

University of Birmingham

Performing Speech Recognition on Multiple Parallel
Files Using Continous Hidden Markov Models on an
FPGA
Melnikoff, Stephen; Quigley, Steven; Russell, Martin

Document Version
Peer reviewed version

Citation for published version (Harvard):
Melnikoff, S, Quigley, S & Russell, M 2002, 'Performing Speech Recognition on Multiple Parallel Files Using
Continous Hidden Markov Models on an FPGA', Paper presented at International Conference on Field-
Programmable Technology and its Applications, 1/12/02 pp. 399-402.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/267214206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/performing-speech-recognition-on-multiple-parallel-files-using-continous-hidden-markov-models-on-an-fpga(15aae382-90a8-42a3-9043-331058ea2a14).html

Performing Speech Recognition on Multiple Parallel Files
Using Continuous Hidden Markov Models on an FPGA

S J Melnikoff, S F Quigley & M J Russell
Electronic, Electrical and Computer Engineering, University of Birmingham,

Edgbaston. Birmingham, B15 2 n , United Kingdom
S. J .Meln iko f f@iee .o rg ,

S . F . Q U i g l e y @ b h a m . a c . u k , M . J . R u s s e l l @ b h a m . a c . u k

Abstract
Speech recognitioii is a cornpntationally demanding task,
particularly the stages which use Viterbi decoding for
coiiwrfifig pre-processed speech data into words or sub-
word mit, and the associated observation probability
calciilatioris. which employ nzulrivariate Gaussian
disrribufions: so any device that can reduce the load on,
for example. a PC’s processor, is advantageous. Hence we
preseiir two irnple,nentations of a speech recognition
system incorporating an FPGA, employing continuous
hidden Markov models (HMMs) , and capable of
processing three speech files simultaneously. The first uses
~nonophones, and can perform recognition 250 times real
time (in terms of average time per observation), as well as
oirrperfonning its software equivalent. The second uses
biphoires arid triphones, reducing the speedup to 13 times
real time.

1. Introduction
Real time continuous speech recognition is a demanding

task which tends to benefit from increasing the available
computing resources.

A typical speech recognition system starts with a pre-
processing stage, which takes a speech waveform as its
input, and extracts from it feature vectors or observations
which represent the information required to perform
recognition. The second stage is recognition, or decoding,
which is performed using a set of phone-level statistical
models called hidden Markov models (HMMs). In most
systems, several context-sensitive phone-level HMMs are
used, in order to accommodate context-induced variation
in the acoustic realisation of the phone.

The pre- and post-processing stages can be performed
efficiently in software (though some of the pre-processing
may be better suited to a DSP). The decoding and
associated observation probability calculations, however,
place a particularly high load on the processor. and so it is
these parts of the system that have been the subject of

0-7803-7574-2/02/$17.00 02002 IEEE

previous research using custom-built hardware. However,
with ever more powerful programmable logic devices
being available, such chips appear to offer an attractive
alternative [6].

Accordingly. in this paper we describe our monophone
and biphonettriphone implementations on an P G A , of an
HMM-based speech recognition system, which
incorporates floating-point units for processing
multivariate Gaussian distributions, along with a Viterbi
decoder, to process three speech files simultaneously. This
work follows on from [31 and [4], which dealt with single-
file monophone implementations.

The paper is organised as follows. In section 2, we
explain the motivation behind attempting to build a speech
recogniser in hardware. In section 3, we explain the basic
theory of speech recognition, with an overview of the
implemented system in section 4. Sections 5 and 6 deal
respectively with the theory of observation probabilities
for continuous HMMs. and Viterbi decoding, detailing the
design and implementation of the hardware in each case.
The results are summarised in section 7, followed by
conclusions.

2. Motivation
The ultimate aim of this work is to produce a hardware

implementation of a speech recognition system with an
FPGA acting as a co-processor. that is capable of
performing recognition at a much faster rate than software.

For most speech recognition applications, it is sufficient
to produce results in real time, and software solutions that
do this already exist. However, there are several scenarios
that require much quicker recognition rates and so could
benefit from hardware acceleration.

