development of the production technology 158 

of iron and steel industry, the ASU has to run under a load condition meeting the 159 

increasing demand for GN and argon (Ar). At such load condition, more GO could 160 

not be consumed leading to more EGO being released. With oxygen supply system as 161 

an example, the CVO is analyzed. 162 

2.22.22.22.2    CVOCVOCVOCVO    regulation methodregulation methodregulation methodregulation method    163 

Fig.1 shows the principle of oxygen system of ASU with CVO, which consists of 164 

ASU, OCTP unit, and oxygen liquefaction and vaporization unit. The product load 165 

rate γ is defined as Eq. (1). The γ means the load rate of oxygen production in this 166 

paper unless specified otherwise. 167 

n

V
γ= 100%

V
×                         (1) 168 
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The CVO system has two operational modes to meet the customer’s demand: 169 

(1) The internal VLP method for ASU: the γ is increased closely to 100% 170 

(described as section 4.1). Then, the ASU operates steadily at some constant γ, until a 171 

substantial reduction of the gaseous oxygen demand lasts for more than 4 hours (such 172 

as the annual repair of the blast furnace).  173 

(2) The external VLP method for OCTP unit and oxygen liquefaction and 174 

vaporization unit: The discharge pressure of valve 9 (see in Fig.1) is set as 1.5 MPa 175 

and the average pressure of OCTP unit is maintained around 1.5 MPa. At trough 176 

hours when the pressure of OCTP unit is greater than (1.5+∆p) MPa, the EGO is 177 

pressurized first by an oxygen compressor and then is liquefied by the LU 12 and 178 

CER unit 14 to store in the liquid tank 13. At peak hours, the oxygen demand 179 

increases while the production of ASU is not enough, the GO is taken from sphere 180 

tank 10 or LO evaporator 14. The principle of operation of CER unit is making the 181 

liquid product exchange heat with gaseous product so that the cold energy in the 182 

liquid product could be recovered. The ∆p is influenced by the capacity of OCTP unit. 183 

The volume of the EGO to be liquefied is shown as Eq. (2). 184 

V V Ve usel V= = −                         (2) 185 

In the circumstances described in (1), the down-regulation of load is carried out 186 

in ASU by ALC, and the EGO is liquefied into liquid storage tank by oxygen 187 

liquefaction and vaporization unit consisting of LU, CER, liquid tank and LO 188 

evaporator. 189 
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With the increase in γ of ASU, the amount of GO product would also raise so 190 

that the instantaneous larger GO demand in steelmaking process could be met. 191 

Besides, the EGO could be liquefied into a liquid tank by the oxygen liquefaction and 192 

vaporization unit, stopping oxygen from being released; When the GO demand 193 

becomes larger, the LO could be evaporated to users. Thus, with increased production 194 

and storage of GO, the contradiction between continuous production of ASU and 195 

fluctuant demand of users can be solved. 196 

The LU of CVO, shown as Fig.2 (a), is used to liquefy the EGO. The 197 

low-pressure nitrogen from ASU, mixed with the nitrogen out of heat exchanger HE5, 198 

is compressed by a nitrogen compressor. Then part of the low-pressure nitrogen goes 199 

through the expander ET2 to a low pressure and produces cold energy for HE5. The 200 

other part of the low-pressure nitrogen undergoes two stages of booster compressors 201 

BC and then is cooled by the water coolers. The nitrogen is cooled by heat exchanger 202 

HE5 and HE6. Most of the nitrogen is withdrawn to expander ET3 to a specific 203 

temperature; the other part of the nitrogen is cooled by heat exchanger HE7 to be LN. 204 

The feed oxygen gas undergoes the heat exchangers HE5, HE6 and HE7 to be 205 

liquefied as LO. 206 

The CER unit including liquid product storage tank, plate heat exchanger (HE8) 207 

and several throttle valves, shown as Fig.2 (b), was similar to the device in ref. 20 and 208 

ref.21. The GO from OCTP system undergoes the heat exchanger E8 and then is 209 
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liquefied as LO, while the LO from liquid tank is vaporized in HE8 and then is sent to 210 

