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Extended weak maximum
principles for parabolic partial
differential inequalities on
unbounded domains
J. C. Meyer and D. J. Needham

School of Mathematics, University of Birmingham, Watson Building,
Edgbaston, Birmingham B15 2TT, UK

In this paper, we establish extended maximum
principles for solutions to linear parabolic partial
differential inequalities on unbounded domains,
where the solutions satisfy a variety of growth/decay
conditions on the unbounded domain. We establish a
conditional maximum principle, which states that
a solution u to a linear parabolic partial differential
inequality satisfies a maximum principle whenever
a suitable weight function can be exhibited. Our
extended maximum principles are then established
by exhibiting suitable weight functions and applying
the conditional maximum principle. In addition, we
include several specific examples, to highlight the
importance of certain generic conditions, which are
required in the statements of maximum principles of
this type. Furthermore, we demonstrate how to obtain
associated comparison theorems from our extended
maximum principles.

1. Introduction
Maximum principles are primarily used in the study of
initial-boundary value problems to obtain a priori bounds
on solutions, comparison theorems and uniqueness
results (for example, see the established texts [1,2]). A
secondary application of maximum principles can be
found in the qualitative study of solutions to initial-
boundary problems; some recent trends and open
problems can be found in the texts [3–5] as well as in
numerous others.

In this paper, we consider maximum principles
for linear parabolic operators on unbounded domains.

2014 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.
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Specifically, letΩ ⊆ R
n be an unbounded open connected set with boundary ∂Ω . Associated with

Ω , we introduce

DT =Ω × (0, T], DX
T = {(x, t) ∈ DT : |x|<X}, ∂DT = (Ω × {0}) ∪ (∂Ω × [0, T]),

for T, X> 0, with closures D̄T and D̄X
T . Here, D̄T = DT ∪ ∂DT. In addition, let L be an operator that

acts on sufficiently smooth functions u : DT → R, given by

L[u] := ut −
n∑

i,j=1

aijuxixj −
n∑

i=1

biuxi − cu on DT, (1.1)

where aij, bi, c : DT → R (1 ≤ i, j, ≤ n) are prescribed functions on DT. When the matrix A(x, t) =
(aij(x, t)) is symmetric and positive semi-definite for each (x, t) ∈ DT, then we refer to L as a linear
parabolic operator. The primary purpose of this paper is to extend the relationship between
allowable spatial growth/decay as |x| → ∞, of solutions to linear parabolic partial differential
inequalities (L[u] ≤ 0 on DT) and the conditions on the coefficients of the linear parabolic operator
L, for which a maximum principle holds on D̄T. In this respect, it is convenient to introduce
Eλα , for α ∈ [0, ∞), λ ∈ [0, ∞) as the set of continuous functions u : D̄T → R (some T> 0) such that
u ∈ C2,1(DT) and

u(x, t) ≤ k1 ek2(1+|x|2)α(1+ln (1+|x|2))λ ∀ (x, t) ∈ D̄T (1.2)

for some k1, k2 > 0. Additionally, we also refer to Eλα , for α ∈ (−∞, 0], λ ∈ (−∞, 0] as the set of
continuous functions u : D̄T → R (some T> 0) such that u ∈ C2,1(DT) and

u(x, t) ≤ k1 e−k2(1+|x|2)|α|(1+ln (1+|x|2))|λ| ∀ (x, t) ∈ D̄T (1.3)

for some k1, k2 > 0. A secondary purpose of the paper is to highlight the importance of certain
generic conditions on the linear parabolic operators L, for maximum principles to hold, via the
provision of specific examples.

We first give a brief summary of the development of maximum principles (occasionally
referred to as Phragmèn Lindelöf principles) for linear parabolic partial differential inequalities on
unbounded domains [1,6] related to those established in this paper. In [7], a maximum principle
for a linear parabolic partial differential inequality on an unbounded domain was obtained, which
complemented the non-uniqueness result for the linear heat equation obtained in [8]. Specifically,
this maximum principle was designed for linear parabolic partial differential inequalities to
allow uniqueness to be established for classical solutions to the linear heat equation, under the
weakest possible growth conditions as |x| → ∞. Following these works, maximum principles
for linear parabolic partial differential inequalities on unbounded domains, with specific growth
conditions on the solutions as |x| → ∞, which have the general form given in (1.2) (for various
values of α, λ≥ 0), were extensively developed (in particular, see [1,9–15] and references therein).
In the development of this body of work, considerations regarding the optimum conditions
on the associated maximum principles are rare; it is typical for a maximum principle to be
established, without any discussion regarding limitations to the extension of the maximum
principle, beyond the limitations of the method of proof.

More recently, in [16–20], via an alternative approach to that adopted in this paper, uniqueness
results for initial-boundary value problems for parabolic partial differential equations have been
established, with growth conditions specified on the solutions as |x| → ∞ and t → 0+. To obtain
these results, additional regularity on the coefficients aij, bi and c in the linear parabolic operator L
must be imposed, which we do not require for the results obtained in this paper. We also note that
maximum principles for operators which have an additional coefficient d : DT → R, multiplying
the term ut in (1.1), have been considered in [21], and although we do not consider these operators
here, the approach we use can be readily adapted to accommodate these operators.

The main achievements of this paper comprise a generalization of the maximum principles
established in [13,15] (which subsumed the results in [1,7,9,10,12]) for solutions to linear parabolic
partial differential inequalities on unbounded domains with growth conditions on the solutions
as |x| → ∞ of the form given in (1.2), which we henceforth refer to as type (1.2) growth conditions.
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We achieve this via a relaxation of the conditions in [13,15], on the coefficients bi in the linear
operator L. In addition, we extend the maximum principles established in [13,15] for solutions
to linear parabolic partial differential inequalities on unbounded domains with decay conditions
on the solutions as |x| → ∞ of the form given in (1.3), which we henceforth refer to as type (1.3)
decay conditions, which have not been not considered in any of the previously mentioned works.
We highlight this because, in numerous applications of maximum principles, the rate of decay
of the solution as |x| → ∞ to the parabolic partial differential inequality is known, and hence,
our results may be applicable, whereas the maximum principles designed for solutions with
growth conditions as |x| → ∞ of type (1.2) may be inapplicable. Additionally, we have constructed
specific examples to highlight that extensions to these maximum principles, in certain generic
directions, are not possible.

