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Abstract 

Alumina, 10% and 20% nano ZTA with 1.5 mol% yttria stabiliser were subjected to 

Vickers indentation testing with loads from 1 to 20 kg. Cr
3+

 fluorescence and Raman 

spectroscopy were applied to the indent centre and around the indentation in order to 

investigate the origin of the signal, the effect of indentation loads and zirconia phase 

transformation on the residual stress and plastic deformation in the plastic zone. The results 

suggested that with very strong laser scattering, the depth resolution of ZTA materials was 

very poor, which lead to a very significant amount of the signal being collected from the 

subsurface regions below the plastic zone. It was also found that zirconia phase 

transformation reduced the compressive residual stress in the alumina matrix within the 

plastic zone, except at the indentation centre, due to the tensile residual microstress generated 

by the zirconia phase transformation. In addition, the dislocation density on the indent surface 

of the ZTA samples was significantly reduced due to the restriction of crack propagation and 

energy absorption during the phase transformation process. At the indent centre, the zirconia 

phase transformation was suppressed by the high compressive stress, therefore, no significant 

difference between alumina and ZTA in terms of their residual stress and dislocation density 

were observed. Using TEM observation, it was found that the plastic zone microstructure of 

pure alumina is different from that of ZTA, which is consistent with the Cr
3+ 

fluorescence 

results. the microcrack density in the plastic zone of the ZTA was confirmed to be lower than 

that of the alumina sample. 

 

Keywords: zirconia phase transformation; residual stress; dislocation density; 4-peak fitting; 
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1 Introduction 

 

Zirconia toughened alumina (ZTA) has been extensively researched due to its outstanding 

properties of high toughness, hardness, wear resistance and chemical stability.
1–3

 The zirconia 

additions toughen the alumina matrix via the tetragonal to monoclinic transformation that 

occurs in the stress field of growing cracks. The phase transformation results in a 4-5 vol% 

expansion, which provides a compressive stress that acts to reduce the propagation of the 

crack. Zirconia toughened alumina (ZTA) is already being used in a wide range of 

applications, from cutting tools, wear parts and biomechanical devices to ballistic 

protection.
4,5

 

Whilst the Vickers indentation toughness measurement technique is not a rigorous 

approach, it can be used to obtain a rough indication of the resistance to crack propagation in 

ceramics. Katagiri
6
 has measured the amount of zirconia phase transformation around indents 

on pure zirconia using Raman spectroscopy and then quantitatively calculated the zirconia 

phase transformability. In addition, a Vickers indent leaves a plastically deformed zone 

beneath it. Generating, a better understanding of the residual stress and plastic deformation 

conditions induced by indentation in ZTA ceramics can help to investigate the effect of 

zirconia phase transformation on the plastic deformation of the alumina matrix and the stress 

field distribution after the indentation test. 

For alumina-based ceramics, the residual stress can be investigated using Cr
3+

 

fluorescence spectroscopy.
7–10

 Using an optical microprobe, a laser is focused on the sample 

surface. The chromium ions, Cr
3+

, a persistent impurity in alumina, interact with the laser and 

result in luminescence. When the crystal of the material is subject to a stress, the frequency of 

the luminescent peaks in the spectrum shifts correspondingly, allowing an indication of the 

mean stress distribution to be obtained.
7,11

 In a polycrystal with randomly orientated grains 

the relationship between the mean peak shift and the hydrostatic component of the residual 

stress in the crystal is given by: 

         (1) 

where Δν is the peak shift (cm
-1

) relative to the stress-free peak position, σH is the hydrostatic 

stress component (GPa) and ПH is the appropriate piezo-spectroscopic coefficient, which has 

a value of 7.6 cm
-1

 for the R1 peak.
8
 

Guo and Todd
12,13

 have observed that the axial resolution of the microscope and the 

translucency of the material can significantly affect Cr
3+

 fluorescence analysis. Studying the 

centre of an indent made in alumina using a 1 kg load revealed a single curve that contained 
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four overlapping peaks, two broad peaks and two sharp peaks. By characterising the probe 