OCTP system. 211 

Switching time from full-liquid nitrogen conditions to full-liquid oxygen 212 

conditions is about 10 minutes. Under full liquid oxygen conditions, the maximum 213 

oxygen production liquefied from gaseous oxygen is 8,750 m3
�h-1. The liquefaction 214 

capacity of the CER unit is 5000 m3
�h-1 and its start-up time is 4 min. Therefore, the 215 

oxygen supply can be reduced by 13,750 m3
�h-1 within 10 minutes. For example, if 216 

applying the CVO, the transition speeds of eight ASUs with product capacity of 217 

102,000 m3
�h-1 would be 1.35 % of rated load per minute and is twice the transition 218 

speed of the ASU with ALC. For example, the pressure of OCTP unit at different time 219 

is shown in Fig.3. Fig. 3 shows the fluctuation of the pipeline pressure, which can 220 

reflect the change of gaseous oxygen demand. Therefore, the shorter the transition 221 

time of load change, the quicker the users’ demand is met. 222 

The following summarizes three advantages of the CVO regulation: 1) The ASU 223 

is running closely to rated load (detailed analysis shown in section 4.3), thus the 224 

efficiency of the ASU is higher. 2) The pressure of OCTP unit runs at lower level to 225 

reduce the energy consumption of compression. 3) The EGO is liquefied by the LU 226 

and CER unit so that the ORR is lower and the LO production is higher. Moreover, 227 

the transition speed of CVO is faster than of ALC described as in section 2.2. 228 

However, the total energy consumption may increase because the LU would consume 229 

a lot of electricity. 230 
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3 Exergy analysis of ASU with CVO regulation method 231 

Based on the exergy analysis, a 40,000 m3
�h-1 of external ASU with CVO 232 

regulation method and the liquefaction system have been evaluated and the exergy 233 

efficiency of single ASU is compared with the ASU combing LU . 234 

3.1 A TYPICAL EXTERNAL COMPRESSED CRYOGENIC AIR SEPARATION PROCESS 235 

The external ASU studied in this paper uses the principle of two-column 236 

separation based on a low- and high-pressure distillation column, shown as Fig. 4[22]. 237 

Air is firstly compressed in the main air compressor (AC), and then purified to 238 

remove the primary impurities such as H2O, CO2, and C2H2 via molecular sieves 239 

absorbers (MS). Part of the pure air is cooled in the main heat exchanger (MHE1) to 240 

saturation temperature and enters the lower column (C1). The others enter a 241 

turbocharger; then the air is cooled in HE1 to 164 K and is expanded in an expansion 242 

turbine (ET); subsequently, the air enters the upper column (C2). The crude argon 243 

column (C701, C702 and C703) is configured in the cold box. The product index is 244 

shown in Table 1. 245 

3.2 The exergy efficiency 246 

According to Chinese GB/T 14909-2005, named the technical guides for exergy 247 

analysis in energy system, the exergy and the general exergy efficiency [23] is 248 

calculated by Eq. (3) and Eq. (4), respectively. 249 

mmix
i

i
iimim H

T

T

f

f
xRTpTExpTE ∆−++=∑ ∑ )1(ln),(),( 0

0
0,       (3) 250 
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int
gen 1out

in in

E I

E E
η = = −                        (4) 251 

The exergy balance of ASU is shown as Fig.5 (a). The LU can be under three 252 

conditions these are full-LO condition without LN production, full-LN condition 253 

without LO production and liquid oxygen-nitrogen condition. The exergy balance of 254 

LU under full-LO condition is shown as Fig.5 (b), whose total exergy inputs consist 255 

of the exergy in the feed and the electricity consumption while the total exergy 256 

outputs consist of the exergy of LO and cold water. Similarly, the exergy balance of 257 

