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Combined use of N-acetylcysteine and Liberase improves the
viability and metabolic function of human hepatocytes isolated
from human liver
DAVID C. BARTLETT, JAMES HODSON, RICKY H. BHOGAL, JANINE YOUSTER &
PHIL N. NEWSOME

National Institute for Health Research Biomedical Unit and Centre for Liver Research, University of Birmingham,
Birmingham, United Kingdom
Abstract
Background aims. Successful hepatocyte isolation is critical for continued development of cellular transplantation. However,
most tissue available for research is from diseased liver, and the results of hepatocyte isolation from such tissue are inferior
compared with normal tissue. Liberase and N-acetylcysteine (NAC) have been shown separately to improve viability of
isolated hepatocytes. This study aims to determine the effect of Liberase and NAC in combination on human hepatocyte
isolation from normal and diseased liver tissues. Methods.Hepatocytes were isolated from 30 liver specimens through the use
of a standard collagenase digestion technique (original protocol) and another 30 with the addition of NAC and standard
collagenase substituted by Liberase (new protocol). Viability and success, defined as maintenance of cell adhesion and
morphology for 48 hours, were assessed. Metabolic function was assessed by means of albumin and urea synthesis. Results.
Baseline factors were similar for both groups. The delay to tissue processing was slightly shorter in the new protocol group
(median, 2 versus 4 hours; P ¼ 0.007). The success rate improved from 12 of 30 (40.0%) to 21 of 30 (70.0%) with the use of
the new protocol (P ¼ 0.037), and median viable cell yield increased from 7.3 � 104 to 28.3 � 104 cells/g tissue (P ¼ 0.003).
After adjusting for delay, success rate (P ¼ 0.014) and viable cell yield/g tissue (P ¼ 0.001) remained significantly improved.
Albumin and urea synthesis were similar or superior in the new protocol group. Conclusions. NAC and Liberase improve the
success of hepatocyte isolation, with a significantly higher yield of viable cells. The use of these agents may improve the
availability of hepatocytes for transplantation and laboratory research.
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Introduction

Recent years have seen a growing interest in cell ther-
apy for various types of liver disease and,while research
continues into the use of stem cells and their de-
rivatives (1e5), several hurdles remain. The potential
for tumor formation, the possibility that stem cells will
not differentiate correctly after transplant or that stem
cellederived cells may not function in an identical
manner to primary adult cells are all of concern as well
as various ethical and moral issues (6e9). The use of
fully differentiated primary hepatocytes overcomes
someof the problems associatedwith stemcell therapy.
There is, therefore, continued interest in hepatocyte
transplantation as an alternative to orthotopic liver
transplantation, particularly for certain inherited
metabolic disorders. Although early experience has
been encouraging, any clinical benefit has tended to be
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short-lived. Thus, hepatocyte transplantation is the
subject of on-going laboratory and clinical research
(10,11), and a supply of high-quality primary hepato-
cytes is crucial to further develop this treatment
(12,13). In addition, primary hepatocytes continue to
be a valuable resource for many aspects of biochemical
and pharmaceutical research (14,15) as the limitations
of hepatocyte cell lines are increasingly recognized.

Most studies of hepatocyte isolation describe the
use of surplus donor tissue made available through
liver transplant programs or normal tissue removed
during resection of liver tumors (14,16e19). However,
the majority of tissue available for research is from
explanted diseased liver, which yields much fewer
viable cells. We previously reported our experience of
hepatocyte isolation from 100 normal and diseased
livers, with a success rate of 51% and median viability
er Research, 5th Floor IBR, University of Birmingham, Birmingham, B15
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Combined NAC and Liberase improves human hepatocyte isolation 801
of 40% (20). While demonstrating the potential of
diseased and/or fatty liver tissue to provide functioning
hepatocytes, these results are inferior to those obtained
by centers that use donor and resected liver tissue
alone. A means of improving the outcome of hepato-
cyte isolation from diseased liver would allow better
use to be made of available liver tissue, increasing the
pool of primary hepatocytes for research purposes.