response function (PRF) and fitting the four peaks with an appropriate physical constraint, the 

two broad peaks were confirmed to originate from the plastic zone of the indentation, whilst 

the two sharp peaks were believed to have arisen from the elastically deformed region 

beneath it, Figure 1. The relatively high transparency of alumina meant that the laser could 

penetrate below the surface on which it was focused, leading to a large sampling volume 

covering both the material in the plastic zone and the subsurface region. This indicates that 

the axial resolution of the Cr
3+

 fluorescence spectroscopy is not only controlled by the 

resolution of the equipment, but also by the transparency of the material. In order to 

investigate the residual stress distribution caused by the indentation of the ZTA ceramics, it is 

essential to determine the resolution of the microscope and the laser penetration depth so that 

it is possible to determine which fluorescence peaks represent the signal from the plastic zone. 

In addition to the peak shift analysis, Ma et al.
8
 also established that the fluorescence 

peaks from a plastically deformed material region, such as a plastic zone formed by an 

indentation, broaden significantly due to the resulting stress variations within the sampling 

volume. This was important as it demonstrated that the level of plastic deformation arising 

from dislocations having a high local stress field could be quantitatively determined from 

within a probed volume. According to an experimental and modelling study by Wu et al.
11

, 

the R1 peak broadening,        , is proportional to the dislocation density,  , in the probed 

position: 

              (2) 

where k is a constant related to the lattice parameters of the alumina crystal and the piezo-

spectroscopic coefficients and F(ρ) is a function correlated with the dislocation density. 

In this work, three materials have been prepared and characterised, viz. monolithic 

alumina, 10% nano ZTA and 20% nano ZTA, where the zirconia additions were in the nano 

range and were partially stabilised using 1.5 mol% yttria. The grain size of the alumina phase 

was the same in each case. A high-resolution, confocal micro-Raman spectroscope was used 

to study the spatial distribution of indentation-induced phase transformations in the ZTA 

materials and Cr
3+

 fluorescence analysis was used to determine the residual stresses around 

the indents. All the samples were subject to four indentation loads, viz. 1, 5, 10 and 20 kg, in 

order to validate the four peak fitting approach introduced by Guo and Todd and 

quantitatively analyse the residual stress under different indentation loads.  
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2 Experimental 

 

2.1 Sample preparation 

 

As received, aqueous YSZ nanosuspension containing 1.5 mol% yttria (MEL Chemicals, 

Manchester, UK) was mixed with a fine submicron alumina aqueous suspension (Baikowski, 

Annecy, France), to form suspensions containing 0, 10 and 20 wt% YSZ in the final materials. 

Details of the as-received suspensions are listed in Table 1. In order to achieve a high density 

green body, the as-mixed suspensions, which had solid contents of 40-50 wt%, were further 

concentrated to ~57 wt%. During the concentration, the suspensions were subjected to 

ultrasonic treatments every 30 minutes using an ultrasonicator (MSE Scientific Instruments, 

Manchester, UK) to break up any agglomerate that formed and hence to control the viscosity 

of the suspensions at ~80 mPa at 100 s
-1

 shear rate. Full details of the concentration method 

have been provided elsewhere 
14,15

. 

The suspensions were then spray freeze dried to yield granules that possessed high 

flowability, due to their spherical shape, and high crushability, due to their porous structure 

after the ice was sublimed. A foaming agent consisting of 2 vol% Freon 

(trichlorofluoromethane, Fisher Scientific UK Limited, UK) was added to the high solid 

content suspensions prior to the spray freeze drying to improve the granule crushability. In 

the spray freezing stage, the suspension was dripped onto an ultrasonic rod using a pipette so 

that droplets were formed that subsequently fell into liquid nitrogen and froze. The beakers 

containing the frozen granules were subsequently connected to a freeze dryer (Virtis®, 

Benchtop SLC, New York, USA), that was connected in turn to a double stage, oil-sealed, 

rotary vane vacuum pump (Leybold® D2.5B, Leybold vacuum GmbH, Oberkochen, 

Germany) with an exhaust filter allowing the droplets to be freeze dried under a vacuum of 

<100 mTorr at -50˚C; the process took about 2 days. Full details of the spray freeze drying 

method have been provided elsewhere
16

. 

