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Review
Pain and fear are both aversive experiences that strongly
impact on behaviour and well being. They are considered
protective when they lead to meaningful, adaptive behav-
iour such as the avoidance of situations that are poten-
tially dangerous to the integrity of tissue (pain) or the
individual (fear). Pain and fear may, however, become
maladaptive if expressed under inappropriate conditions
or at excessive intensities for extended durations. Cur-
rently emerging concepts of maladaptive pain and fear
suggest that basic neuronal mechanisms of memory for-
mation are relevant for the development of pathological
forms of pain and fear. Thus, the processes of erasing
memory traces of pain and fear may constitute promising
targets for future therapies.

Memory traces of pain and fear
Memory traces of pain and fear are encoded by distinct
but partially overlapping sets of synapses. For example,
painful stimuli are highly effective for inducing fear
learning [1]. Indeed, electric foot shock is the most com-
monly used outcome for fear-memory studies and it
remains untested whether the mechanisms and princi-
ples outlined below apply equally to fear memories that
do not involve activation of nociceptive pathways. How-
ever, acute and chronic pain are often associated with
fear or anxiety [2–5]. Brain areas associated with fear,
such as the amygdala and the cingulate and medial
prefrontal cortices [6–8], are also relevant for the emo-
tional/aversive and cognitive aspects of pain [9–12]. Here,
we focus on forms of chronic pain and fear that involve the
staged formation of enduring synaptic plasticity (Box 1).
We discuss recent findings suggesting that some memory
traces of pain and fear can be erased, which may provide
novel options for future treatments.

Memory traces of pain
Numerous clinically relevant conditions may change the
properties and functions of the nociceptive system in ways
that lead to: (i) the amplification of pain and the lowering of
pain thresholds (hyperalgesia); (ii) spontaneous pain; (iii)
spreading pain; and/or (iv) pain elicited by touch fibres
(mechanical allodynia) (see Box 2 for definitions). Common
causes include acute painful events (e.g., surgery, trauma,
0166-2236/$ – see front matter
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inflammation), drugs (e.g., opioids, chemotherapeutics), and
diseases such as neuropathies, type I and type II diabetes,
fibromyalgia, and sickness syndrome. The duration of path-
ological pain may exceed the duration of its primary cause by
days to years and may involve synaptic plasticity at various
sites in the nociceptive network (Box 3).

At present, only a few studies have specifically
addressed the question of whether memory traces of pain
can be erased under clinical conditions, but some treat-
ments do appear to have lasting effects. Some forms of
counter stimulation – such as transcutaneous electrical
nerve stimulation, (electro-)acupuncture, and some forms
of physical therapy – are reported to have analgesic effects
that outlast the period of treatment in selected patients
[13,14], but counterexamples exist, as described in [15,16].

Induction, consolidation, and maintenance phases of

lasting pain

Induction phase. Strong and/or lasting noxious stimuli
trigger various neuroplastic changes in the central nervous
system (CNS) including activity-dependent long-term po-
tentiation (LTP) at the first synaptic relays in nociceptive
pathways [17]. Paradoxically, similar ‘memory traces of
pain’ can evolve in the absence of any noxious stimuli. For
example, hyperalgesia and synaptic facilitation may de-
velop during continuous application of opioids or on their
abrupt withdrawal (opioid-induced hyperalgesia) [18–20]
without the need for any concomitant stimulation of noci-
ceptive nerve fibres.

Consolidation phase. The development of chronic pain is
an active process that requires time and which can be
interrupted. The consolidation phase may last for hours
to weeks. Some elements that are required for the consoli-
dation of LTP in nociceptive pathways are shown in
Figure 1A. Therapeutic interference within the consolida-
tion process may fully prevent the development of lasting
(e.g., neuropathic) pain. For example, when neuropathic
pain is induced in rats by placing a cuff around the sciatic
nerve, mechanical hyperalgesia develops within 24 h. Re-
moval of the cuff 24 h but not 4 days after implantation
allows full recovery of mechanical thresholds within 18
days [21]. Likewise, a single intrathecal injection of GABA
apparently reverses neuropathic pain permanently when
given 1 week after a chronic constriction injury of the
sciatic nerve in rats, but not when given more than 2–3
weeks after the injury [22].
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Box 1. Staged formation of memory traces