The two-step collagenase digestion technique was
first described in 1969 by Berry and Friend (21) for
the isolation of rat hepatocytes and has since been
adapted by several groups for the isolation of human
hepatocytes. Two further adaptations have recently
been separately described that may offer the potential
to improve the outcome of hepatocyte isolation. Lib-
erase is a relatively new enzyme initially developed to
improve the outcome of pancreatic islet isolation
(22e24). It comprises purified highespecific activity
collagenases (clostridial collagenase I and collagenase
II) blended with highespecific activity neutral prote-
ase (dispase or thermolysin) in an optimal ratio. Lib-
erase blends are xeno-free, which is important for
downstream applications. Little has been published
on the use of Liberase for human hepatocyte isolation,
but it has been shown to improve the viability of iso-
lated porcine hepatocytes compared with standard
collagenase (25). N-acetylcysteine (NAC) is an anti-
oxidant that acts through the replenishment of hepatic
glutathione stores. It also has direct antioxidant
properties (26) and appears to have hepatoprotective
effects through a number of mechanisms (27). Animal
data suggest that NAC may have a protective effect
against liver ischemia/reperfusion injury (28e30), and
the use of NAC has recently been shown to improve
the viability of human hepatocytes isolated from
steatotic liver (31).

We report our experience of combining both
Liberase and NAC in an attempt to improve the
outcome of human hepatocyte isolation from normal
and diseased liver tissue, comparing our results with
those obtained with our previous protocol with the
use of standard collagenase without NAC.
Methods

Ethics approval

All human liver tissue was obtained from Queen
Elizabeth Hospital Birmingham or Birmingham
Children’s Hospital, with full approval of the Local
Research Ethics Committee (reference No 06/Q702/
61). Liver specimens were obtained from liver re-
sections, whole explanted livers or donor liver, which
was either surplus to surgical requirements or un-
suitable for transplantation. Written informed consent
was obtained from all patients or their families.
Human hepatocyte isolation

Human hepatocyte isolation was performed as tissue
became available over the 3-year period of January
2009 to 31 December 2011. Explanted livers were
used from patients undergoing transplantation for
any disease with the exception of those in whom
we have previously found that high levels of hepatic
necrosis preclude successful hepatocyte isolation.
These include fulminant liver failure including drug
toxicity and paracetamol overdose or those under-
going re-graft for acute rejection, primary non-
function or hepatic artery thrombosis. We also
excluded liver tissue from patients with viral hepa-
titis or human immunodeficiency virus infection
because of the risks of infection associated with
handling and culturing potentially infected tissue in
the laboratory.

After explantation or resection, liver specimens
were immediately placed on ice in a sealed sterile
bag. Donor liver was retrieved and transported on
ice in cold University of Wisconsin solution within a
sterile bag according to standard protocols by the
organ retrieval team. All donor liver tissue was
assessed by the clinical team at Queen Elizabeth
Hospital, Birmingham, and only made available
for hepatocyte isolation if deemed unsuitable for
liver transplantation. On arrival in the laboratory,
liver tissue was processed immediately by a trained
pathologist and hepatocyte isolation was carried out
immediately thereafter. Where explanted or donor
livers were used, wedges were obtained from either
segments II/III, segments V/VI or segments VII/
VIII. In the case of resected specimens, only those
from patients undergoing right hemihepatectomy
were deemed suitable by our pathologist to obtain
sufficient tissue for isolation while not compro-
mising the subsequent histopathological examina-
tion of the tumor and resection margins. Therefore,
wedges from resection specimens were obtained
from segments V/VI or VII/VIII. In all cases, tissue
was only used for cell isolation if there was no
indication of tumor in that part of the liver after
inspection by the pathologist in conjunction with
available preoperative imaging. All resection speci-
mens were for colorectal metastasis, and all patients
had received preoperative chemotherapy.