LU under full-LN condition is shown as Fig. 5(c), whose total exergy inputs consist of 258 

the exergy in the feed and the electricity consumption while the total exergy outputs 259 

consist of the exergy of LN and cold water. 260 

The exergy calculation software for oxygen-nitrogen-argon mixed working fluid 261 

based on Peng–Robinson equation of state was developed by VC ++ 6.0 [24]. 262 

The general exergy efficiency (GEE) of ASU and LU is shown in Table 2 and 263 

Table 3. The GEE of ASU combined with LU under full-LO condition and full-LN 264 

condition is 26.33 % and 31.23 % respectively, which is 1.11 times and 1.31 times of 265 

than that of single ASU respectively. It indicates that the process of ASU with LU 266 

would be more efficient. 267 

 4 Energy analysis of the CVO regulation method 268 

Exergy is the useful analysis method of an amount of energy that can be equally 269 

converted into work. Exergy analysis can be used to indicate thermodynamic 270 
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efficiency of a process, including all quality losses of materials and energies. While 271 

an energy analysis of a system is able to evaluate the energy consumption of the 272 

proposed strategy. The energy analysis for air separation unit, OCTP unit and oxygen 273 

liquefaction and vaporization unit is carried out in this section. 274 

4.1 the energy analysis of the air separation unit 275 

The electricity consumption of ASU varies with γ. Based on JBT 8693-1998, 276 

named standard for large and medium scale air separation unit; the consumption of 277 

unit oxygen (CUO) is calculated by Eq. (5). The CUO represents the electricity 278 

consumption of one m3 of GO. 279 

2

1

w
3
ASU

O
lj

W

V V
=

+ ∑
                     (5) 280 

where WASU is the total electricity consumption for ASU production, including the 281 

electricity of the main air compressor, auxiliary device and workshop. 282 

To find effects of various γ on the electricity consumption of ASU, the CUO is 283 

calculated. Based on the actual operation data of the 40,000 m3
�h-1 ASU, the result is 284 

shown in Fig. 6. The principle of selecting such data is as follows: 285 

1) Ignoring the energy consumption of air pre-purification system; 2) Ignoring the 286 

effect of liquid product; 3) Based on the data including inlet airflow, gaseous oxygen 287 

flow and gaseous oxygen flow at rated load, both the inlet air flow and gaseous 288 

product flow changes in the same proportion, according to ref. [25]. 289 

The CUO has dramatic changes with various γ. With increasing the γ, the CUO 290 

reduces gradually until γ is equal to 100 %. Then the unit consumption of ASU begins 291 
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to increase if the γ continues to increase. The ranges of the unit consumption of ASU 292 

with different γ is from 0.459 to 0.425 kW�h �(m3O2)
-1. The CUO with γ of 80 % 293 

increases by 5.99 % compared to the one with γ under rated load condition. The effect 294 

of the load regulation process on the CUO is significant. It means that the appropriate 295 

load regulation method can save energy. 296 

4.2 The electricity analysis of the oxygen compression and transportation 297 

pipeline unit 298 

Thus the electricity consumption of OCTP unit would induce further if the 299 

pressure of it decreases to 1.5 MPa as described in section 2.1. The electricity 300 

consumption of OC in OCTP unit is calculated by Eq. (6) [26]. Part of the 301 

compressibility factor A calculated by the program developed in section 3.2 is listed in 302 

Table 4. 303 

     

1

1
1

1

k

k
out

com m
in

pk
w AR T

k pµ

− 
  = −  −                          

(6)               304 

Ignoring the exergy of cold water and the exergy loss of the compressed oxygen 305 

into the OCTP unit, the exergy analysis of the OC in OCTP unit is carried out. Its 306 

exergy inputs include the exergy of inlet oxygen and electricity consumption feeding 307 

to the OC and its exergy outputs include the exergy of outlet oxygen. 308 

Fig. 7 shows the effect of different discharge pressures of oxygen/nitrogen 309 

compressors on the electricity consumption, general exergy efficiency and exergy loss 310 

of that. In Fig. 7 (a), with the discharge pressure of the OC decreasing from 3.04MPa 311 

to 1.5MPa, the electricity consumption and exergy loss of the OC reduces 30.22% and 312 
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38.38% respectively, while its general exergy efficiency increases from 59.67% to 313 