The structure of the paper is as follows. In §2, we establish a weak maximum principle
for a linear parabolic operator on unbounded domains, which is an extension of the classical
weak maximum principle [22] onto unbounded domains. From this weak maximum principle,
we obtain a widely applicable conditional maximum principle, and in doing so, illustrate how to
obtain maximum principles for linear parabolic operators on unbounded domains with varying
growth/decay conditions as |x| → ∞. This maximum principle is conditional because it depends
on the existence of a suitable weight function φ. We also provide a subtle example to illustrate
the importance of the conditions under which these maximum principles are obtained. In §3,
we establish new maximum principles which generalize and extend the maximum principles
contained in [13,15] by relaxing the conditions on the first-order coefficients bi in the linear
parabolic operator L, and considering additional classes of solutions of type (1.3), which are
at most decaying as |x| → ∞. We achieve this by establishing the existence of suitable weight
functions φ that allow applications of the conditional maximum principle established in §2. We
complete the section by providing a function which demonstrates that our relaxation on the first-
order coefficient in the linear parabolic operator is in a sense optimal, in that, at most it can be
relaxed by a logarithmic growth in the spatial variables. In §4, we demonstrate briefly how these
maximum principles can be applied to obtain comparison theorems and uniqueness results for a
class of semi-linear parabolic initial-boundary value problems.

2. The conditional maximum principle
Here, we establish a conditional maximum principle for linear parabolic operators on an
unbounded domain. This is in the spirit of those available for elliptic operators on bounded
domains [1, ch. 2, section 9] and for parabolic operators on unbounded domains [6, pp. 211–214].
This conditional result reduces the proof of a maximum principle for a specified linear
parabolic operator L to establishing the existence of a suitable weight function φ. First, we have
the following.

Definition 2.1. A linear parabolic operator L (defined on DT) is said to satisfy condition (H) on
a set E ⊆ DT when c : DT → R is bounded above on E.

Definition 2.1 is associated with the classical maximum principle for a linear parabolic operator
on a compact domain [1, pp. 174–175]. We now review a well-established maximum principle
that plays a crucial role in obtaining our conditional maximum principle (for a similar result,
see [11, p. 43]).

Lemma 2.2. Suppose that the linear parabolic operator L satisfies condition (H) on E = DT. Moreover,
suppose that u : D̄T → R is continuous with u ∈ C2,1(DT) and

L[u] ≤ 0 on DT, (2.1)

and
lim inf

r→∞ sup
(x,t)∈D̄T|x|=r

u(x, t) ≤ 0 (2.2)

while u ≤ 0 on ∂DT. Then, u ≤ 0 on D̄T.

 on December 8, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140079

...................................................

Proof. It follows from condition (H) that there exists a constant C> 0 such that

c(x, t)<C ∀ (x, t) ∈ DT. (2.3)

Now, we define the function w : D̄T → R given by

w(x, t) = u(x, t) e−Ct ∀ (x, t) ∈ D̄T. (2.4)

It follows immediately that w is continuous on D̄T, w ∈ C2,1(DT) and w ≤ 0 on ∂DT. Additionally,
via (2.1) and (2.4), it follows that

wt −
n∑

i,j=1

aijwxixj −
n∑

i=1

biwxi − (c − C)w ≤ 0 on DT, (2.5)

where aij, bi, c : DT → R are the coefficients in L. Furthermore, it follows from (2.2) and (2.4) that

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

w(x, t) ≤ 0. (2.6)

Therefore, there exists a sequence of real numbers {Xn}n∈N such that Xn → ∞ as n → ∞ and

sup
(x,t)∈D̄T
|x|=Xn

w(x, t) ≤ 1
n

. (2.7)

We now show that

w(x, t) ≤ 1
n

∀ (x, t) ∈ D̄Xn
T (2.8)

for any n ∈ N and hence that w ≤ 0 on D̄T. Suppose that (2.8) is false. Then, via (2.7), because w is
bounded and continuous on D̄Xn

T , it follows that there exists (x∗, t∗) ∈ DXn
T such that

sup
(x,t)∈D̄Xn

T

w(x, t) = w(x∗, t∗)>
1
n

. (2.9)

Then, via (2.9), (2.5) and (2.3), it follows that

wt(x∗, t∗) −
n∑

i,j=1

aij(x
∗, t∗)wxixj (x

∗, t∗) ≤ (c(x∗, t∗) − C)w(x∗, t∗)< 0. (2.10)

Now, because the matrix A(x∗, t∗) = (aij(x∗, t∗)) is symmetric and positive semi-definite, it follows
that there exists an invertible linear coordinate change

xi =
n∑

j=1

cijyj

such that
n∑

i,j=1

aij(x
∗, t∗)wxixj =

n∑
r=1

λ∗
r wyryr (2.11)

with λ∗
r ≥ 0, r = 1, . . . , n, being the eigenvalues of A(x∗, t∗). Thus, it follows from (2.10) and (2.11)

that

wt(x∗, t∗) −
n∑

i=1

λ∗
i wyiyi (x

∗, t∗)< 0. (2.12)

Now, because (x∗, t∗) ∈ DXn
T is a local maxima of w, then it follows that

wt(x∗, t∗) ≥ 0 and wyiyi (x
∗, t∗) ≤ 0, (2.13)

and so,

wt(x∗, t∗) −
n∑

i=1

λ∗
i wyiyi (x

∗, t∗) ≥ 0
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which contradicts (2.12). We conclude that

sup
(x,t)∈D̄Xn

T

w(x, t) ≤ 1
n

,

for each n ∈ N, and so

w(x, t) ≤ 0 ∀ (x, t) ∈ D̄T. (2.14)

The result follows from (2.4) and (2.14). �

From lemma 2.2, we can now establish a conditional maximum principle that can be used to
obtain maximum principles for parabolic operators not necessarily satisfying condition (H). This
maximum principle is conditional as its application relies on the construction of a suitable weight
function. We note that a similar concept is introduced in [6, p. 213].

Lemma 2.3. Let u : D̄T → R be continuous with u ∈ C2,1(DT) and u ≤ 0 on ∂DT. In addition, let L be
a linear parabolic operator with L[u] ≤ 0 on DT. Suppose there exists a continuous function φ : D̄T → R

such that φ > 0 on D̄T with φ ∈ C2,1(DT) and

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

u(x, t)
φ(x, t)

≤ 0,

−L[φ]
φ

is bounded above on DT.

Then, u ≤ 0 on D̄T.