Hepatocytes were isolated from 30 consecutive
liver specimens as previously described (original pro-
tocol) (20). Briefly, once the liver wedge was cut, it
was flushed with cold Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen Life Sciences, Paisley,
United Kingdom) to remove any remaining blood and
to identify vessels for cannulation. In each case, two
vessels were identified such that maximum perfusion
of the entire wedge was obtained. The vessels were
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Figure 1. (A) Liver wedge prepared for perfusion with two
cannulae inserted and the remaining vessels ligated with sutures
and (B) connected to the perfusion circuit. The liver wedge was
placed on a mesh-covered funnel and the perfusate was allowed to
drain into a vessel placed beneath from where it was removed
(wash and EGTA buffers) or recirculated (enzyme buffer).
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cannulated with the use of two 18- or 20-gauge can-
nulas (Becton-Dickinson, Oxford, United Kingdom)
and secured by means of a 4e0 Prolene (Covidien,
Hampshire, United Kingdom) purse-string suture
placed before insertion of the cannula. All remaining
vessels on the cut surface of the liver were then closed
with more sutures (Figure 1). Perfusion commenced
with 500 mL of wash buffer at a flow rate of 75 mL/
min in a non-recirculating fashion. This began the
warming of the liver to the optimal temperature for
enzymatic dissociation and ensured that any remain-
ing blood was washed out. After this, the liver was
perfused with 500 mL of 0.5 mmol/L ethylene glycol
tetra-acetic acid (EGTA, Sigma-Aldrich, Dorset,
United Kingdom) chelating buffer to remove divalent
cations, thus disrupting cell-cell and cell-extracellular
matrix adhesions. The liver was then perfused with
another 500 mL of wash buffer to remove any re-
maining EGTA, which would otherwise inhibit the
action of the enzymes that require the presence of
calcium and magnesium. Finally, the liver was
perfused with 300 mL of recirculating warmed buffer
containing 0.5% wt/vol collagenase A (Roche, Hert-
ford, United Kingdom), 0.25% wt/vol protease type
XIV, 0.125% wt/vol hyaluronidase and 0.05% wt/vol
deoxyribonuclease (all from Sigma-Aldrich) until
adequate digestion was achieved. During this time,
the appearance and texture of the liver was monitored
closely. During enzymatic digestion, the liver tissue is
seen to become paler in color and softer in texture as
the parenchymal cells are dissociated. Perfusion was
stopped once a digit could be inserted into the liver
with minimal force. Once perfusion was complete, the
cannulas were removed and the liver was placed in
cold (4�C) DMEM supplemented with 10% vol/vol
heat-inactivated fetal calf serum (Invitrogen Life Sci-
ences) and 1% vol/vol penicillin/streptomycin/gluta-
mine solution (10,000 units/mL penicillin, 10 mg/mL
streptomycin and 200 mmol/L L-glutamine, Invi-
trogen Life Sciences) in a sterile glass dish. The liver
was manually dissociated and the resulting suspension
passed through a 250-mm sterile nylon mesh followed
by 63-mm sterile nylon mesh (John Staniar & Co,
Manchester, United Kingdom). The cell suspension
was then washed three times and the hepatocytes were
pelleted by means of low-speed centrifugation (50g for
5 minutes at 4�C) in supplemented DMEM. Cell
viability was determined by means of trypan blue dye
exclusion. If the viability was low but the total cell
yield was sufficiently high, a Percoll (GE Healthcare,
Buckinghamshire, United Kingdom) density gradient
centrifugation step was performed to improve the
yield of viable cells. Hepatocytes were then plated in
Williams E media (Sigma-Aldrich) supplemented
with 10% vol/vol fetal calf serum and 1% vol/vol
penicillin/streptomycin/glutamine solution. Cells were
seeded on type I rat-tail collagen-coated 24 well plates
(5 � 105 cells/well) or flasks and allowed to adhere for
3 hours. Seeding density was selected to ensure a
confluent monolayer. After this period, the media was
changed to a serum-free hepatocyte culture medium
that was based on the long-term medium developed
by Pichard et al. (32) and cells were maintained at
37�C in a humidified 5% CO2 incubator.

Another 30 consecutive liver specimens were
perfused in an identical manner with the exception of
two modifications. First, 5 mmol/L NAC (Sigma-
Aldrich) was added to the EGTA-containing buffer.
Second, standard collagenase was replaced by Lib-
erase (Roche). Specifically, the Liberase TM blend
was selected because this has been previously tested
for rodent and porcine hepatocyte isolation according
to information provided by the manufacturer. After
initial attempts with the use of the recommended con-
centration for porcine hepatocyte isolation (25 mg/mL),
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Table I. Liver tissue from a similar variety of diseases was used for
hepatocyte isolation in each of the study groups with no significant
difference in the range of diseases between each group.

Disease
Original
protocol

New
protocol

Biliary cirrhosis (primary biliary cirrhosis
or primary sclerosing cholangitis)

5 7

Alcoholic liver disease 6 8
Resected tissue 6 4
Normal 2 1
Donor tissue 8 5
Other 3 5

P ¼ 0.77.

Table II. Baseline factors.

Factor Original protocol New protocol P value

Age, y 57.5 (38.0e65.8) 56.5 (45.0e62.0) 0.997
Sex, malea 18 (60.0%) 17 (56.7%) 0.600
UKELD 56.5 (50.3e58.8) 54.5 (49.3e59.8) 0.494
MELD 18.0 (12.8e21.3) 14.5 (9.3e19.0) 0.254
Delay, h 4.0 (2.0e19.0) 2.0 (1.0e3.0) 0.007b

Weight of
wedge, g

83.5 (58.3e125.1) 88.7 (67.5e107.3) 0.502

Data displayed as median (quartiles) and P values from Mann-
Whitney tests unless stated otherwise. Analyses were also repeated
parametrically, where applicable, and returned comparable results.
aData displayed as n (%) and P values from Fisher’s exact tests.
bSignificant at P < 0.05.
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a concentration of 33.3 mg/mL (10 mg in 300 mL of
enzymatic buffer) was found to be optimal, and this
concentration was used for all isolations with the use
of the new protocol in this study. Liberase also con-
tains a neutral protease, thermolysin, and therefore
the neutral protease included in the original protocol
was not included in the new protocol. All other as-
pects of the isolation process were unchanged from
the original protocol.

