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Visualizing Energy Landscapes with Metric Disconnectivity
Graphs

Lewis C. Smeeton, Mark T. Oakley, and Roy L. Johnston

The visualization of multidimensional energy landscapes is

important, providing insight into the kinetics and thermody-

namics of a system, as well the range of structures a system

can adopt. It is, however, highly nontrivial, with the number of

dimensions required for a faithful reproduction of the landscape

far higher than can be represented in two or three dimensions.

Metric disconnectivity graphs provide a possible solution, incor-

porating the landscape connectivity information present in dis-

connectivity graphs with structural information in the form of a

metric. In this study, we present a new software package,

PyConnect, which is capable of producing both disconnectivity

graphs and metric disconnectivity graphs in two or three

dimensions. We present as a test case the analysis of the 69-

bead BLN coarse-grained model protein and show that, by

choosing appropriate order parameters, metric disconnectivity

graphs can resolve correlations between structural features on

the energy landscape with the landscapes energetic and kinetic

properties. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23643

Introduction

The potential energy surface, UðrÞ, of an N atom chemical sys-

tem represents the potential energy as a function of 3N

atomic coordinates. The topography of UðrÞ, or energy land-

scape, determines its structure, kinetics, and thermodynam-

ics[1,2] and its analysis has proved useful in studying a range of

physical systems and phenomena, including glasses,[3] biomo-

lecules,[4–6] and clusters.[7–9] For all but the simplest cases, UðrÞ
has many more degrees of freedom than it is possible to visu-

alize conventionally, making it impossible to assess the surface

topography directly. One solution to the visualization problem

is to partition the landscape into discrete regions, and then

hierarchically cluster these regions according to some similarity

measure. This clustering can then be represented as a tree-

graph in either two or three dimensions (2D or 3D). There are

a number of examples of hierarchical clustering methods in

the literature, broadly based on either geometry, energetic

barriers, or local ergodicity.

In geometrical clustering, regions are clustered according to

their structural similarity, which is usually defined by the root-

mean-square deviation (RMSd) between them. In this context,

regions can either correspond to minima on UðrÞ[10] or points

along a molecular dynamics trajectory.[11,12] The structures are

clustered either by an iterative process, by which each struc-

ture is joined to its nearest neighbor until only a single cluster

remains,[11] or clustering structures that are within a critical

distance of one another.[10]

When clustering according to energetic barriers, the land-

scape is partitioned into basins of attraction whereby each

point on the landscape UðrÞ, is mapped onto a local minimum

a, with coordinate, ra by a steepest-descent path.[3,13] Alterna-

tively, the landscape can be partitioned using a lumping

approach,[14] in which energy thresholds are used to group

connected regions below the threshold. The similarity measure

used for hierarchical clustering is the barrier energy that sepa-

rates any two regions. Starting from the energy of the global

minimum, U0, regions are clustered together if they are sepa-

rated by a barrier with an energy lying in the interval Ui112Ui ,

where Ui115Ui1DU and DU is the width of the interval. This

clustering is repeated until a particular energy threshold, Ut, is

reach, or all the minima are clustered together. Such graphs

have come to be referred to as disconnectivity graphs,[13,15]

and have been used in a number of studies to visualize energy

landscapes.[13,15–17] Disconnectivity graphs retain both the

energies of minima on UðrÞ, and the barriers that separate

them, making them a useful diagnostic in visually assessing

the thermodynamic and kinetic behavior of a system.[18,19]

They can also be used to represent free-energy surfaces by

estimating the vibrational entropy of minima and transition

states on the landscape from the harmonic superposition

approximation.[20–22] Clustering landscapes by local ergodicity

involves partitioning the landscape into basins about local

minima. Equilibration between basins is determined by com-

paring forward and backward transition rates between

states[23] or the time-dependent probability distributions of

connected basins.[24]

A weakness of the disconnectivity graph method is that it

does not retain any structural information on the minima and

thus neglects a large portion of the information contained in

the energy landscape. Metric disconnectivity graphs capture

some of this structure by defining a metric, and then calculat-

ing an order parameter from the metric for each minimum of

interest on the landscape. The minima can then be plotted
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along a metric axis perpendicular to the energy axis. Metric

information can be included in a number of other ways, such

as by changing the color, or thickness of the nodes and

edges.[25,26] In this article, we will refer to metric disconnectiv-

ity graphs as those for which the nodes are organized along a

metric axis. A judicious choice of metric captures overall struc-

tural trends in the system, while ignoring noisy or irrelevant

information.