67.33%. Thus in order to save electricity, it is very necessary to decrease the pressure 314 

of OCTP unit. Similarly, the electricity consumption, general exergy efficiency and 315 

exergy loss of the nitrogen compressor at different discharge pressure are shown in 316 

Fig. 7 (b). 317 

4.3 Comparison of three evaluation methods at different load regulation methods 318 

The total electricity consumption includes that of ASU, the OCTP unit and 319 

oxygen liquefaction and vaporization unit. The total electricity consumption on three 320 

cases is compared. For CASE 1, the ALC is used on ASU as described section 2.1. 321 

For CASE 2 and CASE 3, the CVO is applied on ASU. The γ in CASE 2 raised only 322 

5 % than before while the γ in CASE 3 increases to 100 %. The γ is made equal to 323 

100 % in the above comparison process especially when the (γ +5 %) is larger than 324 

100 %. Moreover, it is assumed that there is enough space for liquid storage tanks. 325 

The total electricity on CASE 1, CASE2 and CASE3 is calculated by Eq. (7), Eq. 326 

(8) and Eq. (9) respectively. Where VCASE1 is the production of ASU in CASE 1; Vuse 327 

is the user’s demand; Vl is the EGO to be liquefied; w, wcom and wl is the consumption 328 

of unit oxygen, the consumption of unit oxygen compression and the consumption of 329 

unit oxygen liquefaction respectively. The VCASE1� w, Vuse� wcom and Vl� wl in Eq. (7) 330 

represent the CUO, the electricity of OCTP unit and the electricity of oxygen 331 

liquefaction and vaporization unit.  332 

1 CASE1 use comW = V w+ V w + V wCASE ll⋅ ⋅ ⋅                (7) 333 
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2 2 22 2comuse use )W = V w+ V w + (V V wCASE CASE CASE LCASE CASE−⋅ ⋅ ⋅
� �

     (8) 334 

 3 3 33 3comuse use )W = V w+ V w + (V V w LCASE CASE CASECASE CASE−⋅ ⋅ ⋅
� �

     (9) 335 

The consumption of unit oxygen, calculated by Eq. (10), is fitted by the data 336 

derived from Fig.6. The consumption of unit oxygen compression is obtained by 337 

Eq.(6) . The consumption of unit oxygen liquefaction is achieved from the actual data. 338 

When 8,750 m3�h-1 of oxygen is liquefied, the electricity consumption of LU is 4, 339 

956.52 kW⋅h�h-1, thus the consumption of unit oxygen liquefaction is 0.57 340 

kW�h�m-3O2. 341 

298.99815 18.8380( 2 (( )/ ) )1

( / 2

-0.8353
0.44277

18.838 1 )0
vw e

π
− × −×

×
= +   (10) 342 

The daily data of supply and demand as well as liquefaction and release of 343 

oxygen during 59 days in 2009 is shown in Fig.8. The V is always beyond Vuse. As 344 

the data in Fig.8 is randomly selected, the results could be used to analyze other days 345 

of the year 2009. 346 

The effect of γ on the total electricity consumption on the three cases ( CASE 1, 347 

CASE 2 and CASE 3) is shown in Fig. 9. The increase of γ suggests an increase of the 348 

total energy consumption of CASE 1 and CASE 3 as well as the gradual reduction of 349 

the total energy consumption of CASE 2. When γ varies from 84 % to 95 %, The 350 

descending order of the electricity consumption on the three cases is CASE 2, CASE 351 

3 and CASE 1, but the electricity consumption on CASE3 is closer to that on CASE 1. 352 

While γ is greater than 95 %, the electricity consumption of CASE 2 is the lowest 353 

among the three cases. It means that the total electricity consumption is influenced by 354 
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the γ. For several points in Fig.9, for example γ is equal to 76 %, 87 % and 90 %; the 355 

value of V0/Vuse is greater 1.04. Thus, it can be referred that the EGO should be 356 

released rather than be liquefied if the value of V0/Vuse is greater than 1.04. 357 

The electricity consumption of CASE 2 is the lowest among the three cases 358 

while γ is greater than 95 %, hence the CASE 2 should be studied further by applying 359 