Memory is the retention of information that modifies future

behavioural and/or neuronal responses. A fundamental feature of

information processing in the CNS is the capacity to store

information by long-term changes of synaptic strength, and

synaptic LTP is a much-studied cellular model of learning and

memory formation [17,36,53,96–98]. The formation of memory is a

staged process that involves the acquisition (or induction) phase,

the consolidation phase, and the maintenance phase. The initial

experience that is to be encoded induces an acquisition process that

by itself is insufficient to form a long-lasting trace. Rather, the

memory must be consolidated following acquisition to stabilise it

into a long-term form. Many cellular mechanisms have been shown

to be involved in this process, including the necessity for protein

synthesis [99]. The vulnerability of new memories to protein

synthesis inhibition lasts for only a short period following acquisi-

tion [100]. However, the long-term persistence of the memory

continues to depend on cellular mechanisms of memory main-

tenance [36]. Much progress has been made in elucidating the

distinct mechanisms and signalling pathways that contribute to LTP

induction, consolidation, and maintenance; readers are referred to

several excellent reviews [17,36,53,96–98]. Considerably less is

known about the equally important reversal of synaptic plasticity,

such as the depotentiation of LTP. Without continuous and targetted

depotentiation, LTP would eventually lead to a state where

essentially all synapses in the CNS would be at a saturated level

of potentiation, thereby losing all capacity to store novel informa-

tion. LTP and depotentiation are thus inseparable mechanisms that

regulate the formation and storage of memory and the erasure of

older or less relevant memory traces. Several pathological condi-

tions may involve a disturbance in the physiological balance

between the formation and erasure of memory traces, including

dementia, schizophrenia, stress and anxiety disorders, and chronic

pain.
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Maintenance phase. Most if not all types of lasting pain
are associated with distinct forms of functional and mor-
phological remodelling of the nociceptive nervous system.
As with all forms of neuronal plasticity, remodelling of the
nociceptive system needs to be actively maintained. Spe-
cific interference with the mechanisms of maintenance
should permanently or temporarily improve or eliminate
chronic pain without affecting the properties and functions
of acute pain.

Memory traces of fear
Excessive fear is a characteristic of anxiety disorders.
Moreover, it can be argued that there is a link between
a specific aversive experience and the resultant anxiety for
several disorders. This resembles the chronic pain that can
develop after an episode of acute pain. For example, post-
traumatic stress disorder (PTSD) emerges following a
traumatic episode and specific phobias may be driven, at
least in part, by prior aversive learning, both individual
and socially mediated. Even compulsive behaviours in
obsessive compulsive disorder (OCD) [23] and food avoid-
ance behaviour in anorexia nervosa may arise from abnor-
malities in fear learning and memory [24]. Therefore,
erasing fear memories, or damping down their expression,
is thought to be of clinical benefit in these conditions.

Acquisition, consolidation, and long-term persistence of

fear memories

In the context of clinically relevant fear and anxiety, the
underlying memory is Pavlovian in nature, associating
344
previously neutral stimuli with an aversive outcome such
as trauma. Subsequent exposure to those now-conditioned
stimuli comes to evoke retrieval of the memory, which
results in the state of fear and anxiety. As for pain, there
are several distinct phases of processing of fear memories
(Figure 2A).

The acquisition of fear memories occurs at the time of
the aversive experience, probably engaging associative
LTP-like processes that connect the previously neutral
stimulus with the aversive outcome. Consolidation of this
new memory at the cellular level into a long-lasting form
takes place over a relatively short timescale (minutes to
hours), a restricted time window in which to affect fear
memory processing and stabilisation. Although there are
undoubtedly more long-lasting memory-processing mech-
anisms, such as systems-level consolidation as originally
hypothesised for hippocampus-related context memories,
it is only recently that the time-dependent recruitment of
secondary sensory cortices in the very long-term storage of
Pavlovian-cued fear memories has been identified [25].
Therefore, this review focuses on those mnemonic process-
es that are of established relevance to amygdala-depen-
dent fear memories (Box 3).

Once a memory is established, has been consolidated,
and has entered the maintenance phase, its expression
remains subject to modulation. For Pavlovian fear memo-
ries, subsequent learning that the conditioned stimuli are
no longer associated with the aversive outcome (i.e., ex-
tinction training or exposure therapy) diminishes memory
expression. However, the reduction in fear is not necessar-
ily permanent and the fear can be expressed again rela-
tively easily [26]. A second way in which long-term
memories are modulated involves the process of memory
reconsolidation. Memory retrieval can destabilise the
memory, requiring that it be re-established through recon-
solidation to persist into the future [27]. What this recon-
solidation process appears to allow is an updating of the
memory with new information presented at the time of the
destabilising retrieval [28].