Here, we demonstrate the use of metric disconnectivity

graphs, using several metrics, to visualize the energy land-

scapes of coarse-grained proteins. These disconnectivity

graphs are plotted with our new energy landscape visualiza-

tion package, PyConnect.[27]

Methodology

BLN model

Metric disconnectivity graph analysis was performed on a

database of stationary points for a BLN model protein This

database was generated with discrete path sampling[8,28] as

implemented in PATHSAMPLE.[29] The BLN model[30,31] is a

coarse-grained, off-lattice protein model in which each protein

residue is represented by one of three types of bead: hydro-

phoBic, hydrophiLic, or Neutral. Here, we use a version of the

BLN potential in which the interresidue distances and angles

are restrained with stiff springs.[32] The beads interacts with

each other according to

UBLNðrÞ5
1

2
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XN21

i51

ðRi;i112ReÞ21
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r
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� �12

1Dij
r
Rij

� �6
)

(1)

where Rij is the distance between two beads i and j. The first

term is a harmonic bond restraint with Kr5231:2�r22 and

Re 5 r. The second term represents a harmonic angle con-

straint the Kh520 rad22 and he51:8326 rad. The third term

takes into account torsional angles along the chain and is

defined by four consecutive beads. If two or more beads are

N, then A 5 0 and B 5 0.2, else A 5 B 5 1.2. The fourth term

represents long range, water-mediated hydrophobic interac-

tions between nonbonded pairs. If both beads are B, then C 5

D 5 1. If one residue is L and the other is L or B, then C5 2
3

and D521. If either residue is N, then C 5 1 and D 5 0.[32]

Though other sequences exist and have been studied, we

consider here BLN-69, which consists of 69 beads with the

sequence[33] B9N3(LB)4N3B9N3(LB)4N3B9N3(LB)5L. BLN-69 has

been designed to exhibit a frustrated energy landscape, with a

6-strand b-barrel structure as its global minimum. The model

has been shown to have a number of low-energy b-barrel-like

structures, which differ from the global minimum by a chain

slip along the length of the barrel,[4] but are separated by

large barriers. Such frustration is absent when considering the

“G�o” version of the model (G�o-69), where attractive interac-

tions between pairs of residues that are not in contact in the

native state (i.e., the global minimum) are neglected.[34,35]

Metric disconnectivity graphs

Disconnectivity graphs and metric disconnectivity graphs are

plotted using PyConnect.[27] The PyConnect package com-

prises two components: PCA, which calculates the principal

components of molecular systems from PATHSAMPLE[29] data-

bases, and PyConnect, which constructs and displays metric

disconnectivity graphs. Both of these programs were written

in Python. The disconnectivity graphs are rendered with Mat-

PlotLib,[36] and users can choose to create disconnectivity

graphs and metric disconnectivity graphs in 2D or 3D. PyCon-

nect also provides some cosmetic features, including the abil-

ity to label minima, color minima according to an order

parameter or according to their basin of residence. PyConnect

can also be used to modify graphs interactively using the iPy-

thon[37] virtual environment. In the disconnectivity graphs pro-

duced by PyConnect, the position of nodes and minima along

the x axis are determined by algorithms similar to those used

in DISCONNECT,[38] another program for producing disconnec-

tivity graphs from databases of minima and transition states.

Full details of the algorithms used can be found on the PyCon-

nect website.[27] Two-dimensional metric disconnectivity

graphs are plotted with the position of the minima on the x

axis defined according to a metric. In 3D disconnectivity

graphs, two metrics are used. The positions of nodes on the

disconnectivity graphs are defined as the mean of the metrics

for all minima connected to that node.

Native Contact Metric. The native contact metric evaluates for

each minimum, a, the ratio Na=NNC , where NNC is the number

of native contact pairs, and Na is the number of contact pairs

in minimum a that are also present in the native conformation.