Proof. First, we define the function w : D̄T → R such that

w(x, t) = u(x, t)
φ(x, t)

∀ (x, t) ∈ D̄T. (2.15)

It follows immediately that w is continuous, w ∈ C2,1(DT), w ≤ 0 on ∂DT and

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

w(x, t) ≤ 0. (2.16)

Moreover, we observe that w satisfies

L̃[w] := wt −
n∑

i,j=1

aijwxixj −
n∑

i=1

⎛
⎝bi +

n∑
j=1

2aij
φxi

φ

⎞
⎠wxi −

(
− 1
φ

L[φ]
)

w ≤ 0 on DT. (2.17)

Because the linear parabolic operator L̃ satisfies condition (H) on DT, via (2.15)–(2.17), an
application of lemma 2.2 gives

w ≤ 0 on D̄T

and hence, via (2.15), that u ≤ 0 on D̄T, as required. �

It follows that the establishment of a maximum principle for a specific function u : D̄T → R and
a specific linear parabolic operator L is reduced to finding a function φ : D̄T → R which satisfies the
conditions in lemma 2.3. An advantage of this conditional maximum principle is that not only can
it be used to develop generic maximum principles, as we demonstrate in §3, but it can also be used
to obtain maximum principles for specific problems which do not adhere to the conditions of the
available generic maximum principles, if a suitable weight function φ : D̄T → R can be found. We
also note that, without further technical difficulties, lemma 2.3, with suitable minor modifications
in statement, can be established when u : D̄T → R is replaced by u : Ω̄ × (0, T] → R, with u being
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bounded above on Dx
T for each x> 0, and u ≤ 0 on Ω × {0} is replaced by

lim inf
t→0

sup
(x,s)∈DX

T
s=t

u(x, s) ≤ 0 ∀ X> 0.

Before we establish new generic maximum principles in the following section, we give an
example to illustrate the importance of condition (2.2) in lemma 2.2. Specifically, we produce a
function u : D̄T → R and a linear parabolic operator L for which all of the conditions in lemma 2.2
are satisfied except that condition (2.2) is marginally violated, and for which the conclusion of
lemma 2.2 is false. To begin, let Ω = R (and so ∂Ω = ∅) and introduce u : D̄1 → R defined as

u(x, t) =

⎧⎪⎨
⎪⎩

−1 + 2
√

2
(1 + t)1/2 e−((x−ln(t))2/4(1+t)); (x, t) ∈ D1

−1; (x, t) ∈ ∂D1.
(2.18)

It is readily established that u is continuous on D̄1. Moreover, u ∈ C2,1(D1), with

ux(x, t) = −√
2(x − ln(t))

(1 + t)3/2 e−((x−ln(t))2/4(1+t)), (2.19)

uxx(x, t) =
√

2
(1 + t)3/2

(
−1 + (x − ln(t))2

2(1 + t)

)
e−((x−ln(t))2/4(1+t)) (2.20)

and ut(x, t) =
√

2
(1 + t)3/2

(
−1 + (x − ln(t))

t
+ (x − ln(t))2

2(1 + t)

)
e−((x−ln(t))2/4(1+t)) (2.21)

for all (x, t) ∈ D1. Furthermore,

|u(x, t)| ≤ 2
√

2 − 1 (2.22)

for all (x, t) ∈ D̄1 and so u is bounded on D̄1. Additionally,

sup
x∈R

u(x, t) = −1 + 2
√

2
(1 + t)1/2 for t ∈ (0, 1], (2.23)

and

inf
x∈R

u(x, t) = −1 for t ∈ (0, 1]. (2.24)

We observe that

sup
x∈R

u(x, t) ≥ 1 for all t ∈ (0, 1], (2.25)

and

sup
x∈R

u(x, 0) = −1. (2.26)

Moreover, via (2.19)–(2.21), we have

L[u] := ut − uxx +
(

1
t

)
ux = 0, (2.27)

for all (x, t) ∈ D1, and so (2.27) corresponds to the inequality (1.1) with

a(x, t) = 1 ∀ (x, t) ∈ D1, (2.28)

b(x, t) = −1
t

∀ (x, t) ∈ D1 (2.29)

and c(x, t) = 0 ∀ (x, t) ∈ D1. (2.30)

Thus, we have constructed a function u : D̄1 → R, and a linear parabolic operator L with a, b, c :
D1 → R as given in (2.28)–(2.30) respectively, so that all the conditions of lemma 2.2 are satisfied,
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except condition (2.2), and for which the conclusion of lemma 2.2 is violated, via (2.25). We now
consider how this example violates condition (2.2). We observe from (2.18) that

u(x, t) → −1 as |x| → ∞ ∀ t ∈ [0, 1].

However, this limit is not uniform for t ∈ [0, 1]. Moreover,

sup
(x,t)∈D̄1|x|=r

u(x, t) ≥ 1 ∀ r ≥ 1,

and so,
lim inf

r→∞ sup
(x,t)∈D̄1|x|=r

u(x, t) ≥ 1

which violates condition (2.2). This feature is related to the unboundedness of b(x, t) as t → 0+ in
D1 and leads to the resulting failure of lemma 2.2.

3. Maximum principles
Here, we apply lemma 2.3 to recover and extend the maximum principles developed in
[1,7,9,10,12–15] for linear parabolic operators L, whose coefficients are constrained by the
growth conditions of the unbounded solutions. For α, λ≥ 0, we obtain maximum principles for
successively smaller sets of functions Eλα (as in (1.2)) where the conditions on the coefficients of the
linear parabolic operators L are dependent on the set of functions Eλα . In particular, we establish
a generalization of the maximum principle in [15] (which itself, recovered and generalized the
results in [1,7,9,10,12–14]), via a relaxation of the condition on the first-order coefficients in
the linear parabolic operator L. Moreover, for Eλα , as in (1.3), with α < 0 or λ< 0, we establish
maximum principles of a form which have not been considered in any of the above works. We
are able to make these extensions, following the careful consideration of the conditions on the
first-order coefficients bi : DT → R in the linear parabolic operator. At the end of this section,
we give examples of functions which exhibit that the conditions under which the following
maximum principles are established are, in some sense, optimal, namely that the conditions on bi
in theorems 3.5 and 3.4 are logarithmically sharp and algebraically sharp, respectively. To begin,
we have the following.

Definition 3.1. Let ψ ∈ C2([1, ∞)) be a positive strictly increasing function such that there exist
constants μ, p1, p2 > 0, for which,

ηψ ′′(η) ≤ p1ψ(η)ψ ′(η) (3.1)

and
0<ηψ ′(η) ≤ p2(ψ(η))2−μ (3.2)

for all η ∈ [1, ∞). A linear parabolic operator L is said to satisfy condition (H)′ with μ and ψ , when
there exists constants Ā, B̄, C̄ ≥ 0 such that for 1 ≤ i ≤ n,

0 ≤ aii(x, t) ≤ Ā
ψ ′(1 + |x|2)

, (3.3)

bi(x, t)xi ≤ B̄
ψ(1 + |x|2)
ψ ′(1 + |x|2)

(3.4)

and c(x, t) ≤ C̄(ψ(1 + |x|2))μ, (3.5)

for all (x, t) ∈ DT.