As for pain, any disruption of the consolidation or
maintenance of fear memories, or modulation of their
extinction or reconsolidation for therapeutic benefit, must
be done selectively. It would not be beneficial to impair the
subsequent capacity to form adaptive fear memories or to
cause widespread memory loss that would impair other
normal behaviours.

Erasing memory traces of pain and fear
Erasure of pain memory traces

Opioid-induced depotentiation (OID). Conditioning low-
frequency stimulation (LFS) of primary afferents at C-fibre
intensity induces LTP at C-fibre synapses and modifies the
phosphorylation state of AMPA receptors as described in
Box 3. Thus, the specific reversal of these postsynaptic
memory traces of pain may comprise normalising the
phosphorylation state of AMPA receptors in the spinal
dorsal horn and, indeed, it has been recently discovered
that this can be achieved [29]. When applied briefly (1 h) at
a very high dose, the ultrashort-acting m-opioid receptor
agonist remifentanil normalises the phosphorylation state
of AMPA receptors after LFS, dephosphorylating GluR1 at



Box 2. Some useful definitions

Principal pain neurons are neurons that lead to the sensation of pain

when activated. In the peripheral nervous system nociceptive Ad-

and C-fibres appear to function as principle pain neurons. In the

CNS, principle pain neurons remain to be identified with certainty,

but neurons in spinal cord lamina I that express the neurokinin 1

receptor and project to the brain are good candidates for pain under

pathological conditions [46,101].

The neuronal mechanisms contributing to lasting pain are often

collectively called memory traces of pain. This must not be confused

with the explicit memory of a previous pain experience; that is, the

recollection of its location, nature, intensity, or duration as surveyed

during the taking of a medical history. Similarly, there is a

distinction between unconscious Pavlovian fear memories that

underlie both adaptive and maladaptive behaviours and the

conscious declarative recollection of the aversive or traumatic

episode. For both pain and fear, it is the unconscious memory that

is the target of therapeutic intervention.

Analgesia is an umbrella term for all forms of pain relief.

Antihyperalgesia refers to forms of analgesia that are effective in

the presence of hyperalgesia, but either not effective or less effective

for physiological pain. Antihyperalgesia requires interference with

(neuro-)plastic changes underlying the generation or amplification

of pain. The erasure of a memory trace of pain implies that at least

one of the neuronal causes of lasting pain is eliminated. This does

not necessarily reverse pain permanently, because new memory

traces of pain may be formed due to an ongoing disease such as a

neuropathy or chronic inflammation.

Erasure of a memory trace of fear would result from a long-lasting

disruption or reversal of the neuronal mechanisms supporting the

fear memory. Although the amygdala is the most obvious target for

fear memory disruption, synaptic plasticity in several other neural

loci also play important roles in fear memories [63].
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Ser831 and phosphorylating GluR2 at Ser880 [29]. Impor-
tantly, when remifentanil is given at the same dose, it not
only reverses LFS-induced LTP, capsaicin-induced me-
chanical hyperalgesia is also partially reversed in behav-
ing animals after washout of the drug [29].

The consolidation phase of LTP begins as early as 3 h
after induction and involves de novo synthesis of synaptic
proteins. When given 4 h after conditioning LFS (i.e.,
within the consolidation phase of LTP) a single high opioid
dose partially reverses LTP. The mechanisms involved in
OID during the induction phase of LTP differ from OID in
the consolidation phase because the former but not the
latter is blocked by calyculin A, an inhibitor of PP1 [29].
Unsurprisingly, pretreatment with the de novo protein
synthesis inhibitor cycloheximide or anisomycin reduces
late-phase LTP (>3 h) without affecting early-phase
LTP at spinal C-fibre synapses after conditioning stimu-
lation [30]. Signalling pathways that are required for
the active reversal of LTP in nociceptive pathways are
shown in Figure 1B. Interestingly, both inhibition of pro-
tein synthesis and the classical m-opioid receptor agonist
morphine interfere with the development of PTSD
(see below).

Counterstimulation. LTP at synapses of sciatic nerve C-
fibres can also be depotentiated by conditioning sciatic nerve
stimulation at Ad-fibre intensity. At this stimulation inten-
sity, few or none of the high-threshold C-fibres are recruited,
suggesting that depotentiation is likely to involve a hetero-
synaptic mechanism. The effective Ad-fibre stimulation
protocol resembles some forms of counter-irritation, such
as high-intensity transcutaneous electrical nerve stimula-
tion or electroacupuncture [14].