CER. The amount of EGO liquefied by CER is Vr. The medium pressure nitrogen 360 

(MN) is liquefied by LO to be LN which is used to liquefy the EGO. 361 

Fig.10 shows a flow diagram of the cold energy recovering unit in Aspen Plus. 362 

Where, (a) represents that 1 kmol�h-1 EGO is liquefied by LN and (b) represents that 1 363 

kmol�h-1 MN is liquefied by LO. Table 5 shows the simulation conditions of CER 364 

process. 365 

The simulation results show that liquefying 1 kmol�h-1 EGO need about 0.89 366 

kmol�h-1LN, which means that the ratio of EGO and LN is 1:0.89; Liquefying 1 367 

kmol�h-1 MN need about 1.6 kmol�h-1LO, which means that the ratio of LO and MN is 368 

1.6:1. Such ratio would not change until the temperature and pressure of product in 369 

table 5 changed. 370 

The energy consumption of CER unit consists of the electricity consumption of 371 

MN compression and the cold loss of liquid product exchanging heat with gaseous 372 

product. 373 

The electricity consumption of MN compression is calculated by Eq. (11). 374 

rW V 0.896N Nw= ⋅ ⋅                          (11) 375 
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where WN is the electricity consumption of MN compression; the wN is the unit 376 

consumption of nitrogen compression, shown as Fig.7 (b). 377 

The cold loss is calculated by Eq. (12). 378 

pQ V c t= ⋅ ⋅ ∆                             (12) 379 

where Q is cold loss; cp is heat capacity at constant pressure; ∆t is the temperature 380 

difference at warm end of CER unit. 381 

Based on the conditions in table 5, the total energy consumption can be 382 

calculated by Eq. (13). 383 

r r
r

V 0.94239 t V 1.0482 t
W V 0.896

3600 1.6 3600
O N

r Nw
⋅ ⋅ ∆ ⋅ ⋅ ∆

= ⋅ ⋅ + +
×

       (13) 384 

If the CER is not applied, the EGO would be released. The electricity due to the 385 

EGO released is calculated by Eq. (14). 386 

W = V wre ⋅                         (14) 387 

where We is the electricity of EGO released; w is the unit consumption of oxygen, 388 

shown as Fig. 6. 389 

The difference of energy consumption between CER unit and EGO released is 390 

set as ∆W. Fig. 11 shows the effect of Vr on such difference of energy consumption. It 391 

indicates that if the ASU operates stable, Wr is always smaller than We, which means 392 

that the total energy consumption of CER unit would decrease with increasing Vr. 393 

Thus, applying the CER unit is an energy-saving measure. 394 

The CUO is selected to evaluate the electricity consumption of various methods. 395 

Table 6 lists the average of the CUO of the above three cases during 59 days in Fig. 8. 396 
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Regardless of electricity consumption of liquefaction, the CUO of CASE 2 and CASE 397 

3 compared to CASE 1 reduce by 2.73 % and 1.82 % respectively, and the unit 398 

consumption of oxygen compression decreases by 30 %. 399 

Table 6 also reveals that the unit consumption of oxygen liquefaction is greater 400 

than of ASU and compression, which means that the electricity consumption of OCTP 401 

unit would increase because of using LU.  402 

To evaluate the actual energy-saving potential of CVO method further, the 403 

overall consumption of unit oxygen (OCUO) is selected. The OCUO is defined as the 404 

ratio of the total electricity consumption and the actual amount of gaseous product Vi 405 

including the gaseous product consumed and stored but not including the released 406 

gases. The OCUO is calculated as Eq. (15) [27]. The other product capacities of a 407 

multi-product production ASU should be converted into oxygen product capacity, the 408 

converted factor can be obtained by the minimum separation work of each component 409 

calculated by Eq. (16)[27]. 410 

Here i=1, 2 and 3 respects O, N and Ar, respectively 411 

w
3

tol
O

i i Lj

W

V Vα
=

+∑ ∑
                  (15) 412 

1
y ln

yi
i

N nRT= ∑                     (16) 413 

It is assumed that air consists of O, N and Ar where the mole fraction of them is 414 