Here, contacts are defined as those beads which are within

1.167r of each other, excluding pairs that are within three

beads of each other in the peptide sequence.[4]

Hydrogen bonding is important in protein folding, and

native contact analysis can provide a useful analogy for

coarse-grained protein models. Na=NNC is commonly used as a

progress variable in computational studies of protein folding

to distinguish between the different degrees of partially folded

protein.[39]

RMSd Metric. The RMSd, dab, measures the distance between

the conformation of minimum a and b; ra and rb respectively,

according to

dab5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jra2rbj2

q
(2)

Invariance under global translations and rotations is implicit

if structures are represented in internal coordinates. When

working in Cartesian coordinates, the Kabsch algorithm[40] was

used to align structures to minimize dab. In the RMSd metric,

dab is calculated between the conformation of each minimum

and the conformation of the global minimum, rGM.
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Principal Component Metric. The principal component metric

is based on principal component analysis (PCA), a statistical

procedure used to analyze large, high-dimensional data sets,

which is commonly used in dimensional reduction and, or

when the relevant degrees of freedom in a data set are not

clear.[41] PCA attempts to reexpress a data set in terms of a

new basis set, the principal components, which are a linear

transform of the data sets original basis set. The principal com-

ponents lie along the axes of greatest sample variance, with

the first principal component, PC1, capturing the axis of great-

est variance, the second principal component, PC2, capturing

the axis of second greatest variance (orthogonal to the first)

and so on.[42]

We performed PCA on the set of Nsp stable configurations

fragUt
, where fragUt

are all local minima connected to the

global minimum below a certain threshold energy Ut. The

initial basis sets employed were the 3N dimensional exter-

nal Cartesian basis set, feig, and an internal basis set of

dihedral angles, fwig. To remove the periodicity of fwig, we

used the sines and cosines of the internal dihedrals,

fcoswi; sinwig.[43] Rotational and translational invariance of

fragUt
was enforced by implementing McLachlan’s best fit

procedure[44];

1. A reference configuration defined as the ensemble aver-

age, hri of frag was calculated, where frag is the set of

Nsp minima of interest, and where each configuration in

frag has its centroid centered on the origin.

2. Define a new set fr0ag, rotate each configuration about

its origin to be as close to hri as possible using the

Kabsch algorithm, and thus minimize

s5
1

2

XNsp

a51

ðra2 hriÞ2 (3)

3. Replace frag with fr0ag.
4. Repeat steps 1–3 until the ensemble average converges

to some threshold criterion.

In our study, we used the threshold criterion defined by

Komatsuzaki et al.,[25] s � 1028.

Hereafter, whether discussing Cartesian or internal coordinates,

we define frag as the translation-free, rotation-free set of con-

figurations, and fqig as the basis set, where i is the coordinate

index.

To perform PCA, we begin with defining the 3N 3 Nsp

mean-centered configuration matrix, R

R5ð r1 � � � ra � � � rN Þ (4)

where each column of R is a 3N dimensional vector corre-

sponding to a stable configuration in the set fragUt
. The PCs

are the eigenvectors of the 3N 3 3N covariance matrix, C

C5R
†

R (5)

and are thus the basis set fQig, where i is the coordinate index,

in which C is diagonalized. The PCs are calculated using the sin-

gular value decomposition method, which states that a 3N 3

Nsp configuration matrix, R can be written as the product

R5WSV
†

(6)

where W is the 3N 3 3N matrix;

W5ðQ1 � � � Qi � � � Q3N Þ (7)

whose columns are the PCs of C and S is a 3N3Nsp matrix

with diagonal elements, Sii, where (dropping the double index

for clarity) S2
i is the variance associated with Qi . The PCs are

ordered so that Q1 has the greatest variance, Q2 has the sec-

ond greatest variance, and so on. The ith principal component

metric is calculated by transforming each member of fragUt

into the basis set of fQig, and using the value of the ith PC

for each minimum as the order parameter.

One can visualize the PCs of a given fragUt
, by choosing a

reference structure, rref , and adding the Qi of interest to it

rk5rref1kQi (8)

where k is a progress variable.

Isomap Metric. The Isomap metric is based on the Isomap

algorithm,[45,46] a nonparametric, nonlinear dimensionality

reduction technique. The aim of the Isomap algorithm is to

define a low-dimensional embedding that as accurately as pos-

sible preserves geodesic distances between all pairs of points

in the data cloud. The geodesic distance between a pair of

points that lie on a manifold is the length of the shortest path

between them that lies along that manifold. Isomap assumes

that such a low-dimensional manifold exists, and that its shape

can be estimated from the distribution of points in the data

cloud. The Isomap algorithm approximates the geodesic dis-

tance between a given pair of points on the manifold by cal-

culating the shortest possible path between them that can be

found by stepping from one point to its neighbor.