D-cycloserine (DCS). The partial NMDA receptor agonist
DCS is used to facilitate inhibition of fear memories (see
below) and reduces neuropathic pain-related behaviour
when injected directly into limbic areas (medial prefrontal
cortex or amygdala) of rats. The effect outlasted the treat-
ment for weeks [31]. Interestingly, in a patient with re-
fractory orofacial pain, transcranial direct-current
stimulation over the hand motor area led to a 60% reduc-
tion of pain for at least 6 weeks when therapeutic stimula-
tion was combined with DCS [32]. Finally, DCS also
reduces pain-related behaviour in the second phase of
the formalin test, which is believed to involve LTP at C-
fibre synapses [33].

Protein kinase M zeta (PKM z). PKM z is a persistently
active isoform of atypical protein kinase C that potentiates
postsynaptic AMPA receptor-mediated currents by en-
hancing the number of GluR2-containing, active AMPA
receptor channels [34]. PKM z is sufficient and required to
maintain LTP at some synapses in the CNS. Correspond-
ingly, PKM z is also necessary for maintaining distinct
types of declarative and procedural memory, including fear
memory [35–38]. The role of PKM z in memory traces of
pain depends on the nature of the pain and the location of
the synapses involved. Blocking PKM z by the inhibitor
zeta-pseudosubstrate inhibitory peptide (ZIP) in the spinal
cord prevents formalin-induced nociceptive behaviour and
reduces mechanical and thermal hyperalgesia after intra-
plantar administration of Complete Freund’s Adjuvant
[39] or capsaicin [40]. Spinal application of ZIP also blocks
interleukin (IL)-6-induced priming of mechanical hyper-
algesia by intraplantar prostaglandin E2 injections [41],
but does not appear to affect neuropathic pain [42,43]. By
contrast, PKM z inhibition in the anterior cingulate cortex
of mice reverses mechanical hyperalgesia after ligation of
the common peroneal nerve [42] and, importantly, also
reverses averseness to pain after spinal nerve ligation, as
assessed by a conditional place-preference test in rats [43].
Interestingly, blockade of spinal PKM z had no effect on
spinal nerve ligation-induced aversiveness. Likewise, spi-
nal nerve ligation did not induce PKM z-dependent forms
of LTP at Ad- or C-fibre synapses in the spinal dorsal horn
[42]. Taken together, the studies published to date suggest
that spinal PKM z is essential for maintaining nociceptor
pain, whereas PKM z in the anterior cingulate cortex is
required for the expression of evoked and spontaneous
neuropathic pain.

Glial cells. Growing evidence demonstrates that glial cells
are activated in various animal models of chronic pain
[44,45]. Activated glial cells then release numerous proin-
flammatory gliotransmitters that contribute to the ampli-
fication of nociception, both by enhancing excitation and
by reducing normal inhibition. On activation, the glia
switch phenotype from housekeeping cells to pronocicep-
tive helper cells [46], a switch that constitutes another
memory trace of pain and can apparently be reversed or
345



Box 3. LTP in neuronal networks for pain and fear

Pain perception and fear involve complex, partially overlapping

neuronal networks that can in principle be modulated at all

synaptic relay stations involved. Long-term plasticity has been

characterised most extensively at C-fibre synapses in the super-

ficial spinal dorsal horn [17], at cortical synapses including the

anterior cingulate cortex [102], and in the amygdala [68]. LTP at

some of these relays can thus affect and mutually interfere with

both pain and fear. LTP at multiple sites in serially connected

pathways (e.g., in spinal cord and in the anterior cingulate cortex)

can function as a ‘cascade amplifier’ boosting signal amplification

at each relay station.

LTP in nociceptive pathways

Glutamate is the neurotransmitter at the first synaptic relay in

nociceptive pathways between C-fibre afferents and neurons in the

superficial spinal dorsal horn. Excitation of postsynaptic neurons is

largely due to activation of ionotropic AMPA glutamate receptors,

but NMDA and kainate receptors also play a role. Synaptic LTP at

glutamatergic synapses of C-fibre afferents is an intensively studied

neuronal mechanism leading to long-lasting enhanced excitability

in nociceptive pathways [17]. LTP can be induced by noxious

stimulation, acute nerve injury, electrical nerve stimulation at C-fibre

intensity [103–106], abrupt withdrawal from opioids [20], and spinal

application of various substances [107–109]. Induction of LTP

requires postsynaptic Ca2+-dependent signalling pathways, includ-

ing the activation of protein kinases A and C, Ca2+/calmodulin-

dependent protein kinase II (CaMKII), and protein phosphatase 1

(PP1) [110].