After drying, the granulated powder was sieved to achieve granules in the range 125 to 

250 µm and die pressed at 250 MPa to achieve green densities of ~55% of theoretical.  The 

pellets, which measured 10 mm diameter and 4 mm thickness, were then sintered at 

temperatures in the range 1400 to 1500˚C with a constant heating rate of 10˚C min
-1

 and hold 

time of 10 hours in order to achieve densities of >99%. The alumina grain sizes were ~1 µm 

in all samples, thus eliminating grain size variations from having an effect on the mechanical 

properties. The crystalline phases of the zirconia grains in the ZTA materials were analysed 
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using X-ray diffraction (XRD), the result indicated that both the 10% and 15% ZTA showed 

100% tetragonal zirconia phase. The details of the sintering conditions and the resultant 

densities and grain sizes are listed in Table 2. 

 

2.2 Indentation 

 

All specimens were sequentially polished using a series of diamond grits of 9, 3 and 1 µm 

grit size. Each step of the polishing sequence was performed for sufficient time to eliminate 

all surface damage induced by the previous step. 1 kg Vickers hardness indentations were 

made on the polished surfaces with 15 s loading time using a HM-124 micro indentation 

hardness tester (Mitutoyo, Japan) and an AVK-C2 hardness tester (Mitutoyo, Japan) was used 

to indent the samples using 5, 10 and 20 kg loads. For all three ceramics and for each 

load/sample combination at least 5 indents were made. The indentation hardness and 

toughness values of the samples were collected using the 1 kg and 10 kg indentation, 

respectively. 

To allow the plastic zone for each indent to be examined, two polished samples were 

bonded together using superglue and then the top, joined surface was polished again to 1 µm 

grit size. The indentations were then made along the join line and the two samples separated 

by dissolving the glue in acetone. A schematic drawing is shown in Figure 2 (a). The plastic 

zone was observed using optical microscopy, as shown in Figure 2 (b), and its size confirmed 

to be similar to the half-length of the diagonal of the indent.  

 

2.3 Determination of the zirconia phases 

 

The zirconia phases present in and around the indents were investigated using a high-

resolution confocal Raman spectrometer (Horiba Yvon Raman LabramHR, Horiba Jobin 

Yvon SAS, Villeneuve d΄Ascq, France) equipped with a liquid nitrogen cooled CCD detector 

and incident radiation from a He red laser at 633 nm. The laser power was 20 mW, the 

spectrum integration time was 40 s and an objective lens with ×100 magnification was used. 

Raman spectra between 100 and 400 cm
-1

 were recorded. This range was selected as the main 

monoclinic bands are at 181 and 192 cm
-1

, whilst the primary tetragonal bands are at 148 and 

264 cm
-1

.
6,17

 

A line scan of the zirconia phase transformation from the sample surface outside the 

indent towards its centre was carried out; a schematic drawing is shown in Figure 3.. The 
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laser was first focused on the polished surface and then scanned towards the indent centre, the 

scanning lines were 60 µm long with a step of 3 µm and the laser was auto-focused at each 

step. The transformed monoclinic zirconia concentration (m) was quantitatively determined 

using the equation
17

: 

 
  

      
      

    

       
      

           
      

    
 

(3) 

where I is the intensity of the peaks and the subscript indicates the corresponding phase, 

whilst the superscript indicates the peak position in reciprocal centimetres. 

 

2.4 Cr
3+

 fluorescence spectroscopy 

 

Cr
3+

 fluorescence spectra were obtained using the same equipment as was used for the 

Raman spectra in section 2.3. The smallest surface spot size of 1.5 μm was achieved using a 

×100 objective lens and a confocal aperture of 20 µm diameter (the spot size was measured 

by focusing the laser on a SiC surface and then measuring the size of the light spot directly). 

For each measurement, a region of interest was selected using the optical microscope with 

white light.  