We applied Isomap to the set of Nsp stable configurations

fragUt
using the Isomap implementation in the scikit-learn

machine learning package.[47] As with the principal compo-

nent metric, rotational and translational invariance of fragUt

was enforced by implementing McLachlan’s best fit

procedure.

Table 1. The variance captured by the first three principal components in

Cartesian, Scart
i , and dihedral, Sdi

i , bases of the Nsp structures in the suble-

vel sets of minima below threshold energy Ut for BLN–69.

Ut=e Nsp

Cartesian PCA Dihedral PCA

Scart
1 Scart

2 Scart
3 Sdi

1 Sdi
2 Sdi

3

295.0 6891 25.0 9.2 8.0 12.3 8.5 8.2

295.5 5973 25.7 8.9 8.1 12.5 8.6 8.4

296.0 5135 26.0 8.7 8.2 12.3 8.9 8.6

296.5 4353 27.4 8.5 8.2 12.7 9.2 9.8

297.0 1611 37.0 10.0 7.9 12.8 10.6 9.7

297.5 561 21.2 19.0 10.8 15.1 13.7 11.9

298.0 409 25.8 16.6 10.8 15.6 14.1 12.0
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The Isomap algorithm works in three steps;

1. A weighted graph, G, of fragUt
is built, where each con-

formation is a node and where the k nearest-neighbors

of each conformation a are joined by an edge with

weight dab. Isomap has been shown to be fairly robust

to the choice of k,[46] and in this study we took k 5 15.

2. The shortest path between each conformation through

the graph G is determined and a distance matrix, D, is

computed, where Dab5minfdab; dac1dcbg for c51; . . . ;

Nsp. The elements Dab, are the approximate geodesics

between conformations a and b.

3. Classical multidimensional scaling is applied to the matrix

D, producing a low-dimensional embedding of the con-

formational coordinates that best preserves geodesic dis-

tances on the manifold.

The ith Isomap metric corresponds to the ith embedded

dimension of the low-dimensional manifold of fragUt
.

Results and Discussion

BLN-69

For BLN-69, a database containing 141,835 minima and

173,692 transition states was used in the study. The first three

Cartesian and dihedral principal components for the sets,

fragUt
, connected to the global minimum below energy Ut,

where 295:0e � Ut � 298:0e are shown in Table 1.

Figure 1. Disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611. The

color scheme is chosen to distinguish between energetic funnels. Labeled

minima correspond to the global minimum and low-energy minima sepa-

rated from the global minimum and one another by large kinetic barriers

and are shown in Figure 2.

Figure 2. Structures of the minima labeled in Figure 1, corresponding to the global minimum, Figure 2a and low-energy minima separated from the global

minimum and one another by large kinetic barriers, Figures 2b–2e. Energetic and structural details are provided in Table 2. The beads are colored from red

to blue (N-terminus to C-terminus).

FULL PAPER WWW.C-CHEM.ORG

4 Journal of Computational Chemistry 2014, DOI: 10.1002/jcc.23643 WWW.CHEMISTRYVIEWS.COM



For the Cartesian PCs, PC1 captures significantly more of the

variance than PC2 for all data sets considered. PC1 for the sub-

level set of minima connected to the global minimum below

Ut5297:0e; fragUt5297:0e has the largest fractional variance

and therefore this threshold was selected for all disconnectiv-

ity graphs. The dihedral PCs have a more uniform variance dis-

tribution than the Cartesian PCs, with Sdi
1 � 1

2 Scart
1 , for all fragUt

considered in both BLN-69 and G�o-69. The dihedral PCs are

thus not appropriate metrics for studying these systems, and

have not been used to create metric disconnectivity graphs.

The set of minima where Ut5297:0e is represented as a dis-

connectivity graph in Figure 1. Figure 2 shows the low-energy

minima labeled a–e in Figure 1. Minima b–e are all structurally

similar to one another with each adopting compact b-barrel

geometries and differing from global minimum a by either a

chain-slip, chain-reptation, or twist in the turn regions, with

further details given in Table 2.