AMPA receptors can be phosphorylated by these kinases

at various sites and can be dephosphorylated by PP1. Protein

kinase C- and CaMKII-dependent phosphorylation of the GluR1

subunit at Ser831 enhances single-channel conductance and its

time course closely parallels post-injury pain amplification [111].

By contrast, dephosphorylation of the GluR2 subunit at Ser880 by

PP1 leads to reduced endocytosis of AMPA receptors, enhanced

receptor density in the postsynaptic membrane, and, conse-

quently, the amplification of glutamatergic currents. A likely

memory trace of pain thus comprises the altered phosphorylation

status of AMPA receptors leading to enhanced AMPA receptor-

mediated currents. Changes in the phosphorylation state of AMPA

receptors may underlie postsynaptic expression of LTP at C-fibre

synapses, but any additional contribution of presynaptic mechan-

isms to the expression of LTP at C-fibre synapses must not be

ignored [112].

LTP in fear memory pathways

The synaptic mechanisms of LTP in fear-relevant neural loci

are much the same as those described for nociceptive pathways.

LTP has been described for the lateral amygdala (LA) [53] in the

synaptic convergence between the sensory afferents carrying

stimulus information and the somatosensory afferents carrying

the aversive nociceptive information [113]. The former can include

both thalamic and cortical sensory pathways [114,115]. However,

whereas synaptic plasticity in the LA is critical for fear memory

formation, it is not the only locus of LTP engaged by fear learning.

Plasticity in the auditory thalamus has sometimes been shown to

be necessary for fear conditioning to a tone stimulus, by targeting

important cellular mechanisms of LTP such as mitogen-activated

protein kinase (MAPK) activation [116,117]. Moreover, protein

synthesis-dependent synaptic plasticity in the dorsal and ventral

regions of the hippocampus is important for fear conditioning to a

contextual stimulus [118,119], suggesting the functional involve-

ment of LTP in those loci. Finally, additional areas are important

for fear memory expression. For example, the prelimbic cortex is

necessary for the normal expression of fear responses and

inhibiting prelimbic activity suppresses fear expression [120].

Similarly, inactivation of the nucleus accumbens impairs both

the acquisition and the expression of conditioned fear [121].

However, it remains unclear whether synaptic plasticity is

necessary in the prelimbic cortex or nucleus accumbens for

learned fear.
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compensated by activation of spinal adenosine A2 recep-
tors that are expressed on spinal glial cells. A single
intrathecal injection of an adenosine A2 receptor agonist
10–14 days after a chronic constriction nerve injury
reverses mechanical and thermal hyperalgesia for at least
4 weeks without affecting normal nociception [47]. When
neuropathy is induced by inflammation of the sciatic nerve,
minocycline can attenuate allodynia 1 day but not 1 week
later [48], suggesting that, for different neuropathic aetiol-
ogies, glial cell activation has distinct roles in the mainte-
nance and/or consolidation phases of neuropathic pain.

Impaired inhibition. Inhibition serves five important func-
tions in the nociceptive system, as outlined in Table 1 and
reviewed in [17,46]. Potassium chloride cotransporter 2
(KCC2) is required for a normal anion gradient across
neuronal cell membranes by keeping Cl� concentrations
low, a prerequisite for Cl� influx into, and thus the inhibi-
tion of, neurons on the opening of GABAA or glycine
receptors. The lasting downregulation of KCC2 is another
memory trace of pain. Neuropathy leads to the activation of
spinal glial cells and to the release of brain-derived neuro-
trophic factor (BDNF), which results in the downregulation
of KCC2 [49,50]. This impairs normal inhibition by GABAA

or glycine receptors and thus impedes some or all of the five
essential functions of inhibition in the nociceptive system.
Blockade of microglial function by minocycline or BDFN
function by TrkB/Fc restores KCC2 levels and reverses
neuropathic pain [51].

Erasure of fear memory traces

Given that LTP is also thought to be a fundamental
mechanism of memory encoding in the amygdala, which
is a critical locus of fear memories [52,53], reversing the
plasticity underlying LTP would result in the erasure of
fear memory traces. This reversal might be achieved in
several ways, although it is functionally difficult to deter-
mine conclusively that a memory has been erased. Rather,
from a clinical perspective, an outcome in which the ex-
pression of the fear memory is diminished in a meaningful
and long-lasting manner is desirable.