The Cr
3+

 fluorescence analysis was carried out in two stages. Firstly, a depth scan
12

 was 

performed to investigate the confocal resolution and degree of laser transparency of each 

sample. To achieve this, the laser was initially focused on each 1 µm polished sample surface 

at a remote location from the indents, this position was set as zero; then the specimen stage 

was moved upward by 100 µm, so that the laser focal plane was below the surface. Scanning 

was then carried out in the direction normal to the sample surface in 2 µm steps from the 

starting position, -100 µm, to +50 µm above the surface with the Cr
3+

 fluorescence spectra 

being collected at each step. Secondly, line scanning was again performed as described in 

section 2.3, but this time collecting the Cr
3+

 fluorescence spectra. Note that for both the depth 

scanning and line mapping, the results were repeatable. 

The collected data were subsequently analysed with a constrained 4-peak fitting 

method
13,18

 using fitting software, Auto2Fit 5.5 (7-D software, China). Essentially, two 

doublets of the R1 and R2 peaks were fitted using a mixed Lorentzian and Gaussian function 

subject to the constraint that the R1 to R2 peak area ratio for any individual doublet was 

equal to 2.0
13

. Finally, the peak position and width were identified and used to investigate the 

residual stresses and dislocation densities after each indentation test. Since a certain amount 

of residual stresses could be generated during the sintering process and, particularly, surface 
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polishing, all the peak shifts and broadenings of the indentation-tested samples were 

compared with data obtained after sintering and polishing but before indenting.  

 

2.5 FIB lift-out from the indentation centre and TEM analysis 

 

In order to observe the microstructure inside each indent, transmission electron 

microscopy (TEM, JEOL 2000FX) was carried out on thin foil samples lifted out from the 

centre of 1 kg indents made in the alumina and 10% ZTA.  

To prepare the lift-out samples, a focused ion beam system (Nova Nanolab 600, FEI, 

Netherlands) was used and the lift-out procedure is illustrated in Fig. 4 (a) to (d). Initially, a 

platinum protective layer was deposited on the diagonal of the indent, with an area of 20×1.5 

µm and a thickness of ~1.5 µm, Figure 4 (a). Then, a 20 nA ion beam was used to cut mill 

two trenches measuring ~25×15 µm in area and ~10 µm in depth on each side of the platinum 

layer, Figure 4 (b). A U-shaped cut was performed on the slice shaped material with one side 

not fully cut through, in order to prevent the sample from falling off, Figure 4, (c). A sharp 

tungsten probe was welded to the edge of the slice using platinum deposition and then the 

bridge connecting the slice to the rest of the sample was cut and the sample was lifted out, 

Figure 4 (d). The sample was attached onto a TEM copper grid using a platinum weld and 

then cleaned and thinned using a reduced ion beam current of 0.5 or 1 nA, to prevent sample 

damage, Figure 4 (e). The final TEM sample measured ~20 µm in width, 3-5 µm in length 

and ~100 nm in thickness, Figure 4 (f).  

The dislocation and microcrack distribution of each FIB sample were analysed using high 

resolution transmission electron microscopy. The microcrack density was quantitatively 

determined by taking 10 TEM images at above ×120k magnification of each sample and then 

12 vertical lines with equal spacing and length were drawn across each image, as shown in 

Figure 5. The number of times the lines intersected with cracks was counted yielding the 

number of cracks per unit length of test line, i.e. microcrack density (ρ)
19

: 

       (4) 

where n is the number of intercepts and L is the overall length of the lines. 

 

3 Results and Discussion 

 

The densities, grain sizes, mechanical properties and zirconia phase conditions of the 

samples to be studied are listed in Table 3. 
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3.1 Depth scanning and laser penetration 

 

The depth scanning results of the Cr
3+

 fluorescence are shown in Figure 63, which plots 

the R1 peak intensity, normalized using the maximum intensity, covering stage displacements 

from 100 µm (i.e. focus is below the surface) to +50 µm. For all the three materials, alumina, 