All isolations were performed by a single operator
(DCB) to exclude the possibility of inter-operator
variability. Success was defined as maintenance of
cell adhesion and morphology in a confluent mono-
layer for 48 hours.
Albumin and urea synthesis assays

Albumin concentration was analyzed in tissue cul-
ture supernatants from normal, primary biliary cir-
rhosis (PBC)/primary sclerosing cholangitis (PSC)
and alcoholic liver disease (ALD) hepatocytes at
days 1, 3, 5 and 7, by means of a sandwich enzyme-
linked immunosorbent assay kit (Abnova, Taipei City,
Taiwan). Similarly, urea synthesis was confirmed by
means of a quantitative colorimetric urea determina-
tion method (QuantiChrom Urea Assay Kit, Bioassay
Systems, Hayward, CA, USA).
Statistical analysis

Continuous data were compared through the use of
Mann-Whitney tests. Fisher’s exact test was used for
categorical data. Albumin and urea synthesis were
compared by means of repeated-measures analysis of
variance (ANOVA). Both of these variables were
log10-transformed before analysis to improve their
respective distributions. Repeated-measures ANOVAs
were then used to compare albumin and urea syn-
thesis by hepatocytes isolated from different tissue
types with the new protocol. The day of the mea-
surement was used as the within-subjects factor and
tissue type as the between-subjects factor. Tukey’s
honest significant difference test was used to make
post hoc pairwise comparisons between the tissue
types, to identify where any significant differences
lay. Repeated-measures ANOVAs were then used to
compare the effect of the new and original protocols
on urea and albumin values. The day of the mea-
surement was entered as a within-subjects factor and
protocol as a between-subjects factor. Separate ana-
lyses were performed for each of the tissue types;
hence, the critical P value was Bonferroni-adjusted to
account for multiple comparisons. All analyses were
performed with the use of IBM SPSS 19 (IBM Corp,
Armonk, NY, USA), with a value of P < 0.05
considered to be indicative of statistical significance.
Results

Liver tissue and baseline factors

The underlying disease of the tissue used for cell
isolation is shown in Table I and included PBC or
PSC and ALD. Non-diseased tissue was obtained
from the uninvolved (ie, tumor-free) tissue removed
during resection of colorectal metastases (resected
tissue) or was obtained from surplus donor tissue.
The latter was rejected for transplant because of
prolonged ischemic times and/or extensive steatosis.
A few specimens, referred to here as normal, were
obtained from unused portions of split livers or
reduced livers used for pediatric transplant.

A number of baseline factors related to the liver
tissue used for isolation in the two groups are shown
in Table II. These include patient age and sex,
Model for End-Stage Liver Disease (MELD) and
United Kingdom End-Stage Liver Disease (UKELD)
scores, delay from the time of liver explant/resection
(or, for donor/normal tissue, from the time that the
liver arrived at Queen Elizabeth Hospital, Birming-
ham) until commencement of perfusion and the
weight of the wedge used for isolation. There was no
significant difference in either the original diseases or
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Table III. Effect of isolation protocol on perfusion time and
Percoll use.

Factor
Original
protocol

New
protocol

P
valuea

Perfusion time,
min

3.0 (2.5e6.1) 4.5 (4.0e6.0) 0.028b

Percoll useda 13 (43.3%) 11 (36.7%) 0.792
Cell yield before
Percoll, �106

275 (77.5e474.8) 256 (115.0e317.5) 0.728

Viability before
Percoll

18% (11.3e32.5%) 19% (13.0e26.0%) 0.839

Data for perfusion time displayed as median (quartiles) and P
values from Mann-Whitney tests unless stated otherwise. Ana-
lyses were also repeated parametrically and returned comparable
results.
aData displayed as n (%) and P values from Fisher’s exact tests.
bSignificant at P < 0.05.
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any of the variables between the two groups, with the
exception of time delay, which was significantly longer
in the original protocol group (median, 4 hours versus
2 hours; P ¼ 0.007).
Effect of protocol modification on perfusion time and
Percoll use