Although the treatment of anxiety disorders would
canonically be started once a patient presents with diag-
nosed symptoms, the first stage at which a fear memory
might be erased is at the time of acquisition and consoli-
dation (Figure 2B). Unlike the prevention of pain (e.g.,
attempts by pre-emptive analgesia), the prevention of fear
memory acquisition is an unlikely approach, because there
would be no obvious way prophylactically to discriminate
between adaptive and problematic memories. However,
given that the formation of long-term fear memories
requires a post-acquisition consolidation process, im-
pairment of consolidation is a viable approach, particularly
because the newly formed memory remains vulnerable to
disruption for up to 6 h following its acquisition. Treatment
of victims of trauma with the beta-blocker propranolol or
morphine in the immediate aftermath of the traumatic
incident appears to reduce the likelihood of them develop-
ing PTSD [54–57]. However, other studies have failed to
replicate the propranolol findings in different clinical set-
tings [58,59] and although targeting memory consolidation
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Figure 1. Signalling pathways of long-term potentiation (LTP) consolidation and LTP reversal at C-fibre synapses. The schemes summarise elements of signalling pathways

that are required for the maintenance of LTP at spinal C-fibre synapses. Thus, when any of these elements is blocked, established LTP diminishes or disappears (required

elements for LTP consolidation, A). (B) summarises elements that, when activated, reverse established LTP. These sufficient elements for the reversal of LTP are underlined.

Elements that are not underlined are required for the reversal of LTP. When blocked, these elements prevent the reversal of LTP by at least one of the sufficient elements.
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Figure 2. Phases of fear memory and their modulation to reduce fear expression. Blue arrows/text represent normal memory processes; red arrows/text represent

interventions to reduce fear expression. (A) Phases of fear memory. Consolidation of a memory after its acquisition (Acq) stabilises the long-term memory (LTM) and

thereby increases memory expression. Mechanisms of memory maintenance enable the consolidated memory to persist. Reactivation of a LTM can lead to its

destabilisation, necessitating a process of reconsolidation to restabilise the memory again into a persistent long-term form (post-reactivation LTM, PR-LTM). Exposure to

fear stimuli in the absence of the aversive outcome results in extinction that suppresses memory expression. (B) Impairment of consolidation to erase fear memories.

Interference with the cellular mechanisms that are required to consolidate a newly acquired memory can prevent the formation of LTM; the memory trace instead decays,

leading to reduced memory expression. (C) Impairment of memory maintenance to erase fear memories. Interference with the cellular mechanisms of memory

maintenance leads to rapid erasure of the memory and hence decay of memory expression. (D) Impairment of reconsolidation to erase fear memories. Interference with the

cellular mechanisms of memory reconsolidation prevents a destabilised memory from being successfully restabilised; the destabilised memory instead decays, leading to

reduced memory expression. (E) Enhancement of extinction as a compensatory mechanism to reduce fear. An extinguished memory normally recovers easily. However,

pharmacological enhancement of extinction results in a persistent reduction in fear memory expression that appears not to recover.
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may be a viable therapeutic strategy, in this review we
concentrate on retrospective treatment approaches.

The first such approach, and perhaps the closest to true
erasure, involves the disruption of memory maintenance
(Figure 2C). This differs conceptually from the prevention
of memory consolidation in the first place. Although there
are many mechanisms that have been identified as being
important for memory consolidation, only one drug thus far
appears to reverse LTP and erase memories. Much as in
the nociceptive system, the persistence of hippocampal
synaptic potentiation in rodents is critically dependent
on the activity of the atypical protein kinase PKM z and
348
inhibition of PKM z by the inhibitory peptide ZIP seeming-
ly both reverses LTP [60] and erases hippocampal memo-
ries [61]. ZIP blocks the maintenance of late-phase LTP in
the amygdala [42] and at the behavioural level infusions of
ZIP directly into the amygdala disrupt fear memories in
rats [37,62]. Whether this disruption reflects erasure of the
fear memory remains unclear, because the expression of
fear recovered despite ZIP infusion in a fear-potentiated
startle setting [38]. Moreover, it is now unclear whether
ZIP exerts its memory-disrupting effects only through
inhibition of PKM z, because ZIP has similar amnestic
effects in mice that have been genetically modified not to