The native contact metric (Fig. 3) splits the two largest fun-

nels, with each having distinct fractions of native contacts (the

mean fraction of native contacts for the funnels containing

minima a and b is 0.91 and 0.81, respectively). Though the

native contact metric differentiates between kinetically sepa-

rated minima, it does not differentiate according to their

Table 2. Energy above the global minimum, DU, fraction of native con-

tacts, Na=NNC , RMSd from the global minimum and difference in PC1 and

PC2 from the global minimum DQ1 and DQ2, respectively, for minima b–

e.

Minimum DU=e Na=NNC RMSd/r DQ1=r DQ2=r Defect

b 0.26 0.85 0.41 25.32 21.25 Chain-slip

c 0.38 0.87 0.21 20.02 20.76 Reptation

d 0.67 0.86 0.40 22.73 23.51 Double chain-slip

e 0.92 0.77 0.54 26.54 22.61 Twist

Figure 3. Metric disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611,

with fraction of native contacts used as an order parameter. The color

scheme and labels are as used in Figure 1. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Metric disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611,

with RMSd of each structure from the global minimum used as an order

parameter in units of r. The color scheme and labels are as used in

Figure 1. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 5. Metric disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611,

with PC1 for fragUt 5297:0e; Q1, used as an order parameter in units of r.

The color scheme and labels are as used in Figure 1. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Metric disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611,

with PC2 for fragUt 5297:0e; Q2, used as an order parameter in units of r.

The color scheme and labels are as used in Figure 1. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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energies. There are a number of unstable, high-energy minima

with energetically unfavorable turns in the flexible N bead

regions, but otherwise with almost all native contacts satisfied.

Minimum a by definition satisfies all native contacts. Minima

b–d are all very similar according to this metric, with each sat-

isfying � 85% of possible native contacts, in spite of their geo-

metries being relatively dissimilar.

The RMSd metric (Fig. 4) is capable of distinguishing

between the different major funnels on the surface, with each

having its own mean value of the metric (mean RMSd for the

funnels containing minima a, c, and b 0:24r; 0:31r, and 0:45r,

respectively). There is also some relation to the minima energy

in the green and red funnels, where lower energy corresponds

to RMSd metric values closer to 0. The RMSd metric differenti-

ates the basin minima into four groups, with minimum c being

most similar to the global minimum, which is as expected

from a visual inspection of the structures.

Figure 7. Different values of Q1 for Ut5297:0e projected onto the structure of the global minimum of BLN-69. For the global minimum, Q151:96r. The

beads are colored from red to blue (N-terminus to C-terminus). An animated version of this projection is available as Supporting Information. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Different values of Q2 for Ut5297:0e projected onto the structure of the global minimum of BLN-69. For the global minimum, Q2525:5r. The

beads are colored from red to blue (N-terminus to C-terminus). An animated version of this projection is available as Supporting Information. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Metric disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611,

with the first embedded dimension for fragUt 5297:0e from Isomap analysis

used as an order parameter in units of r. The color scheme and labels are

as used in Figure 1. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 10. Metric disconnectivity graph of BLN-69, Ut5297:0e; Nsp51611,

with the second embedded dimension for fragUt 5297:0e from Isomap analy-

sis used as an order parameter in units of r. The color scheme and labels

are as used in Figure 1. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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The PC1 metric (Fig. 5) splits the blue funnel (mean 3:29r)

from the red and green funnels, which sit on top of one

another (mean 1:59r and 1:60r, respectively). The purple fun-

nel lies at the boundary of the two, with a mean of 20:86r.

Minima a and c have almost identical values of Q1, while min-

ima d, b, and e have increasingly dissimilar values. Given that

PC1 corresponds to a chain-slip between the C and N termini,

and that minima d, b, and e have chains that have shifted rela-

tive to the global minimum in the same direction, it gives con-

fidence that PCA is capable of identifying structural features of

the energy landscape.

The PC2 metric (Fig. 6) does not reveal any obvious correla-

tion between structure and energetics or kinetics, with no dis-

tinction made between the funnels and with the points

reasonably evenly distributed along the order parameter. Thus,

this PC corresponds to variations within all of the funnels

rather than structural differences between the funnels.

The progression of PC1 of fragUt5297:0e from k525:2r to k
54:7r (Fig. 7) corresponds to a chain-slip between the C and

N termini. The progression of PC2 of fragUt5297:0e from k52

3:7r to k53:4r (Fig. 8) corresponds to a twisting of the inter-

nal chain sequences.