Although the isolation procedure remained un-
changed other than the modifications being studied,
the duration of perfusion (enzymatic digestion) and
use of Percoll density gradient centrifugation varied,
depending on the nature of the particular liver
specimen and the initial cell yield and viability as
described above. We therefore investigated the effect
of the new protocol on these factors, and the results
are summarized in Table III. The new protocol
necessitated a slightly longer perfusion time than the
original protocol (median, 4.5 versus 3.0 minutes;
P ¼ 0.028). However, there was no difference in the
frequency with which the Percoll step was required
(P ¼ 0.792). Furthermore, when Percoll was used,
the initial cell yield before Percoll was similar with
Table IV. Effect of protocol modification on initial (before Percoll) and

Factor Original protocol

Initial yield/g tissue, �106 105.1 (28.2e400.8)
Initial viability 10.0% (0.0e31.3%)
Final cell yield, �106 29.0 (12.4e104)
Final yield cells/g tissue, �104 27.5 (18.9e134.1)
Final viability 48.0% (0.0e80.0%)
Final viable cell yield/g tissue, �104 7.3 (0.0e20.5)
Success 12 (40.0%)

Data displayed as median (quartiles) for continuous variables and n (%
aP value from Mann-Whitney or Fisher’s exact test for continuous and
bP value from a general linear model or binary logistic regression, for con
effect of the time delay.
cSignificant at P < 0.05.
the new protocol compared to the original protocol
(median, 256 � 106 versus 275 � 106; P ¼ 0.728), as
was viability (median, 19% versus 18%; P ¼ 0.839).
Effect of protocol modification on outcome of hepatocyte
isolation

The next stage was to compare a number of key
outcomes between the two protocols. For continuous
variables, comparisons between the groups were
performed with the use of Mann-Whitney tests, with
Fisher’s exact test used for binary outcomes. In
addition to this, the analyses were repeated with the
use of general linear models or binary logistic
regression, as appropriate, to adjust the P values to
account for the fact that the delay differed signifi-
cantly between protocols. These results are summa-
rized in Table IV. Initial viability and cell yield
(before Percoll) and final viability and cell yield (after
Percoll, when it was used) are reported.

No effect was found on the absolute initial or final
cell yield. However, the new protocol resulted in
significant increases in both initial (P ¼ 0.007) and
final (P ¼ 0.043) viability, with the median values
rising from 10% to 25% and 48% to 70%, respec-
tively. In addition to this, the final viable cell yield/g
tissue showed a significant increase (P ¼ 0.003), with
the median rising from 7.3 � 104 in the original
protocol to 28.3 � 104 in the new protocol. Success
rates also increased significantly (P ¼ 0.037), from
12 of 30 (40.0%) under the original protocol to 21 of
30 (70.0%) with the new protocol. After adjustment
to account for the difference in the average delay
between the protocols, the effect of the protocol on
final viability ceased to be significant (P ¼ 0.063).
However, all other variables found to be significant in
univariate analysis remained so after adjustment for
the delay.

The effect of protocol modification on hepatocyte
isolation from liver tissue of different disease types is
final (after Percoll) cell yield and viability and overall success.

New protocol
Unadjusted
P valuea

Adjusted
P valueb

125.0 (41.5e277.6) 0.775 0.872
25.0% (14.5e56.3%) 0.007c 0.015c

42.5 (15.9e119.4) 0.478 0.236
48.5 (16.2e114.4) 0.654 0.289

70.0% (23.2e83.1%) 0.043c 0.063
28.3 (8.2e70.2) 0.003c 0.001c

21 (70.0%) 0.037c 0.014c

) for binary outcomes.
binary outcomes, respectively.
tinuous and binary outcomes, respectively, after adjustment for the
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Table V. Effect of isolation protocol on final viable cell yield and success rate of hepatocyte isolations from different types of liver tissue.

Disease type

Final viable cell yield/g tissue, �104 Success

Old protocol New protocol Old protocol New protocol

ALD 0.26 (0.00e0.90) 9.83 (3.51e31.61) 0% 63%
Biliary cirrhosis 10.59 (5.48e20.34) 29.12 (17.23e85.78) 60% 71%
Resected 9.48 (0.00e20.39) 61.88 (52.26e97.54) 33% 100%
Normal/donor 11.52 (4.88e24.76) 16.57 (9.31e38.55) 60% 83%