We next establish the existence of a suitable weight function φ : D̄T → R which may be used in
applications of lemma 2.3. In the following result, we provide an extension, for our purpose, of
that in [15, lemma 2].
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Lemma 3.2. Let L be a linear parabolic operator which satisfies condition (H)′ with μ and ψ .
Additionally, for any k> 0, let

δ = min
{

T,
1

μ(Ã + B̃ + C̃ + 1)

}
, (3.6)

where

Ã = 4n2Ā
( |μ− 1|p2

(ψ(1))μ
+ p1 + kμep2

)
, B̃ = 2n

(
B̄ + Ā

ψ(1)

)
, C̃ = C̄

kμ
.

Then, the continuous function φ : D̄δ → R, given by,

φ(x, t) = ek(ψ(1+|x|2))μ et/δ ∀ (x, t) ∈ D̄δ , (3.7)

satisfies φ > 0 on D̄δ , with φ ∈ C2,1(Dδ), and

−L[φ]
φ

≤ 0 on Dδ .

Proof. Because A(x, t) = (aij(x, t)) is symmetric and positive semi-definite for all (x, t) ∈ DT, then

|aij(x, t)xixj| ≤
√

aii(x, t)ajj(x, t)(1 + |x|2) ≤ Ā
(1 + |x|2)
ψ ′(1 + |x|2)

∀ (x, t) ∈ DT. (3.8)

Now, let φ : D̄δ → R be as given in (3.7) and, for (x, t) ∈ D̄T, set s = (1 + |x|2). Observe that
φ ∈ C2,1(Dδ) and

φt(x, t) = k
δ

(ψ(s))μ et/δφ(x, t)

φxi (x, t) = 2kμ(ψ(s))μ−1ψ ′(s)xi et/δφ(x, t)

φxixj (x, t) = kμ et/δφ(x, t)(4(μ− 1)(ψ(s))μ−2(ψ ′(s))2xixj + 4(ψ(s))μ−1ψ ′′(s)xixj

+ 2(ψ(s))μ−1ψ ′(s)δij + 4kμ et/δ(ψ(s))2μ−2(ψ ′(s))2xixj)

for all (x, t) ∈ Dδ . Thus, we have

−L[φ](x, t)
φ(x, t)

= kμ et/δ(ψ(s))μ
(

− 1
δμ

+ 2
n∑

i=1

(bi(x, t)xi + aii(x, t))
ψ ′(s)
ψ(s)

+ c(x, t)
kμ et/δ(ψ(s))μ

+ 4
n∑

i,j=1

aij(x, t)xixj

(
(μ− 1)(ψ ′(s))2

(ψ(s))2 + ψ ′′(s)
ψ(s)

+ kμ et/δ (ψ ′(s))2

(ψ(s))2−μ

)⎞
⎠ (3.9)

for all (x, t) ∈ Dδ . It now follows from (3.8) and definition 3.1 that

4
n∑

i,j=1

aij(x, t)xixj

(
(μ− 1)(ψ ′(s))2

(ψ(s))2 + ψ ′′(s)
ψ(s)

+ kμ et/δ (ψ ′(s))2

(ψ(s))2−μ

)

≤ 4n2Ās
ψ ′(s)

(
|μ− 1|(ψ ′(s))2

(ψ(s))2 + max{0,ψ ′′(s)}
ψ(s)

+ kμ et/δ (ψ ′(s))2

(ψ(s))2−μ

)

≤ 4n2Ā
( |μ− 1|p2

(ψ(1))μ
+ p1 + kμep2

)
= Ã ∀ (x, t) ∈ Dδ . (3.10)

In addition, via definition 3.1, we have

2
n∑

i=1

(bi(x, t)xi + aii(x, t))
ψ ′(s)
ψ(s)

≤ 2n

(
B̄ + Ā

ψ(1)

)
= B̃ ∀ (x, t) ∈ Dδ . (3.11)

Furthermore, via definition 3.1, we have

c(x, t)
kμ et/δ(ψ(s))μ

≤ C̄
kμ

= C̃ ∀ (x, t) ∈ Dδ . (3.12)
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Therefore, it follows from (3.9)–(3.12), with (3.6) that

−L[φ](x, t)
φ(x, t)

≤ kμ et/δ(ψ(s))μ
(

− 1
δμ

+ Ã + B̃ + C̃
)

≤ kμ et/δ(ψ(s))μ(−(Ã + B̃ + C̃ + 1) + Ã + B̃ + C̃) ≤ 0 ∀ (x, t) ∈ Dδ ,

as required. �

We can now establish a generalization of the maximum principle presented in [15]. We have
the following.

Theorem 3.3. Let u : D̄T → R be continuous, with u ∈ C2,1(DT) and u ≤ 0 on ∂DT. In addition, let L
be a linear parabolic operator which satisfies condition (H)′ with μ and ψ , and such that L[u] ≤ 0 on DT.
When there exists k> 0 such that

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

u(x, t)
ek(ψ(1+|x|2))μ

≤ 0, (3.13)

then u ≤ 0 on D̄T.

Proof. Suppose there exists k> 0 such that condition (3.13) is satisfied. With this value of k> 0,
set δ > 0 and φ : D̄δ → R as in (3.6) and (3.7). It then follows from lemmas 3.2 and 2.3, together
with condition (3.13), that u ≤ 0 on D̄δ . If δ = T, the proof is complete. If δ �= T, then

δ = δ′ = 1

μ(Ã + B̃ + C̃ + 1)
< T.

We can then repeat the above step N(∈ N) times, with δ = δ′, and 0< T − (N + 1)δ′ ≤ δ′. We
may then take a final step with δ = T − (N + 1)δ′, and so we have u ≤ 0 on D̄T (T = δ′ + Nδ′ +
(T − (N + 1)δ′)). �

Next, we establish generalizations of the maximum principles given in [13,14] for solutions
to partial differential inequalities in Eλα with α, λ≥ 0. We present these maximum principles in
descending order, in that the sets Eλα in the following theorems get subsequently smaller while
the conditions on the coefficients in the linear parabolic operator relax, tighten and switch sign
(see theorems 3.4, 3.5, 3.9 and 3.10).