10% ZTA and 20% ZTA, the results show a sharp peak with the highest intensities near the 

surface, as expected. For the alumina, very little signal was collected once the focusing 

position was greater than 40 µm from the surface, whilst for the ZTAs, much broader 

shoulders were observed. This suggests a much larger sampling volume in the ZTAs. The 

results indicate that the addition of nano fine grain sized zirconia inclusions induced a very 

strong laser scattering effect, which increased with increasing zirconia content. The elastic 

scattering of light could have been caused by the larger number of particles and interfaces, 

resulting in a degradation of the confocal optics and therefore the illumination of a larger 

volume of the matrix and the scattering of more luminescent radiation towards the confocal 

aperture. Similar observations have been made in alumina/silicon carbide nanocomposites
12

 

but the effect is much stronger in the present alumina/zirconia nano-ZTAs. This may be 

because zirconia absorbs much less light than SiC.  

 

3.2 Cr
3+

 fluorescence analysis on the indentation centre - origin of the sharp peaks and 

broad peaks 

 

The Cr
3+

 fluorescence spectra from the indent centres of the three materials are shown in 

Figure 74. All the spectra were 4-peak fitted to separate the two doublets; examples of the 

curve fitting are shown in Figure 85, which shows one doublet with broad R1 and R2 peaks 

and the other doublet with sharp R1 and R2 peaks in each example. The broad peaks, which 

displayed very significant negative peak shift and peak broadening, are believed to originate 

from within the plastic zone as the materials experienced extensive plastic deformation 

caused by the high compressive load during indentation. On the other hand, very limited peak 

shift and peak broadening were observed for the sharp peaks from each sample, which 

suggests that these peaks may have originated from outside the plastic zone. 

Measurements of broad peak percentage, peak shift and peak width were made on the 

broad peaks from the alumina, as a baseline material, and are listed in Table 4. The broad 
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peak percentage was measured by calculating the area ratio of the broad R1 peak compared to 

the sum of the broad and sharp R1 peaks. When a 1 kg indentation was used, about 79% of 

the signal was collected from the plastic zone; the data also showed a ~32 cm
-1

 shift of the 

broad peak and broadening of ~56 cm
-1

. This result is very consistent with that of Guo and 

Todd
13

, also with a 1 kg indentation, confirming the validity of the 4-peak fitting and similar 

resolution of the Raman equipment used in Guo’s and the present studies. With increasing 

indentation load, the plastic zone size increased significantly from 15 to 100 µm. The 

percentages of broad peak in alumina were increased from 79% (1 kg) to 99% (20 kg); there 

was a sharp increase between 1 kg and 5 kg, which indicated that the plastic zone was large 

enough by the latter load to result in nearly all the collected signal originating from inside it. 

The comparison further demonstrated that the origin of the two doublets in the indentation 

area, i.e. the broad peaks, represented the signal from the plastic zone, whereas the sharp 

peaks were generated from the materials outside the plastic zone. In addition, with increasing 

indentation load, the peak shift and peak broadening were observed to increase slightly in the 

broad peaks, i.e. from 32 (1 kg) to 39 cm
-1

 (20 kg) for the shift and from 56 (1 kg) to 70 cm
-1

 

(20 kg) for the broadening. This variation was limited in comparison to the extent of the 

increase in the indentation load and the size of the plastic zone, as expected, since the mean 

pressure is believed to remain approximately constant in the yield zone. During the 

indentation process, the plastic zone size increased as the load increased, continuously 

forming freshly yielded zones outside the previously formed plastic zone, without affecting 

the stress level beneath the indenter significantly.
19

 The result also confirmed that the fitted 

broad peaks are physically meaningful and that the fitting work was applicable to the full 

range of indentation loads used in this study. 

The same broad peak analysis was also performed on the ZTA samples. Compared to the 

case for alumina, the broad peak percentages were significantly reduced for the ZTA 

indentations for all the indentation loads. The values as a function of plastic zone size are 

shown in Figure 96, confirming that the strong, sharp peak doublets in the ZTA originated 

from the material outside the plastic zone due to the much greater laser scattering with the 

ZTA samples.  