Data displayed as median (quartiles) for continuous variables.
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summarized in Table V. There was an improvement
in outcome for all liver tissue types, but the greatest
benefit was seen with ALD and resected liver tissue.
For ALD liver, the median final viable cell yield
increased to 9.83 � 104 with the new protocol, from
0.26 � 104 with the old protocol (P ¼ 0.04). The
success rate also significantly improved to 63% with
the use of the new protocol, whereas no isolations
from ALD tissue performed with the use of the old
protocol resulted in maintenance of a confluent
monolayer in culture for 48 hours (P ¼ 0.03). For
resected tissue, the median final viable cell yield
increased to 61.88 � 104 with the new protocol, from
9.48 � 104 with the old protocol (P ¼ 0.02). The
success rate increased from 33% to 100%, although
this did not reach statistical significance.
Figure 2. Morphology of human hepatocytes isolated from liver
tissue. Primary human hepatocytes isolated from normal donor
liver tissue with the use of the new protocol showing typical
morphological changes: (A) 1 hour after plating, the cells are
rounded and phase bright; (B) after 48 hours, a confluent mono-
layer has formed. The hepatocytes have flattened out and show
refractive borders. The typical polygonal appearance is seen; many
cells have two nuclei.
Morphology and phenotype of isolated hepatocytes

Human hepatocytes isolated with the use of the new
protocol had an appearance similar to that previously
reported by us and others (20,33). Figure 2 shows
the morphology of hepatocytes isolated from normal
liver tissue at different time points after isolation. On
initial plating, cells appeared rounded and bright, but
during the next 24 hours, cells gradually flattened
out, forming a confluent monolayer and demon-
strating a typical polygonal appearance, with many
cells being binucleate. This morphology was main-
tained in culture for at least 1 week.

Albumin synthesis by hepatocytes isolated from
normal, PBC/PSC or ALD liver tissue with the use of
the modified protocol was maintained for at least 1
week in culture (Figure 3). Underlying liver disease
was found to have a significant effect on albumin
synthesis (P < 0.001, Table VI), with synthesis by
hepatocytes from normal liver significantly higher
than both ALD and PBC/PSC (both P < 0.001).
There was no significant difference between the al-
bumin measurements of ALD and PBC/PSC hepa-
tocytes (P ¼ 0.187).

We next compared albumin synthesis by hepa-
tocytes isolated by means of the new and original
protocols. There was no significant difference in al-
bumin values for ALD tissue (P ¼ 0.053). However,
for the other two tissue types, significant changes
were detected. For hepatocytes isolated from normal
tissue, the geometric mean albumin measurements
increased from 220 under the old protocol to 379
with the new protocol (P < 0.001). For PBC/PSC,
on the other hand, the new protocol caused a sig-
nificant reduction in albumin, from 226 under the
old protocol to 207 under the new one (P ¼ 0.012).

Urea synthesis by hepatocytes isolated from
normal, PBC/PSC or ALD liver tissue with the use of
the modified protocol was maintained for at least 1
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Figure 3. Albumin synthesis by primary human hepatocytes iso-
lated from normal and diseased liver. Solid lines represent new
protocol; broken lines represent original protocol.
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week in culture (Figure 4). Tissue type was found to
have a significant effect on urea measurements (P ¼
0.002, Table VI). The average ALD urea measure-
ments were significantly lower than both normal
(P ¼ 0.006) and PBC/PSC (P ¼ 0.002). There was
no significant difference between the urea measure-
ments from hepatocytes isolated from normal and
PBC/PSC tissue (P ¼ 0.778).

We next compared urea synthesis by hepatocytes
isolated by means of the new and original protocols
(Table VII). The results showed no significant dif-
ference in urea values between the two protocols for
ALD tissue types (P ¼ 0.159). However, significant
increases were brought about by the new protocol for
both normal and PBC/PSC tissue (P ¼ 0.001 and
0.002, respectively).
Discussion

At a time when the discrepancy between the need
for organ transplant and the supply of donor organs
is growing (34), the potential for treatments such
as hepatocyte transplantation to delay or avoid the
need for orthotopic liver transplantation cannot be
ignored. Therefore, the demand for high-quality
human hepatocytes for cell transplantation as well
Table VI. Albumin and urea concentration in tissue culture supernatant
the new protocol.