Theorem 3.4. Let u : D̄T → R be continuous with u ∈ Eλα for α ∈ (0, ∞), λ ∈ [0, ∞). In addition, let L
be a linear parabolic operator which, for A, B, C ≥ 0 satisfies

0 ≤ aii(x, t) ≤ A(1 + |x|2)1−α(1 + log (1 + |x|2))−λ

bi(x, t)xi ≤ B(1 + |x|2)

and c(x, t) ≤ C(1 + |x|2)α(1 + log (1 + |x|2))λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

for all (x, t) ∈ DT and 1 ≤ i ≤ n. When u ≤ 0 on ∂DT and L[u] ≤ 0 on DT, then u ≤ 0 on D̄T.

Proof. Let ψ : [1, ∞) → R be given by

ψ(η) = ηα(1 + log (η))λ ∀ η ∈ [1, ∞). (3.15)

It follows that ψ ∈ C2([1, ∞)), ψ(η) ≥ 1 and

ψ ′(η) = ηα−1(1 + log (η))λ
(
α + λ

(1 + log (η))

)
> 0 (3.16)

and

ψ ′′(η) = ηα−2(1 + log (η))λ
(
α + λ

(1 + log (η))

)

×
(
α − 1 + λ

1 + log (η)
− λ

(1 + log (η))(α(1 + log (η)) + λ)

)
(3.17)
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for all η ∈ [1, ∞). We next verify that ψ : [1, ∞) → R, with μ= 1, satisfies conditions (3.1) and (3.2)
in definition 3.1. From (3.16) and (3.17), we have

ηψ ′′(η) =ψ ′(η)
(
α − 1 + λ

1 + log (η)
− λ

(1 + log (η))(α(1 + log (η)) + λ)

)

≤ψ ′(η)(α + λ)

≤ (α + λ)ψ(η)ψ ′(η)

for all η ∈ [1, ∞), which verifies (3.1). Additionally, via (3.16), we have

ηψ ′(η) =
(
α + λ

(1 + log (η))

)
ψ(η) ≤ (α + λ)ψ(η)

for all η ∈ [1, ∞), which verifies (3.2). It then follows directly from the conditions (3.14) and
definition 3.1, that L satisfies condition (H)′ with μ= 1 and ψ given by (3.15). Now, with u ∈ Eλα ,
there exists k> 0 such that

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

u(x, t)
ekψ(1+|x|2)

≤ 0. (3.18)

Therefore, because L satisfies condition (H)′ with μ= 1 and ψ given by (3.15), an application of
theorem 3.3, with (3.18), establishes that u ≤ 0 on D̄T, as required. �

Theorem 3.5. Let u : D̄T → R be continuous with u ∈ Eλα for α= 0, λ ∈ (1, ∞). In addition, let L be a
linear parabolic operator which, for A, B, C ≥ 0 satisfies

0 ≤ aii(x, t) ≤ A(1 + |x|2)(1 + log (1 + |x|2))2−λ

bi(x, t)xi ≤ B(1 + |x|2)(1 + log (1 + |x|2))

c(x, t) ≤ C(1 + log (1 + |x|2))λ

for all (x, t) ∈ DT and 1 ≤ i ≤ n. When u ≤ 0 on ∂DT and L[u] ≤ 0 on DT, then u ≤ 0 on D̄T.

Proof. Let ψ : [1, ∞) → R be given by

ψ(η) = (1 + log (η))λ−1 ∀ η ∈ [1, ∞). (3.19)

It is readily verified that L satisfies condition (H)′ with μ= λ/(λ− 1) and ψ given by (3.19). The
remainder of the proof follows that of theorem 3.4. �

Theorems 3.4 and 3.5 recover and extend the maximum principles, which have been developed
chronologically in [7,9–12], and extend the maximum principles in [13,14]. We note that maximum
principles are considered in [13], which have growth conditions which we have not considered
here for the sake of brevity (these are obtained directly from lemma 2.3 with an appropriate weight
function φ). We now focus our attention on the classes of solutions that decay as |x| → ∞, which
have received much less attention in the literature. Generally, when considering solutions in this
class, results with similar coefficient conditions to those in lemma 2.2, theorems 3.4 or 3.5 are
applied to obtain maximum principles; however, these can be considerably improved by a priori
defining the decay of the solution as |x| → ∞. To begin, we require the following.

Definition 3.6. Let ψ ∈ C2([1, ∞)), μ> 0 and the linear parabolic operator L be as in
definition 3.1, with (3.1) replaced by

ηψ ′′(η) ≥ −p1ψ
′(η)ψ(η) (3.20)

for all η ∈ [1, ∞), and (3.4) replaced by

bi(x, t)xi ≥ −B̄
ψ(1 + |x|2)
ψ ′(1 + |x|2)

(3.21)

for all (x, t) ∈ DT and 1 ≤ i ≤ n. When conditions (3.20), (3.2), (3.3), (3.21) and (3.5) are satisfied,
then the linear parabolic operator L is said to satisfy condition (H)′′ with μ and ψ .
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We now have the following.

Lemma 3.7. Let L be a linear parabolic operator which satisfies condition (H)′′ with μ and ψ .
Additionally, for any k< 0, let

δ = min
{

T,
1

μ(|Ã| + |B̃| + |C̃| + 1)

}
, (3.22)

where

Ã = 4n2Ā
(−|μ− 1|p2

(ψ(1))μ
− p1 + kμp2

)
, B̃ = −2nB̄, C̃ = eC̄

kμ
.

Then, the continuous function φ : D̄δ → R, given by,

φ(x, t) = ek(ψ(1+|x|2))μ e−t/δ ∀ (x, t) ∈ D̄δ , (3.23)

satisfies φ > 0 on D̄δ , with φ ∈ C2,1(Dδ), and

−L[φ]
φ

≤ 0 on Dδ .