20.95%, 78.12% and 0.93% respectively. The minimum separation work of one mole 415 

of air to be separated is 62.4 kJ �(m3air)-1. 416 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 21 / 28 
 

Thus the minimum separation work of oxygen is: 417 

1 1N =N/y =297.80 kJ �(m3O2)
-1 418 

And the minimum separation work of argon is: 419 

2 2N =N/y =6708.60 kJ �(m3Ar)-1 420 

So, 1, 22.527, 0.026826O Ar Nα α α= = = . 421 

Fig. 12 shows the influence of γ on the wO on the three cases. An increase of γ 422 

shows a reduction of the wO. The wO under CASE 3 and CASE 2 reduces 6.22% and 423 

4.48% compared to CASE 1 respectively. When the γ is bigger than 95 %, the wO 424 

under CASE 3 is greater than under CASE 2, consistent with the releations of total 425 

energy shown in Fig.9. When the γ varies between 90 % and 95 %, the wO under 426 

CASE 3 gets the minimum, and the incremental of wo under CASE 2 compared with 427 

CASE 3 is less than 3.1%. The reason for decreasing the wO is that the Vi increases, 428 

which is achieved by liquefying the EGO without oxygen released. However, the total 429 

electricity consumption increases due to the liquefying process. When the γ is more 430 

than 95%, the wO under CASE 2 is minimal within the lowest total elecrictiy 431 

consumption, because the whole EGO is liquefied rather than released. 432 

To sum up, the CVO regulation method is influenced by γ. The CVO regulation 433 

method is modified based on the actual conditions as follow. When the ratio of V0 to 434 

Vuse is less than 1.04 and the product rate is greater than 95 %, the ASU system should 435 

operate under rated load condition. While the γ varies from 85 % to 95 %, the γ should 436 

be increased by 5 %. If γ is less than 85 %, the ALC should be applied to ASU system. 437 
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While the ratio of V0 to Vuse is more than 1.04, keeping V0 constant, the EGO should 438 

be released. For example, after applying the CVO regulation method, an ASU system 439 

whose production is 82,000 m3/h and its OCTP unit in particular, achieves 1.25 440 

million kWh electricity-saving due to the EGO being liquefied rather than be released. 441 

In China, the total oxygen consumption is about 10.91 billion m3 of O2 while the 442 

unit consumption of oxygen is assumed to be 0.42 kWh �(m3
�O2)

-1 in 2013. If the 443 

oxygen release ratio decreases by every 1 % of the above oxygen consumption, the 444 

electricity-saving would be 4.58×1010 kWh for ASU system. As the CO2 emission of 445 

unit electricity generated by coal-fired power generation system is 1.03 kg/kWh [28], 446 

the CO2 emissions could reduce 5.28×107 tons at least annually with the above 447 

energy-saving. China promised to reduce the CO2 intensity by 40-45 % by 2020 from 448 

2005 levels, and China’s CO2 emission reduction must exceed 6994.9 [29] million tons 449 

to fulfill the promised CO2 emission reduction target of China in 2020. It can be 450 

inferred that the CO2 emission reduction of iron and steel industry contributes 0.67 % 451 

to China’s CO2 emission reduction in 2020 if the oxygen releasing rate decreases by 452 

every 1 % of gaseous oxygen consumption in 2013. 453 

5555    CCCConclonclonclonclusionusionusionusion    454 

Aiming at achieving energy savings and reducing oxygen release ratio, the 455 

exergy calculation program was devoloped. Besides, the unit consumption of oxygen, 456 

the total energy consumption and the overall unit consumption of oxygen were 457 
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selected to determine energy-saving of different load regulation method. After that, 458 

the CVO regulation method is proposed for ASU 459 

Compared with the current regulation method, the CVO regulation strategy 460 

presented in the paper has following features. 461 

(1) The contradiction between continuous production of ASU and fluctuant 462 

demand of users can be solved, because of increase of production and storage of 463 