Tissue type Geometric mean (95% confidence in

Albumin ALD 176 (159e195)
Normal 368 (326e415)
PBC/PSC 199 (180e221)

Urea ALD 5.6 (4.3e7.2)
Normal 10.7 (8.3e13.8)
PBC/PSC 12.0 (9.3e15.4)

aSignificant at P < 0.05.
as pharmacological and toxicological studies con-
tinues to rise, yet the availability of liver tissue for
research remains limited. Our previous study of
hepatocyte isolation from more than 100 liver
specimens, of which 54% were from cirrhotic, end-
stage liver diseases, showed for the first time that
viable functioning hepatocytes may be routinely
isolated from diseased liver (20). In that series, our
overall success rate was 51%, with a median viability
of 40%. While we successfully isolated cells from all
types of liver disease, we showed that ALD livers
produced the poorest results and that cells isolated
from ALD livers had inferior metabolic function in
terms of albumin and urea synthesis. Furthermore,
we showed that time delay between hepatectomy/
explant and the commencement of perfusion influ-
enced the likelihood of success.

Although the results from our previous series
were encouraging, the viability achieved fell short of
that achieved by groups that used more favorable
tissue, and, in nearly half the cases, the outcome was
not successful. We therefore set about improving the
viability and cell yield, focusing on the use of Lib-
erase and NAC because other studies in the literature
suggested that they may be of benefit. Donini et al.
(25) investigated the outcome of hepatocyte isolation
from 14 porcine livers randomly assigned to standard
collagenase or Liberase. Mean cell viability in that
study was extremely high even without the use of
Liberase (90%), most probably because livers were
retrieved from normal healthy pigs and perfused
in situ with a cold preservation solution before im-
mediate progression to hepatocyte isolation. Liberase
significantly increased mean viability to 95%,
although there was no effect on cell yield. Sagias et al.
(31) isolated hepatocytes from 10 severely steatotic
(>60%) livers, with two specimens from each liver
randomly assigned to standard collagenase digestion
or the same digestion technique with the addition of
NAC. Use of NAC significantly increased mean
viability from 66% to 81% as well as the mean viable
cell yield from 1.10 � 106 cells/g tissue to 2.59 � 106

cells/g tissue.
s of hepatocytes isolated different types of liver isolated with use of

terval)

Tukey’s honest significant difference test, P value vs

ALD Normal PBC/PSC

e <0.001a 0.187
<0.001a e <0.001a

0.187 <0.001a e

e 0.006a 0.002a

0.006a e 0.778
0.002a 0.778 e
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Figure 4. Urea synthesis by primary human hepatocytes isolated
from normal and diseased liver. Solid lines represent new protocol;
broken lines represent original protocol.
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We decided to combine the use of both Liberase
and NAC at the same time in an attempt to optimize
the impact on hepatocyte isolation. Because liver
tissue is in high demand within our laboratory for the
isolation of various non-parenchymal cells, we were
unable to randomize tissue from the same liver to
each of the two protocols. However, our approach
has enabled us to produce the largest series to date
investigating the use of Liberase and NAC and, to
the best of our knowledge, the only series to use both
in combination. Furthermore, we know of no other
study describing the use of these reagents to isolate
human hepatocytes from a wide range of diseased
and cirrhotic livers. Our data confirm that the use of
Liberase and NAC in combination significantly im-
proves the outcome of human hepatocyte isolation
from normal and diseased liver in terms of both
viable cell yield and overall success rate.

The time delay until the start of the isolation
procedure was significantly shorter in the new pro-
tocol group, and this is likely to reflect improvements
that have been made to the arrangements for col-
lecting liver specimens from the hospital and their
Table VII. Comparison of albumin and urea concentration in
tissue culture supernatants of hepatocytes isolated with use of the
new and original protocols.

Tissue
type

Geometric mean
(95% confidence interval)

P value
Original
protocol

New
protocol

Albumin ALD 161 (150e173) 178 (166e191) 0.053
Normal 220 (208e233) 379 (355e404) <0.001a

PBC/PSC 226 (216e235) 207 (198e216) 0.012a

Urea ALD 5.0 (4.1e6.1) 6.0 (5.0e7.3) 0.159
Normal 5.7 (4.7e6.7) 10.3 (8.8e12.1) 0.001a

PBC/PSC 6.5 (5.2e8.2) 13.6 (10.8e17.2) 0.002a

aSignificant after Bonferroni correction for three comparisons
(P < 0.0167).
subsequent processing. These improvements oc-
curred during the period when we performed the first
few isolations included in the study; the median
delay to processing for the second half of the old
protocol group (specimens 16e30) was 2 hours, the
same as for the new protocol group. Despite this,
there was no trend to improved outcomes during the
first 30 patients (old protocol), suggesting that an
improvement in time delay alone was not respon-
sible for the improved outcome with the new pro-
tocol. This is further demonstrated by the fact that
even after adjusting for the difference in time delay
between the two groups, the outcomes were still
significantly improved.