 

3.3 Effect of zirconia phase transformation on the residual stress distribution around 

indents. 
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After confirming the origins of the sharp and broad peaks in alumina and ZTA, the 

residual stresses at the indent centres formed under different loads were studied based on the 

peak shift of the broad R1 fluorescence peaks, as shown in Figure 107. An increase in peak 

shift with increasing indentation load may be observed for all three materials, however, no 

significant difference can be observed in terms of their peak shift between alumina and ZTAs, 

which suggests that either the zirconia phase transformation did not happen at the indent 

centre or, if it did, it had a very limited effect on the residual stress change in the alumina 

grains. Determining which explanation was valid was achieved via Raman analysis of the 

zirconia phases inside and around the indents. 

Figure 11 8 (a) shows an example of the line map obtained for the transformed monoclinic 

zirconia concentration from outside a 10 kg indent in 20% ZTA to its centre. The Raman 

spectra from three locations, viz the indent centre, on the inclined surface inside the indent 

and at the surface outside the edge of the indent, are shown in Figure 11 8 (b). It may be seen 

that significant monoclinic peaks were observed around the indent, whilst their intensity 

reduced when focusing on the inclined surface of the indent and virtually no monoclinic peak 

was observed in the indent centre itself. It should be noted, however, that the intensity of the 

Raman signal reduced significantly when close to the indent centre, this will have affected 

the accuracy of the quantitative measurement. The reduction in intensity will have been 

caused by several factors, including the surface formed by the compression of the indenter 

being both concave and very rough compared to a polished surface, resulting in the refraction 

of the incident radiation, and being plastically deformed, disrupting the phonons responsible 

for the Raman effect. In addition, the relatively low zirconia contents (10-20%) meant that 

the intrinsic intensity of the Raman signal was very low.  

A further factor that is important to note in interpreting these zirconia phase content results 

is that, like the Cr
3+

 fluorescence results, they reflect the phase content in the total sampling 

volume, some of which lies outside the immediate region on which the laser is focused, 

particularly in the ZTAs. Because of the greater breadth of the Raman peaks compared with 

the Cr
3+

 fluorescence peaks, however, the signal from the plastic zone cannot be extracted by 

multiple peak fitting. The phase contents measured should therefore be regarded as semi-

quantitative. 

Nevertheless, the trend of a reduction in the degree of zirconia phase transformation 

towards the indentation centre is very clear; a similar result was obtained by Paul et al.
20

 for 

nano zirconia. The cause is believed to originate in the increasingly high compressive stresses 

towards the indent centre, which will have suppressed the volume expansion that occurs 
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during the phase transformation. However, the high monoclinic content near the edge of the 

indentation, where there are tensile stress components
20

, demonstrates unequivocally that the 

tetragonal to monoclinic transformation did take place in the region where permanent 

deformation was occurring as the indentation load increased. We tentatively suggest, 

therefore, that some of the monoclinic zirconia formed around the indenter during loading 

may also have transformed back to tetragonal zirconia as the indentation expanded and 

enveloped this initially transformed material in the highly compressive region beneath the 

indenter. Previous results on 3Y-TZP with conventional grain size
21

 do not show this effect. 

One reason for this may be that the significantly higher stiffness of ZTA compared with 3Y-

TZP is expected to lead to correspondingly higher compressive stresses in the plastic zone, 

which would favour reverse transformation. It may also reflect differences between the 

transformability of nanosize zirconia grains with grain sizes close to nano range  and 

conventional materials and clearly merits further investigation. 

The same experiments were carried out on the 10% ZTA and the indents with different 

loads. The same trend of reduction in the degree of zirconia phase transformation towards the 

indentation centre was observed. The results are listed in Table 5, in which only the content 

of transformed monoclinic zirconia phase on the edge of the indent and in the indent centre 

are displayed. It should be noted that an error of about ± 5% was observed, due to the factors 

mentioned before which affected the accuracy of the quantitative measurements; within 

experimental error, no significant difference was observed with variation of either zirconia 

content or indentation load. 