Table 1. The five roles of inhibition in pain control

Role of inhibition Mechanism of action Desired effect Pain type on failure

Muting Inhibition of nociceptive dorsal horn

neurons and interneurons driving those

Silencing principal pain neurons in the

absence of noxious stimuli

Spontaneous pain

Attenuation Pre- and postsynaptic inhibition of

nociceptive spinal dorsal horn neurons

Proper response level of principal pain

neurons to noxious stimulation

Hyperalgesia

Limiting Inhibition of excitatory interneurons

that cross somatotopic borders

Limiting spread of excitation to

somatotopically appropriate areas

Radiating pain, referred pain,

mirror-image pain

Separating Inhibition of excitatory interneurons

linking Ab-fibre input to nociception-

specific neurons

Inhibition of excitatory crosstalk

between sensory modalities

Allodynia

Preventing Reduced Ca2+ influx into nociceptive

spinal dorsal horn neurons

Blocking Ca2+-dependent signalling

pathways engraining memory traces of pain

Chronic pain

The table summarises the five principle functions of inhibition in the nociceptive system (modified) [46].
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express PKM z [63,64]. Finally, from a translational per-
spective, inhibition of PKM z may not be a viable treatment
strategy for fear memories. Studies of cortical memories
reveal that ZIP appears to disrupt all plasticity within the
target region [65] and the amygdala is critical not only for
maladaptive fear, but also for normal fear responses and
reward-related Pavlovian memories [66]. Therefore, al-
though PKM z inhibition may successfully erase problem-
atic fear memories, it is also likely to have detrimental
effects on normal adaptive behaviour.

Given the potential for detrimental effects arising from
attempts to erase fear memory traces, the selectivity of
memory disruption becomes a critical consideration. This
seems to be a potential advantage for an approach based on
disrupting memory reconsolidation (Figure 2D). Retrieval
of a fear memory can initiate a process of memory recon-
solidation that is necessary for re-establishment and sub-
sequent retrieval [27]. For Pavlovian fear memories in rats,
reconsolidation was first disrupted by infusions of the
protein synthesis inhibitor anisomycin into the amygdala
[67]. Importantly, it is only the memory trace successfully
reactivated by memory retrieval that is disrupted by ani-
somycin [68]. Moreover, the disruption of fear memory
expression was associated with a reduction in synaptic
potentiation [68], indicating that the memory trace was
erased. Although inhibition of local protein synthesis is not
likely to be of translational utility, its disruptive effect can
be replicated by systemic administration of drugs such as
the NMDA receptor antagonist MK-801 [69] and the beta-
blocker propranolol [70], the latter also having promising
effects in healthy human studies [71] and an open-label
trial in PTSD patients [72]. Perhaps even more exciting is
the potential for a purely behavioural retrieval–extinction
strategy based on reconsolidation processes that
diminishes the reactivated memory with stimulus expo-
sure within the so-called ‘reconsolidation window’ of plas-
ticity. Initially demonstrated in rats [73], studies in human
fear conditioning have demonstrated the selectivity of the
approach [74]. However, questions remain over its trans-
lational efficacy. When fear-relevant stimuli, such as pic-
tures of spiders, were used as conditioned stimuli to
heighten levels of fear, the expression of fear was only
transiently diminished by retrieval–extinction [75], con-
trasting with the persistent reduction observed when pro-
pranolol was administered to disrupt fear memory
reconsolidation [76]. Secondly, the retrieval–extinction
procedure appears to disrupt relearning of the fear memo-
ry [73], potentially leaving a treated individual less able to
form adaptive fear memories.

Compensating for – rather than reversing – pathological
changes
Much is known about the distinct pathological changes
that contribute to different forms of lasting pain. As out-
lined above, our knowledge about the true reversal of these
changes is only beginning to evolve. Attempts have been
made to compensate for pain-related changes within the
CNS and successful interference at different levels of the
neuraxis is illustrated by the following examples. Descend-
ing facilitation via activation of monoaminergic pathways
contributes to some forms of opioid-induced hyperalgesia
and to neuropathic pain. Reduction of noradrenergic input
to the dorsal reticular nucleus, which is part of the prono-
ciceptive circuitry, by injections of a viral vector that
carried the tyrosine hydroxylase transgene in antisense
orientation, 2 weeks after spinal nerve injury, induces
long-lasting attenuation of mechanical hyperalgesia [77].