Proof. We proceed as in the proof of lemma 3.2 with φ : D̄δ → R given by (3.23), and k< 0. It
then follows that

−L[φ](x, t)
φ(x, t)

= kμ e−t/δ(ψ(s))μ
(

1
δμ

+ 2
n∑

i=1

(bi(x, t)xi + aii(x, t))
ψ ′(s)
ψ(s)

+ et/δc(x, t)
kμ(ψ(s))μ

+ 4
n∑

i,j=1

aij(x, t)xixj

(
(μ− 1)(ψ ′(s))2

(ψ(s))2 + ψ ′′(s)
ψ(s)

+ kμ e−t/δ (ψ ′(s))2

(ψ(s))2−μ

)⎞⎠ (3.24)

for all (x, t) ∈ Dδ . Now, it follows from (3.8) and definition 3.6 that

4
n∑

i,j=1

aij(x, t)xixj

(
(μ− 1)(ψ ′(s))2

(ψ(s))2 + ψ ′′(s)
ψ(s)

+ kμ e−t/δ (ψ ′(s))2

(ψ(s))2−μ

)

≥ 4n2Ās
ψ ′(s)

(
−|μ− 1|(ψ ′(s))2

(ψ(s))2 + min{0,ψ ′′(s)}
ψ(s)

+ kμ
(ψ ′(s))2

(ψ(s))2−μ

)

≥ 4n2Ā
(−|μ− 1|p2

(ψ(1))μ
− p1 + kμp2

)
= Ã ∀ (x, t) ∈ Dδ . (3.25)

In addition, via definition 3.6, we have

2
n∑

i=1

(bi(x, t)xi + aii(x, t))
ψ ′(s)
ψ(s)

≥ −2nB̄ = B̃ ∀ (x, t) ∈ Dδ , (3.26)

and
et/δc(x, t)
kμ(ψ(s))μ

≥ eC̄
kμ

= C̃ ∀ (x, t) ∈ Dδ . (3.27)

Therefore, it follows via (3.24)–(3.27) that

−L[φ](x, t)
φ(x, t)

≤ kμ e−t/δ(ψ(s))μ
(

1
δμ

+ Ã + B̃ + C̃
)

≤ 0 ∀ (x, t) ∈ Dδ ,

as required. �

We now make a further extension of the maximum principle contained in [15] for solutions
that satisfy a specified decay condition as |x| → ∞.
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Theorem 3.8. Let u : D̄T → R be continuous, u ∈ C2,1(DT) and u ≤ 0 on ∂DT. In addition, let L be a
linear parabolic operator which satisfies condition (H)′′ with μ and ψ , and such that L[u] ≤ 0 on DT. When
there exists k< 0 such that

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

u(x, t)
ek(ψ(1+|x|2))μ

≤ 0,

then u ≤ 0 on D̄T.

Proof. The proof follows the same steps as the proof of theorem 3.3. �

We are now in a position to establish new maximum principles, of the type considered in
[13,14] for solutions which satisfy specified decay conditions as |x| → ∞ of type (1.3), and which
complement theorems 3.4 and 3.5. Such maximum principles have not been considered in any of
the previously mentioned works, with the exception of results relating to lemmas 2.2 and 2.3. The
novelty of these new maximum principles can be observed in the sign change in the condition on
the first-order coefficients bi. We now have the following.

Theorem 3.9. Let u : D̄T → R be continuous with u ∈ Eλα for α= 0, λ ∈ (−∞, −1). In addition, let L
be a linear parabolic operator which, for A, B, C ≥ 0 satisfies

0 ≤ aii(x, t) ≤ A(1 + |x|2)(1 + log (1 + |x|2))2−|λ|

bi(x, t)xi ≥ −B(1 + |x|2)(1 + log (1 + |x|2))

c(x, t) ≤ C(1 + log (1 + |x|2))|λ|

for all (x, t) ∈ DT and 1 ≤ i ≤ n. When u ≤ 0 on ∂DT and L[u] ≤ 0 on DT, then u ≤ 0 on D̄T.

Proof. For λ<−1, let ψ : [1, ∞) → R be given by

ψ(η) = (1 + log (η))|λ|−1 ∀ η ∈ [1, ∞). (3.28)

and μ= |λ|/(|λ| − 1). It follows that ψ ∈ C2([1, ∞)), ψ(η) ≥ 1 and

ψ ′(η) = (|λ| − 1)(1 + log (η))|λ|−2

η
> 0 (3.29)

and

ψ ′′(η) = (|λ| − 1)(1 + log (η))|λ|−2

η2

(
(|λ| − 2)

(1 + log (η))
− 1

)
(3.30)

for all η ∈ [1, ∞). We now verify conditions (3.20) and (3.2) in definition 3.6 for ψ : [1, ∞) → R

given by (3.28) and μ= |λ|/(|λ| − 1). It follows from (3.29), (3.30) and (3.28) that

ηψ ′′(η) =ψ ′(η)
( |λ| − 2

(1 + log (η))
− 1

)
≥ −3ψ ′(η) ≥ −3ψ ′(η)ψ(η)

for all η ∈ [1, ∞), which verifies (3.20). Additionally, via (3.29) and (3.28),

0<ηψ ′(η) = (|λ| − 1)(ψ(η))2−μ

for all η ∈ [1, ∞), which verifies (3.2). Therefore, via the additional conditions in the statement, L
satisfies condition (H)′′ with μ= |λ|/(|λ| − 1) and ψ given by (3.28). Furthermore, because u ∈ Eλ0,
there exists k< 0 such that

lim inf
r→∞ sup

(x,t)∈D̄T|x|=r

u(x, t)
ekψ(1+|x|2)μ

≤ 0.

The result then follows from theorem 3.8. �

Complementary to this, we also have the following.
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Theorem 3.10. Let u : D̄T → R be continuous with u ∈ Eλα for α ∈ (−∞, 0), λ ∈ (−∞, 0]. In addition,
let L be a linear parabolic operator which, for A, B, C ≥ 0 satisfies

0 ≤ aii(x, t) ≤ A(1 + |x|2)1−|α|(1 + log (1 + |x|2))−|λ|

bi(x, t)xi ≥ −B(1 + |x|2)

c(x, t) ≤ C(1 + |x|2)|α|(1 + log (1 + |x|2))|λ|

for all (x, t) ∈ DT and 1 ≤ i ≤ n. When u ≤ 0 on ∂DT and L[u] ≤ 0 on DT, then u ≤ 0 on D̄T.

Proof. Let ψ : [1, ∞) → R be given by

ψ(η) = η|α|(1 + log (η))|λ| ∀ η ∈ [1, ∞). (3.31)

It is readily verified that L satisfies condition (H)′′ withμ= 1 andψ given by (3.31). The remainder
of the proof follows that of theorem 3.9. �

It is worth remarking that in [7,9–14,21,22], maximum principles are obtained where the
condition on the first-order coefficient bi : DT → R in the linear operator L, is bounded in modulus,
namely for B ≥ 0,

|bi(x, t)| ≤ B(1 + |x|) ∀ (x, t) ∈ DT.

This contrasts to the one-sided bounds in the statements of the maximum principles obtained
here.