The first embedded dimension of the Isomap metric (Fig. 9)

clearly differentiates between all the colored funnels on the land-

scape. The mean value of the blue, purple, red, and green funnels

are 210:23r; 22:96r; 4:12r, and 8.80r, respectively. The struc-

ture of the graph is similar to the PC1 graph (Fig. 5), with the

order of the colored funnels and labeled low-energy minima

along the metric axis matching. The agreement between these

two metrics suggests that the first embedded dimension of the

Isomap metric is fairly linear, and that, as with the PC1 metric, it

corresponds to a chain-slip between the C and N termini.

As with the PC2 metric, the disconnectivity graph for the

seconded embedded dimesnion of the Isomap metric (Fig. 10)

is difficult to interpret. The overlapping of the colored funnels

suggests that the second embedded dimension corresponds

to some structural variation common to each funnel.

The information in Figures 5 and 6 is visualized on a single

3D metric disconnectivity graph of fragUt5297:0e projected

onto the plane of maximal variance in Figure 11. The plot

shows fragUt5297:0e for BLN-69 plotted against its first two

principal components. Clear separation of minima a–e is dis-

cernible in this 3D metric disconnectivity graph.

G�o-69

For G�o-69, a database containing 75,666 minima and 113,101

transition states was used. The first three Cartesian principal

components for the sets, fragUt
, connected to the global

Figure 11. 3D metric disconnectivity graph of BLN-69,

Ut5297:0e; Nsp51611, plotted with the first two principal components of

fragUt 5297:0e , Q1 and Q2, used as order parameters in units of r. The color

scheme and labels are as used in Figure 1. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Table 3. The variance captured by the first three principal components in

Cartesian, Scart
i , and dihedral, Sdi

i , bases of the Nsp structures in the suble-

vel sets of minima below threshold energy Ut for G�o-69.

Ut/e Nsp

Cartesian PCA Dihedral PCA

Scart
1 Scart

2 Scart
3 Sdi

1 Sdi
2 Sdi

3

252.0 5529 38.6 14.3 12.6 14.4 10.6 7.3

253.0 4364 38.0 13.7 12.0 13.7 11.1 7.7

254.0 3188 24.5 16.0 8.0 13.3 11.6 8.2

255.0 2386 24.4 16.0 8.1 13.3 11.3 8.7

256.0 1691 23.7 15.7 7.6 14.0 12.1 9.4

257.0 1185 21.6 16.3 7.7 13.9 12.7 10.4

258.0 739 21.5 15.3 7.7 14.9 12.9 11.4

Figure 12. Disconnectivity graph of G�o-69, Ut5254:0e; Nsp53189.

Figure 13. Metric disconnectivity graph of G�o-69, Ut5254:0e; Nsp53189,

with fraction of native contacts used as an order parameter.
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minimum below energy Ut, where 252:0e � Ut � 258:0e are

shown in Table 3.

As with the Cartesian PCs of BLN-69, PC1 captures signifi-

cantly more of the variance than PC2 for all data sets consid-

ered. PC1 for the sublevel set of minima connected to the

global minimum below Ut5252:0e and Ut5253:0e, have the

largest fractional variance, though these large variances are

due to a comparatively small number of unstable, high-energy

minima in which one end of the chain has peeled away from

the barrel and become unbound. For these systems, PC1 is no

longer representative of the distribution of minima on Ur. For

this reason, we consider the sublevel set of minima connected

to the global minimum below Ut5254:0e, for which all the

minima have densely packed geometries. This set is repre-

sented as a disconnectivity graph in Figure 12. The results for

the Isomap metric were fairly ambiguous for G�o, with no

obvious pattern correlation between the embedded dimen-

sions and the kinetic or energetic structure of the graph, so

they have not been included in this work.

As there is only a single funnel on the G�o-69 landscape,

there are no large kinetic barriers for any of the metrics to dif-

ferentiate between. The native contact metric (Fig. 13) is able

to partially distinguish between the structures of high- and

low-energy minima. As with BLN-69, minima across the whole

energy range examined were able to satisfy nearly full native

contacts, including unstable, high-energy minima with ener-

getically unfavorable turns in the flexible N bead regions. The

converse is not true; however, as all low-energy minima have a

high number of native contacts and low numbers of native

contacts are only found for high-energy minima.