Neuropathic pain leads to the release of proinflamma-
tory cytokines from glial cells in the spinal dorsal horn,
partly by continuous activation of toll-like receptor 4, a
pattern-recognition receptor expressed by glial cells.
Blocking the ongoing activation of this receptor by systemic
injection of (+)-naloxone 2–4 months after spinal nerve
ligation or chronic constriction injury of the sciatic nerve
temporarily reverses mechanical hyperalgesia [78].

Convincing evidence suggests that impaired GABAergic
inhibition in the spinal dorsal horn contributes to various
forms of inflammatory and neuropathic pain [17,79]. Con-
tinuous pharmacological activation of spinal GABAA recep-
tors containing the a2 and/or a3 subunit may compensate
for insufficient endogenous GABAergic tone in spinal noci-
ceptive circuits, which dampens inflammatory and neuro-
pathic hyperalgesia without affecting normal nociceptive
responses [80].

Enhancing inhibitory processes in the treatment of pain
bears striking conceptual similarity to the potential for
enhancing fear memory extinction to reduce anxiety. Ex-
posure to fearful stimuli in the absence of an aversive
outcome results in memory extinction that suppresses fear
expression. However, exposure therapy has limited bene-
fits due to the propensity for recovery of fear responses.
Therefore, pharmacological enhancement of the extinction
349
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process may be of further benefit (Figure 2E). There are
several agents that potentiate fear memory extinction in
experimental animals, including methylphenidate [81]
and fibroblast growth factor-2 [82]. However, the most-
studied drug is the NMDA receptor partial agonist DCS.

When DCS is administered either systemically or di-
rectly into the amygdala, it potentiates extinction quanti-
tatively to produce a greater reduction in fear memory
expression [83,84]. Importantly, the enhancement of ex-
tinction achieved by DCS is also qualitative, with there
being no evidence of memory recovery following normally
effective reminder procedures [84,85]. This reduction in
the recovery of fear suggests that DCS might achieve a
meaningful and long-lasting reduction in fear in anxiety
disorders; indeed, initial studies do show beneficial effects
in various anxiety disorders [86–91]. However, DCS did not
benefit a population of participants who were fearful of
spiders at a non-clinical level [92] nor did it produce an
obvious reduction in fear in the context of PTSD [93,94].
Moreover, preclinical studies in rodents revealed that DCS
has no effect when a fear memory is being re-extinguished
[95]. Finally, and potentially more problematically, it is
known for fear memories that there is competition between
reconsolidation and extinction. Given that reconsolidation
and extinction share many cellular mechanisms; attempts
to disrupt reconsolidation might instead impair extinction,
maintaining the expression of fear memories. Conversely,
administration of DCS with the intention of potentiating
extinction might enhance reconsolidation to strengthen
the fear memory, as has been observed in rodent fear
models [69]. Therefore, interventions based on compensa-
tion are not likely to complement those aimed at true
memory erasure.

Concluding remarks
The mechanisms that lead to and maintain chronic pain
are fundamentally different from those relevant to acute
pain. Most currently employed pharmacotherapies are,
however, directly derived from animal models of acute
nociceptor and inflammatory pain. This includes the con-
tinuous application of a moderate opioid dose and non-
steroidal anti-inflammatory drugs. Thus, it is unsurprising
that these therapies work well for acute pain but are
largely ineffective in curing chronic pain. The true reversal
of the pathological changes that contribute to chronic pain
require in-depth understanding of the distinct mechanisms
that operate during the induction, consolidation, and
maintenance phases of the various types of lasting pain.
Similarly, the potential reversal of aberrant fear memories
draws on understanding of the mechanisms of memory
maintenance and reconsolidation. Interference with the
induction phase of aversive memory trace formation is
more relevant to the management of pain than fear. How-
ever, such pre-emptive therapy must not be restricted to
analgesics, because increased acute nociception is not the
sole trigger for the development of chronic pain. At present,
it appears most promising to interfere during the consoli-
dation phase of chronic pain to prevent long-term plasticity
in the nociceptive system and chronic pain. By contrast,
a focus on fear memory reconsolidation is the most prom-
ising approach to interfere selectively with long-term fear
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plasticity. Finally, compensation for pathological changes
is an option applicable to both fear and pain and in the
latter appears to be superior to the application of conven-
tional analgesics for chronic pain. However, there is clearly
a great demand for true reversal of the long-lasting plas-
ticity that underlies chronic pain and anxiety; that is, to
erase memory traces of pain and fear. Understanding of
how to achieve this goal is only just emerging.
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