gaseous oxygen. 464 

(2) The transition speed of CVO regulation method is about 3.125 %/min twice 465 

as the transition speed of current regulation method. 466 

(3) The general exergy efficiency of ASU combining with liquefaction unit is 467 

increased by 11 % to 31 %. The OCUO is suitable method to evaluate the 468 

energy-saving potential of CVO. The OCUO and the unit consumption of 469 

compression of CVO reduced more than 4.47 % and 30 %, respectively. Besides, 470 

using the cold energy recovering unit is an energy-saving way. 471 

(4) The proposed regulation method is related to product load rate. While the 472 

product load rate is more than 95 %, the ASU operates under rated load and the CVO 473 

regulation method is energy-saving. 474 
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 479 

Nomenclature 

A coefficient of compressibility (-) Superscript 

cp 

heat capacity at constant 

pressure(kJ�m-3
�ć

-1) 
0 reference conditions of enthalpy 

E exergy (kW) o 

the liquefaction unit running under 

full-liquid oxygen condition 

f fugacity (Pa) n 
the liquefaction unit running under 

full-liquid nitrogen condition 

H specific enthalpy (J� mol-1) Subscript 

I exergy loss (kW) ASU air separation unit system 

k adiabatic compressibility(-) CASE three cases analyzed in the paper 

N 
the minimum separation work 

˄kJ�m-3
˅ 

CVO combined variable oxygen method 

n molar (mol) com compressor 

p pressure (Pa) e the excess gaseous oxygen 

Q cold loss (kJ�h-1) gen general exergy efficiency 

R 
molar gas constant (J�K-1

�mol-1), 

8.3143 J�K-1
�mol-1 i component i 

T temperature (K) in inlet flow 

V oxygen product volume (m3) j component j 

W electricity consumption (kW) l liquid product 

x molar fraction n the product flow under rated load 

Greek Letters O oxygen  

α coefficient of conversion(-) O2 gaseous oxygen 

γ product rate (%) r cold energy recovering unit 

η general exergy efficiency (%) 0 ambient reference conditions 

µ efficiency of compressor (%) use user’s demand of oxygen product 
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Fig.1. Principle of oxygen system of ASU with CVO 559 
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Table 1. The product index of 40, 000 m3/h of ASU 

Product 
Production 

/m3·h-1 
Purity 

Pressure 

/MPa(G) 
Temperature/K 

Oxygen gas 40,000 99.6 % O2 0.0191 281.25 

Liquid 

oxygen 
1,500 99.6 % O2 0.17 95.15 

Nitrogen gas 40,000 ≤3×10-6 O2 0.013 285.75 

Liquid 

nitrogen 
500 ≤3×10-6 O2 0.32 80.15 

Liquid argon 1,360 
≤2×10-6 O2, 

≤2×10-6 N2 
0.16 90.15 
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Table 2. The general exergy efficiency of ASU under rated load condition 

Input Exergy/kW Output Exergy/kW 

Air in feed 0 
Gaseous 

nitrogen 
455.79 

Electricity 

consumption 

air 

compressor 
20,600 Liquid nitrogen 121.06 

water pump 400 Gaseous oxygen 2,125.29 

water cooler 182 Liquid oxygen 413.16 

heating unit 456 Liquid argon 485.22 

Cooling water in feed 33.28 Crude nitrogen 1,231.36 

  
Cooling water 

exiting 
334.12 

Ein 21,671.28 Eout 5,166 

The GEE (ηgen) Eout/Ein×100 %=23.84 % 
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Table 3. The general exergy efficiency of liquefaction unit 

Input Exergy/KW Output Exergy/ KW 

Electricity consumption of LU 4,956.52 Gaseous nitrogen 22.00 

Middle pressure nitrogen 941.29 Liquid nitrogen 3,088.73 

Gaseous oxygen in feed 816.86 Liquid oxygen 2,322.18 

Cooling water in feed 128.35 Cooling water exiting 374.51 

Ein
o 5,901.73 Ein

o 2,696.69 

Ein
o 6,026.16 Ein

o 3,485.24 

gen
o 2,696.69/5,901.73×100 %=46.69 % 

ηgen
o 3,485.24/6,026.16×100 %=57.84 % 

Note: the superscripts o and n represent the LU running under full-LO condition and 

full-LN condition respectively. 
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Table 4. The Compressibility factor A of oxygen 