For the RMSd metric (Fig. 14), similar behavior to BLN–69 is

exhibited, albeit with a single funnel, with RMSd from the

global minimum increasing with increasing energy.

The metric disconnectivity graphs in Figure 15 use PC1 and

PC2 as order parameters. In the PC1 graph, the majority of

minima are centered about the global minimum, with a

smaller number of high-energy minima extending to higher

values of PC1. PC1 and the fraction of native contacts are well-

correlated, as can be seen in the 3D metric disconnectivity

graph (Fig. 16). The PC2 metric orders all but a few minima

tightly in a rough column about Q2 � 0:1. Those unstable,

higher energy minima that are not in that column are struc-

tures with a partly unbound C-terminus chain-portion.

Figure 14. Metric disconnectivity graph of G�o-69, Ut5254:0e; Nsp53189,

with RMSd of each structure from the global minimum used as an order

parameter in units of r.

Figure 15. Metric disconnectivity graphs of G�o-69, Ut5254:0e; Nsp53189, with PC1 (left) and PC2 (right) for fragUt 5254:0e; Q1 and Q2, used as order param-

eters in units of r.

Figure 16. Metric disconnectivity graph of G�o-69, Ut5254:0e; Nsp53189,

with PC1 for fragUt 5254:0e; Q1, and fraction of native contacts used as order

parameters, and colored according to RMSd of each structure from the

global minimum. Q1 and RMSd are in units of r. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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The use of color allows an additional metric to be included

on a metric disconnectivity graph. For example, Figure 16

shows the PC1, native contact, and RMSd metrics for G�o-69.

Figure 17 shows the progression of PC1 of fragUt5254:0e

from k522:6r to k56:1r, with a view along the axis of the

barrel and corresponds to a sweeping action of the red chain-

portion across the face of the white chain-portion.

Figure 18 shows the progression of PC2 of fragUt5254:0e

from k527:6r to k58:1r, and corresponds to a “can-can” like

sweeping motion of the free C-terminus end of the chain.

Conclusions

In this study, we have demonstrated how an appropriate order

parameter can elucidate the connection between structures in

the energy landscape of BLN-69 and G�o-69, such as funnels,

with certain structural motifs of the protein, including chain

slips and twists in the turn regions. However, there are still

shortcomings to the metrics proposed. Fraction of native con-

tacts and RMSd metrics relied on having prior knowledge of

the system. PCA provides a means to study systems without

resorting to chemical intuition, but still assumes that the point

cloud is approximately linear, and cannot be directly imple-

mented for angular coordinates. Also, it considers all structures

to be of equal importance, regardless of energy, leading to sit-

uations such as with G�o-69, where all the variance in structure

was provided by a small number of high energy, unstable min-

ima. Isomap allows one to discern low-dimensional, nonlinear

manifolds in the data, and does not make the same assump-

tions of linearity as PCA. This is clearly a successful strategy,

with Isomap distinguishing between the different kinetic struc-

tures on the landscape. A useful feature of PCA is the ease

Figure 17. Different values of Q1 for Ut5254:0e projected onto the structure of the global minimum of G�o-69. For the global minimum, Q1520:6r. The

beads are colored from red to blue (N-terminus to C-terminus). An animated version of this projection is available as Supporting Information. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 18. Different values of Q2 for Ut5254:0e projected onto the structure of the global minimum of G�o-69. For the global minimum, Q2520:9r. The

beads are colored from red to blue (N-terminus to C-terminus). An animated version of this projection is available as Supporting Information. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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with which one can project the principal components back

into the original space, making it possible to visualize what

these directions correspond to. In principal, it should be possi-

ble to do the same with Isomap, projecting the approximate

geodesics of the manifold back into the original space, though

we have not implemented this in the work presented here.

Other nonlinear dimensionality reduction methods exist in the

literature, such as sketch-map,[48] locally scaled diffusion

map,[46,49] and spectral methods,[50] which are good candidate

metrics for further study.

Equally, though the data produced by PyConnect is of a high-

quality, the data analysis is still fairly qualitative, and further efforts

are being taken to quantify the observations, such as using graph-

theoretic techniques to analyze and compare tree graphs.[51]

Future work should also focus on investigating more realistic,

small protein systems, such G-protein[52] or cyclic peptides.[5,22]
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