A line scan of the R1 peak shift with distance to the indent centre was made and the results 

are shown in Figure 129. For all samples, the compressive residual stress increased 

significantly from the unloaded surface to the indent centre owing to the constraint on the 

expanded indentation region from the unyielded material surrounding it. The peak shift inside 

the indent, in the range of 30 to 10 µm from the indent centre, displayed consistently lower 

values for the ZTA samples compared to the alumina, Figure 129. The mean difference was 

~4 cm
-1

, corresponding to a hydrostatic stress of ~500 MPa. Although there was virtually no 

zirconia monoclinic phase at the centre of the indent, the amount of transformation increased 

significantly on the inclined indent surface, particularly from 10 to 30 µm away from the 

centre, Figure 11 8 (a). Therefore, it is very likely that the observed lower residual stresses in 

the ZTAs compared to the alumina originated from the zirconia phase transformation. 

Gregori et al. 
22

 found that there was a linear relationship between the degree of zirconia 

phase transformation and the residual tensile stress produced in the alumina matrix of ZTA. 
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The explanation is that during the zirconia phase transformation process, the volume 

expansion of transformed zirconia grains is resisted by the surrounding alumina matrix 

putting the zirconia into compression and the alumina into tension
23

. Therefore, for ZTA 

materials after indentation testing, some alumina grains around the phase transformed 

zirconia received a fraction of the tensile stress, which cancelled part of the compressive 

stress induced by the indentation, resulting in the lower net residual stresses at the locations 

with zirconia phase transformation. According to the modelling results of Gregori et al.
22

, the 

maximum tensile stress provided by 100% zirconia phase transformation was about 600 MPa 

for ~20 vol% zirconia. This value is of a similar level to the measured difference in the 

residual stresses on the indentation surfaces of the alumina and ZTA samples. It is also 

interesting that there was little difference in matrix residual stress between the 10% and 20% 

ZTA. This suggests a smaller proportion of zirconia transformed to the monoclinic phase in 

the 20% ZTA but it is not possible to determine the veracity of this proposal because of the 

semi-quantitative nature of the phase content results noted above. The similar stress levels 

outside the indentation for all three ceramics can be understood in terms of their similar 

hardness values. This implies that the extra volume of the indentation that needs to be 

accommodated by elastic strains in the material around it is approximately the same. A 

further implication is that the mean residual stress within the plastic zone when the stress in 

the zirconia phase is accounted for in addition to the alumina matrix is also similar in all three 

materials 

 

3.4 Effect of zirconia phase transformation on the dislocation density distribution in the 

alumina around indents. 

 

The dislocation densities at the centre of the indents formed under different loads were 

compared using the peak width changes in the broad R1 fluorescence peaks, as shown in 

Figure 13 10 (a). In each case there was a clear increase in the peak broadening between the 

10 and 20 kg indents, though it was less in the ZTA samples than the alumina. Assuming that 

dislocation formation was the dominant source of broadening, this indicates that the alumina 

dislocation densities at the indent centres of the ZTA materials were lower than in the pure 

alumina. 

Following the same mapping points illustrated in Figure 129, the peak width change from 

the unloaded surface to the indent centres for the 10 kg indentations are shown in Figure 13 

10 (b). The alumina sample showed a sharp increase in the values around the edge of the 
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indent and the change of peak width, from about 10 to 55 cm
-1

, remained fairly constant 

within the indent. For the ZTAs, however, the peak width increased reasonably smoothly 

along most of the mapping route, until reaching a similar value to that of the alumina at the 

indent centre. This more gradual peak broadening associated with the ZTAs could also have 

originated from the zirconia phase transformation inside the indentations. It can be observed 

that the peak width difference between the ZTAs and alumina was gradually reduced nearer 

to the indent centre, which is again consistent with the trend of a reduced zirconia 

transformation, i.e. the fraction of monoclinic phase, from the edge of the indentation to its 

centre, as discussed in Section 3.3. The volume change during transformation could directly 

contribute to the deformation at the edge of the plastic zone during loading but could be 

magnified considerable when the large shear deformation (~0.16) also occurring is taken into 

account. In isotropic conditions, the net shear is effectively removed by twinning
24

 but in the 

presence of a deviatoric stress, such as exists at the edge of the indentation
19

, the twinning 

will occur in order to minimise the mechanical energy of the system, producing potentially 

large net shear strains that can also contribute to the deformation process, leaving less 

requirement for dislocation and twinning mediated plastic deformation in the alumina matrix. 