Pressure/MPa 0.5 1.0 1.5 2.0 2.5 3.0 

Compressibility factor A 0.9977 0.9949 0.9921 0.9982 0.9866 0.9839 
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Table 5. Simulation conditions of the cold energy recovering unit 

  Temperature/K Pressure/MPa Volume/(kmo�h-1) 
Vapor 

fraction 

(a) 
MN 293.15 0.5 1 1 

LO 91.15 0.11 - 0 

(b) 
GO 293.15 1.5 1 1 

LN 80.15 1.371 - 0 
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Table 6. The average of the consumption of different cases 

 
wO2 

/kW�h�(m3O2)
-1 

wcom 

/kW⋅h�(m3O2)
-1 

wl 

/kW�h�(m3O2)
-1 

CASE1 0.439 0.200 0.566 

CVO 
CASE2 0.427 0.140 0.566 

CASE3 0.431 0.140 0.566 
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Fig. 1. Principle of oxygen system of ASU with CVO 

1-air compressor; 2- distillation column; 3- flowmeter; 4- bleed valves; 5, 8-valve; 6-oxygen 

compressor; 7-oxygen check valve; 9- reducing valve of user; 10-spherical tank; 11- pressure 

control valve; 12- liquefaction unit; 13-liquid oxygen tank; 14- cold energy recovering unit; 

15, 18-pressure sensor; 16-liquid nitrogen tank; 17- liquid oxygen evaporator; 
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Fig. 2. Diagram of the liquefaction unit and the cold energy recovering unit 
NTC—nitrogen compressor; BC—booster compressor; ET—expansion turbine; HE—heat 

exchanger 
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Fig. 3. The pressure of oxygen compression and transportation pipeline unit 
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Fig. 4. Diagram of the typical externally compressed cryogenic air separation process 
AF—air filter; AC—air compressor; ACT—air cooling tower; WCT—water cooling tower; 

MS—molecular sieve purifier; SH—steam heater; BT—booster turbine; ET—expand 

turbine; MHE—main heat exchanger; HE2—heat exchanger of argon; HE3—expand air 

sub-cooler; E4—liquid sub-cooler; K1—main cooling evaporator; C1—lower column; 

C2—upper column; C701—crude argon column I; C702—crude argon column II; 

C703—pure argon column; K704—Crude argon liquefier; AP—argon pump 
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Fig. 5. The exergy balance of ASU and LU 
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Fig. 6. The effect of γ on the consumption of unit oxygen 
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Fig. 7(a). The effect of different discharge pressure of oxygen compressor on the 
energy consumption, exergy efficient and exergy loss of it 
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Fig. 7(b). The effect of different discharge pressure of nitrogen compressor on the 
energy consumption, exergy efficient and exergy loss of it 
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Fig. 8(a). Daily data of supply and demand of oxygen during 59 days in 2009 
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Fig. 8(b). Daily data of liquefaction and release of oxygen during 59 days in 2009 
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Fig. 9. The effect of γ on the total energy consumption of the three cases 
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Fig. 10(a). Diagram of the cold energy recovering unit in Aspen Plus for liquid 
nitrogen and gaseous oxygen 
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Fig. 10(b). Diagram of the cold energy recovering unit in Aspen Plus for liquid 
oxygen and gaseous nitrogen 
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Fig. 11. The effect of Vr on the difference of energy consumption between Wr and We 
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Fig. 12. The influence of the γ on the overall consumption of unit oxygen 
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 1 / 1 
 

Highlights: 

� Novel regulation method of ASU to reduce the electricity consumption was 

proposed. 

� General exergy efficiency of ASU used the new method increased by 11 %. 

� Overall consumption of unit oxygen was used to evaluate energy-saving 

potential. 

� Overall consumption of unit oxygen used CVO method reduces about 4.47 to 

6.22 %. 