The enzyme perfusion time required for digestion
with the new protocol was slightly longer than with the
old protocol. Perfusion time is not pre-determined;
rather, perfusion continues until adequate tissue dig-
estion is achieved. As such, it is a function of both
the nature of the liver tissue being digested and the
specific enzyme cocktail being used. Although there
was no significant difference in the range of liver
disease types used between the two groups overall,
there was possibly more cirrhotic liver in the new
protocol group (slightly more biliary cirrhosis and
ALD liver). We also suspect that Liberase has a
gentler action than did standard crude collagenase
preparations and may require a longer time to act.
Indeed, other authors have reported longer digestion
times for other tissues such as pancreas (35) and
ovary (36) when using Liberase compared with
standard collagenase.

The decision to use Percoll is somewhat sub-
jective and in our experience always results in a loss
of cells above what would be expected, given the
initial cell viability and yield. Therefore, we only use
this step when there are a large number of cells with
very low viability. The fact that Percoll use was
similar between the two groups suggests that we
were consistent in the application of criteria for its
use and that differential use of Percoll does not
account for the improvement seen with the new
protocol.

The fact that we have shown an improvement in
overall success rate, which we defined as the main-
tenance of cell adhesion and morphology for 48
hours, as well as viable cell yield is important. Many
experimental protocols require cells to be plated
down and maintained in culture for a period of time;
therefore an increased yield of viable cells that fail to
attach in culture would be of limited benefit.
Furthermore, hepatocytes are known to undergo
anoikis or detachment-related cell death (37,38);
therefore, failure to attach will quickly render isolated
hepatocytes useless. Even if used immediately for cell
transplantation, it seems likely that such cells would
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be less able to survive and engraft (39). It has been
shown that establishment of a confluent monolayer is
critical for maintenance of the differentiated hepa-
tocyte phenotype (40); therefore we used the pres-
ence or absence of a confluent monolayer, rather
than attempting to quantify adhesion, to determine
success. A 48-h culture period was a pragmatic
choice that would be likely to provide sufficient time
for downstream experiments or use of the hepato-
cytes for transplantation without the loss of pheno-
type associated with prolonged culture.

It is interesting that the new protocol did not
result in an increase in total cell yield. The previous
studies of NAC or Liberase in hepatocyte isolation
also reported no increase in absolute cell yield (25)
or only reported an increase in viable cell yield (31).
It is therefore likely that the beneficial effects of both
these agents are exerted mainly through an im-
provement in viability; indeed, it is difficult to see
how the antioxidant and hepatoprotective actions of
NAC might improve absolute cell yield. Obtaining a
high cell yield depends on sufficient tissue digestion,
and we continue enzyme perfusion until the liver can
be easily manually dissociated rather than setting a
fixed perfusion time for all types of liver. We believe
that this approach already maximizes the absolute
cell yield obtained but that the continued exposure
of the hepatocytes to enzymes during this time is
detrimental. Therefore, it is likely that an improved
enzyme preparation that is less damaging to indi-
vidual cells will improve final viability and viable cell
yield but not the overall number of cells obtained.

In this study, we confirmed our previous findings
that hepatocytes isolated from ALD liver generally
have poorer metabolic function compared with those
isolated from normal or PBC/PSC liver. The meta-
bolic function of hepatocytes isolated with the use of
the new protocol was similar to that of hepatocytes
isolated with the use of the original protocol for ALD
hepatocytes and generally improved for normal and
PBC/PSC hepatocytes. Although PBC/PSC hepato-
cytes showed a lower average albumin synthesis, this
result is perhaps explained by the higher albumin
values for PBC/PSC hepatocytes isolated by means
of the original protocol during the first 48 hours of
culture; by day 7, the values for both groups were
similar. There are many other aspects of hepatocyte
function that we have not investigated, and we have
not attempted to show maintenance of the complete
hepatocyte phenotype in culture. However, these
results are encouraging because they suggest that the
improved overall success rate and viable cell yield do
not occur at the expense of metabolic function. It is
also of note that the greatest improvement in meta-
bolic function was seen in hepatocytes isolated from
normal liver tissue; these cells are most likely to be
used for clinical purposes and are preferred for lab-
oratory investigation.

In conclusion, we report that the combined use of
NAC and Liberase for the isolation of human hepa-
tocytes from normal and diseased liver results in a
higher success rate and viable cell yield. Further-
more, metabolic function is maintained for up to 1
week in culture and is improved compared with he-
patocytes isolated without NAC and Liberase. The
routine use of NAC and Liberase should greatly in-
crease the availability of primary human hepatocytes
both for research and clinical applications.
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