Even if some reverse transformation does occur as indentation progresses, as suggested in 

section 3.3, a residual ferroelastic switching may remain, preserving the shape of the 

indentation and again reducing the plastic strain contributed by the alumina matrix.  

 

3.5 TEM analysis 

 

As indicated earlier, in order to observe the microstructure inside the plastic zone, FIB lift-

out was performed on the 1 kg indents centre of a 10% ZTA and an alumina sample. The 

samples were then characterised using TEM. The results are shown in Figure 1411. It should 

be noted that the sizes of the 1 kg indents on the ZTA and alumia samples are around 20 µm, 

which is comparable to the final electron transparent part of the TEM lamellae. Therefore, the 

TEM observation from these lamellae should be representative to the microstructure of the 

plastic zones in ZTA and alumina. For both the samples, it was observed that there were very 

many dislocations inside the plastic zone, as expected. In the alumina sample, dislocation 

entanglements were observed across the whole lift-out sample area and the grain boundaries 

were not easily observed because of the high dislocation density, Figure 14 11 (a) and (c). 

The situation was different for the 10% ZTA sample, however, where only the exact indent 

centre had a high dislocation density (as highlighted in Fig. 11 b and d) and across the rest of 

mpjgpb
Sticky Note
were

mpjgpb
Sticky Note
alumina
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the lift-out sample the grain boundaries could be observed clearly, Figure 14 11 (b) and (d). 

This observation is consistent with the peak broadening mapping shown in Figure 13 10 (b). 

According to the change of peak width, which is about 55 to 60 cm
-1

 for both alumina and 

ZTA samples, the dislocation density in the plastic zone was as high as 10
16

 - 10
17 

m
-1

. 

Therefore, it was difficult to quantify the difference in dislocation density between the 

alumina and the ZTA from the TEM observation. Using the high magnification TEM images 

(an example is shown in Figure 5), it was calculated that the microcrack densities of the 

alumina and 10% ZTA were 600±50 and 350±50 m
-1

, respectively. The lower microcrack 

density in the ZTA confirmed the effect of the zirconia phase transformation on restricting 

crack propagation.  

 

4 Conclusions 

 

The residual stresses around 1 to 20 kg indentations in alumina and 10% and 20% nano 

ZTA have been measured using Cr
3+

 fluorescence microscopy. According to depth scanning 

of the Cr
3+

 fluorescence peak intensity, a significant laser scattering effect in the ZTA 

samples was observed. The broad peaks were confirmed to be generated inside the plastic 

zone, due to the consistency of the measured percentage of R1 broad peak and the expected 

percentage of signal from inside the plastic zone with different indentation loads 

The peak shift analysis on the three materials showed no significant difference in the 

residual stresses in the indent centres between alumina and ZTA samples. This is believed to 

be because, in the ZTA samples, the zirconia phase transformation at the indent centre was 

suppressed by the high compressive stress. The degree of zirconia transformation increased, 

however, towards the edge of indent and the ZTA samples showed ~500 MPa reduction in 

the net compressive residual stress in the alumina matrix compared to the pure alumina 

sample. This was probably caused by the generation of tensile residual microstresses in the 

alumina grains due to the zirconia phase transformation. The similarity in stress around the 

indentations suggested the mean residual stress in the indentation plastic zone was the same 

for all three materials. 

In addition, it was found that the ZTA materials displayed lower dislocation densities on 

the indentation surfaces away from the centre, where the zirconia phase transformation 

occurred. This effect was considered to be caused by the contribution of the zirconia 

transformation to the total deformation. The TEM study has shown that the plasitic zone 

microstructure of pure alumina and ZTA are different, which also confirms the observation 
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from Cr
3+

 fluorescence study. The relatively lower microcrack density in the plastic zone for 

the ZTA materials was confirmed by examining the plastic zone microstructure using high 

resolution TEM.  
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