We now provide an example that illustrates the optimality of our condition on the first-order
term bi : DT → R in both theorems 3.4 and 3.5. With Ω = R, we consider w : D̄1 → R given by,

w(x, t) =
{

−1 + 2 e−(1/γ (log (1+x2))γ+1−t)2
; (x, t) ∈ D̄1\({0} × [0, 1])

−1; (x, t) ∈ {0} × [0, 1],
(3.32)

where γ > 0 is constant. Observe that w is continuous on D̄1 and w ∈ C2,1(D1), where wt : D1 → R

and wx : D1 → R are given by,

wt(x, t) =

⎧⎪⎨
⎪⎩

4 e−(1/γ (log (1+x2))γ+1−t)2
(

1
γ (log (1 + x2))γ

+ 1 − t
)

; (x, t) ∈ D1\({0} × (0, 1])

0; (x, t) ∈ {0} × (0, 1],
(3.33)

and

wx(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 e−(1/γ (log (1+x2))γ+1−t)2
(

1
γ (log (1 + x2))γ

+ 1 − t
)

×
(

2x
(log (1 + x2))1+γ (1 + x2)

)
; (x, t) ∈ D1\({0} × (0, 1])

0; (x, t) ∈ {0} × (0, 1].

(3.34)

In addition,

|w(x, t)| ≤ 1 ∀ (x, t) ∈ D̄1, (3.35)

and so w ∈ Eλ0 for all λ≥ 0 (and hence w ∈ Eλα for all α, λ≥ 0). In addition,

w(x, t) → −1 + 2 e−(1−t)2
as |x| → ∞ uniformly for t ∈ [0, 1], (3.36)

and

w(x, 0) =
{

−1 + 2 e−(1/γ (log (1+x2))γ+1)2
; x ∈ R\{0}

−1; x = 0.
(3.37)

Thus, via (3.33) and (3.34), we observe that

L[w] := wt − bwx = 0 on D1, (3.38)
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where b : D1 → R is given by,

b(x, t) =
⎧⎨
⎩

(log (1 + x2))1+γ (1 + x2)
2x

; (x, t) ∈ D1\({0} × (0, 1])

0; (x, t) ∈ {0} × (0, 1],
(3.39)

and L[·] is a linear parabolic operator of the form (1.1), with a, c : D1 → R given by,

a(x, t) = 0 ∀ (x, t) ∈ D1, (3.40)

and
c(x, t) = 0 ∀ (x, t) ∈ D1. (3.41)

and b : D1 → R given by (3.39). Observe from (3.39) that

b(x, t)x = (log (1 + x2))1+γ (1 + x2)
2

∀ (x, t) ∈ D1, (3.42)

Thus, we have constructed a function w : D̄1 → R, with a, b, c : D1 → R as given in (3.40), (3.39) and
(3.41), respectively, so that all the conditions of theorem 3.5 are satisfied except for the condition
on b : D1 → R, and for which theorem 3.5 (and theorem 3.4) fails.

Remark 3.11. Observe that it is the growth rate of b : D1 → R given by (3.39) as |x| → ∞, and
not the behaviour as x → 0 that leads to the resulting failure of theorem 3.5 (and theorem 3.4).
Moreover, it follows that the condition on bi : DT → R in theorem 3.5 is logarithmically sharp,
namely the condition on bi : DT → R cannot be relaxed to allow larger logarithmic growth
as |x| → ∞, without altering other conditions. Additionally, it follows that the condition on
bi : DT → R in theorem 3.4 is algebraically sharp, namely the condition on bi : DT → R cannot be
relaxed to allow larger algebraic growth as |x| → ∞, without altering other conditions. However,
additional logarithmic growth, as in the conditions of theorem 3.5, is perhaps possible.

It should also be noted that if a function u : D̄1 → R satisfies the conditions of theorem 3.5, with
coefficients a, b, c : D1 → R given by (3.40)

b(x, t) = −k(log (1 + x2))γ x3 ∀ (x, t) ∈ D1, (3.43)

and (3.41) respectively (with constants k, γ > 0), then theorem 3.5 implies that u ≤ 0 on D̄1, despite
the superlinear growth of b : D1 → R as |x| → ∞, given by (3.43), because the inequality on xb(x, t)
in theorem 3.5 only requires the growth rate as |x| → ∞ to be limited from above. Such cases
would be precluded in the maximum principles in [15], which require growth rate limitations on
|xb(x, t)| as |x| → ∞. We also note that in [10, p. 17], an example is given that violates the conclusion
of theorem 3.5; however, in this example, the conditions on both a : D1 → R and b : D1 → R are
violated, and hence, it is more difficult to draw conclusions from it.

To contextualize the nature of theorem 3.10 as an extension of the maximum principles in [15],
it is illustrative to consider the following example. Let Ω = R and introduce the linear parabolic
operator

L[u] := ut − uxx − bux − cu on D1, (3.44)

where b, c : D1 → R are such that

b(x, t) = b̃(x) ∀ (x, t) ∈ D1

c(x, t) = (1 + x2)β ∀ (x, t) ∈ D1

with b̃ : R → R an increasing function without growth limitations as |x| → ∞, and β ∈ (0, 1]. For L
given by (3.44), theorems 3.4 and 3.5 cannot be applied, owing to the unspecified growth of b̃ as
|x| → ∞. Moreover, lemma 2.2 cannot be applied since c is not bounded above on D1. However,
it follows that L given by (3.44) satisfies the conditions of theorem 3.10 with α = −β and λ= 0,
and hence, if u ∈ E0

−β satisfies L[u] ≤ 0 with u ≤ 0 on ∂D1, then u ≤ 0 on D̄1. In addition, note that
if we consider L given by (3.44) but with β > 1, then L would not satisfy theorem 3.10, owing to
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the constant coefficient of the second-order term together with the growth of the coefficient of the
zeroth-order term. Conversely, if we consider L given by (3.44) with b̃ : R → R being a decreasing
function, then L would satisfy the conditions of theorem 3.4 with α= β and λ= 0, and hence, if
u ∈ E0

β satisfies L[u] ≤ 0 with u ≤ 0 on ∂D1, then u ≤ 0 on D̄1.

4. Applications
Here, we demonstrate how the maximum principles, we have developed in §3, can be used
to establish comparison theorems. These comparison theorems can then be used to establish
uniqueness results for the following semi-linear parabolic initial-boundary value problem, which
commonly arises in both applied and theoretical studies of partial differential equations (see, for
example, the recent texts [3–5], and the classical texts [6,11]). We restrict attention to bounded
solutions (that is, in E0

0) of initial-boundary value problems for semi-linear parabolic equations,
for brevity, with results for unbounded/decaying solutions following similarly. Additionally, we
note that comparison theorems and uniqueness results can be established for bounded solutions
to initial-boundary value problems for quasi-linear/nonlinear parabolic equations via a similar
approach to that which follows, provided appropriate restrictions on the quasi-linear/nonlinear
terms hold (see, for example, [1] or [6]). Now, let u : D̄T → R be continuous and bounded, and
u ∈ C2,1(DT), such that

L[u] = f (x, t, u) on DT, (4.1)

where L is a linear parabolic operator as in (1.1), and

f : DT × R → R (4.2)

is a prescribed function, while

u = g on ∂DT, (4.3)

where g : ∂DT → R is a given function, which is bounded and continuous. A continuous and
bounded function u : D̄T → R with u ∈ C2,1(DT), and which satisfies (4.1) and (4.3) is referred
to as a solution of the initial-boundary value problem (IBVP) with linear parabolic operator L,
nonlinearity f and initial-boundary data g. Before we establish our results relating to (IBVP), we
require two definitions.

Definition 4.1. Let ū, u : D̄T → R be continuous and bounded, and ū, u ∈ C2,1(DT). Suppose
further that

L[ū] − f (x, t, ū) ≥ 0 on DT,

L[u] − f (x, t, u) ≤ 0 on DT,

u ≤ g ≤ ū on ∂DT,

where L is a linear parabolic operator and, f : DT × R → R and g : ∂DT → R are prescribed
functions. Then, on D̄T, u is called a regular subsolution and ū is called a regular supersolution to
(IBVP) with linear parabolic operator L, nonlinearity f and initial-boundary data g.

Definition 4.2. The function f : DT × R → R is said to satisfy the condition (H)α with α ≥ 0
when for any closed bounded interval M ⊂ R, there exists a constant kM > 0 such that for all
u, v ∈ M with u ≥ v, f satisfies the inequality

f (x, t, u) − f (x, t, v) ≤ kM(1 + x2)α(u − v) ∀ (x, t) ∈ DT.

The following observation is useful.
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Remark 4.3. Let f satisfy condition (H)α with α ≥ 0, then on every closed bounded interval
M ⊂ R, there exists a constant kM > 0 such that for all u, v ∈ M with u �= v, then,

( f (x, t, u) − f (x, t, v))
(u − v)

≤ kM(1 + x2)α ∀ (x, t) ∈ DT.

Furthermore, it follows that if f is locally Lipschitz continuous in u, uniformly on DT, namely for
all u, v ∈ M, there exists a constant kM > 0 such that

| f (x, t, u) − f (x, t, v)| ≤ kM|u − v| ∀ (x, t) ∈ DT,

then f satisfies condition (H)α for all α ≥ 0.

We now establish the following comparison theorem for (IBVP).

Theorem 4.4. Let ū : D̄T → R and u : D̄T → R be a regular supersolution and a regular subsolution to
(IBVP) with linear parabolic operator L, nonlinearity f and initial-boundary data g, respectively. Moreover,
suppose that for some α ≥ 0, f satisfies condition (H)α , and there exists constants A, B, C ≥ 0 such that the
coefficients of the linear parabolic operator L satisfy

0 ≤ aii(x, t) ≤ A(1 + |x|2)1−α

bi(x, t)xi ≤ B(1 + |x|2)

c(x, t) ≤ C(1 + |x|2)α

for all (x, t) ∈ DT and 1 ≤ i ≤ n. Then, u ≤ ū on D̄T.

Proof. Define w : D̄T → R, to be

w(x, t) = u(x, t) − ū(x, t) ∀ (x, t) ∈ D̄T, (4.4)

and it follows immediately that w : D̄T → R is continuous and bounded, and hence, that w ∈ E0
0 ⊂

E0
α . Moreover, it follows that there exists a closed bounded interval M ⊂ R, such that w(x, t) ∈ M

for all (x, t) ∈ D̄T. Now, on DT, we have via definition 4.1,

L[w] − (f (x, t, u) − f (x, t, ū)) = wt −
n∑

i,j=1

aijwxixj −
∑
i=1n

biwxi − (c + c̃)w ≤ 0, (4.5)

where aij, bi, c : DT → R are the coefficients in the linear parabolic operator L, and

c̃(x, t) =

⎧⎪⎨
⎪⎩

0; when ū(x, t) = u(x, t) on DT(
f (x, t, u) − f (x, t, ū)

u(x, t) − ū(x, t)

)
; when u(x, t) �= ū(x, t) on DT.

It follows, via remark 4.3, that there exists kM > 0 such that

c̃(x, t) ≤ kM(1 + x2)α ∀ (x, t) ∈ DT.

Therefore, it follows that the linear parabolic operator L − c̃ in (4.5) satisfies the conditions of
theorem 3.4 when α > 0 or theorem 3.5 when α = 0. Moreover, via definition 4.1,

w ≤ 0 on ∂DT. (4.6)

A direct application of theorem 3.4 (α > 0) or theorem 3.5 (α = 0), with (4.5) and (4.6), establishes
that

w ≤ 0 on D̄T,

and via (4.4), we have
u ≤ ū on D̄T,

as required. �

We are now able to establish uniqueness of solutions to IBVP.
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Theorem 4.5. Suppose that f : DT × R → R satisfies condition (H)α for some α ≥ 0, and there exists
constants A, B, C ≥ 0 such that the coefficients of the linear parabolic operator L satisfy

0 ≤ aii(x, t) ≤ A(1 + |x|2)1−α

bi(x, t)xi ≤ B(1 + |x|2)

c(x, t) ≤ C(1 + |x|2)α

for all (x, t) ∈ DT and 1 ≤ i ≤ n. Then, (IBVP) with linear parabolic operator L, nonlinearity f and initial-
boundary data g has at most one solution on D̄T.

Proof. Let u(1) : D̄T → R and u(2) : D̄T → R both be solutions to (IBVP) with linear parabolic
operator L, nonlinearity f and initial-boundary data g on D̄T. It is trivial to show that if u is a
solution to IBVP with linear parabolic operator L, nonlinearity f and initial-boundary data g on
D̄T then, via Definition 4.1, u is both a regular supersolution and a regular subsolution to IBVP
with linear parabolic operator L, nonlinearity f and initial-boundary data g on D̄T. On taking u(1)

and u(2) to be a regular subsolution and a regular supersolution to IBVP with linear parabolic
operator L, nonlinearity f and initial-boundary data g, respectively, then via theorem 4.4 we have,

u(1) ≤ u(2) on D̄T. (4.7)

A symmetrical argument establishes that

u(2) ≤ u(1) on D̄T, (4.8)

and therefore, via (4.7) and (4.8), it follows that u(1) = u(2) on D̄T, as required. �
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