For example, in telephony-based call-centre
applications (e.g. the AT&T “How may I help you?”
system [I]), the speech recogniser is required to process a
large number of spoken queries in parallel. There are also
analogous non-real time applications, such as off-line
transcription of dictation, where the ability of a single

399

mailto:S.J.Melnikoff@iee.org
mailto:S.F.QUigley@bham.ac.uk
mailto:M.J.Russell@bham.ac.uk

system to process multiple speech streams at high speed
may offer a significant financial advantage.

Altematively, the additional processing power offered
by an FPGA might be used for real-time implementation of
the “next generation” of speech recognition algorithm,
which are currently being developed.

3. Speech recognition theory
The most widespread and successful approach to speech

recognition is based on the hidden Markov model (HMM)
[5] [8] , whereby a probabilistic process models spoken
utterances as the outputs of finite state machines (FSMs).
The notation here is based on [5] .

The underlying problem is as follows. Given an
observation sequence 0 = Oo,O l . . .OT.~, where each 0, is
data representing speech which has been sampled at fixed
intervals, and a number of potential models, each of which
is a representation of a particular spoken utterance (e.g.
word or sub-word unit), we would like to.find the sequence
of models which is most likely to have produced 0. These
models are based on HMMs.

An N-state Markov Model is completely defined by a
set of N states forming a finite state machine, and an N x N
stochastic matrix defining transitions between states,
whose elements au = P(state j at time t I state iat time 1-1);
these are the transition probabilities.

In a hidden Markov model, each state additionally has
associated with it a probability density function bj(O,)
which determines the probability that state j emits a
particular observation 0, at time t (the model is “hidden”
because any state could have emitted the current
observation). The p.d.f. can be continuous or discrete;
accordingly the pre-processed speech data can he a multi-
dimensional vector or a single quantised value. b,{O,) is
known as the observation probability, and is described in
more detail below.

Such a model can only generate an ohservation
sequence O = 4.0, ... O,-,via a state sequence of length
T, as a state only emits one observation at each time I. Our
aim is to find the state sequence which has the highest
probability of producing the observation sequence 0. This
can be computed efficiently using Viterbi decoding
(below).

Subject to having sufficient training data, the larger the
number of possible utterances, and hence the larger the
number of HMMs, the greater the recognition accuracy of
the system.

4. System details
The complete system consists of a PC. and an FPGA on

a development board inside it. For this implementation. the
speech waveforms are processed in advance, in order to
extract the observation data used for the decoding. This

pre-processing is performed using the HTK speech
recognition toolkit [71. HTK is also used to verify the
results produced by our system.

The speech data is sent to the FPGA. which perfoms
the decoding, outputting the set of most likely predecessor
states. This is sent back to the PC, which performs the
backtracking process in software.

4.1. System hardware and software
The design is implemented on a Xilinx Virtex

XCV2000E FPGA [I l l , sitting on Celoxica’s RC1000-PP
development board 191. The RClOOO is a PCI card, whose
features include the FPGA. and 8 Mb of RAM accessible
by both it and the host PC. The RAM is configured as 4
hanks of 2 Mb, each with a 32-bit data bus between i t and
the FPGA, and there is arbitration logic to prevent
contention between the PC and FPGA.

The RClOOO sits inside a PC with a Pentium 111 450
MHz processor. Our C++ software performs pre- and post-
processing, and is also capable of carrying out all the same
calculations as the FPGA, in order to compare
performance, and to make i t simpler to experiment with
and debug the design during the development of the
hardware version. The code is written so as to be as
functionally similar to the FPGA implementation as
possible.

In order to ensure uniformity of data between HTK
and our software and hardware, our software uses the same
data files as HTK, and produces VHDL code for parts of
the design and for testbenches.

4.2. Speech data
The speech waveforms used for the testing and training

of both implementations are taken from the TIMIT
database [IO], a collection of speech data designed for the
development of speech recognition systems.

For these implementations, we use 49 monophone
models for the first implementation. and 634 hiphone and
triphone models (i.e. pairs and triplets of monophones) for
the second, all with 3 states, and no language model.

5. Observation probability computation

5.1. Theory
Continuous HMMs compute their observation

probabilities bj(O,) based on feature vectors extracted from
the speech waveform. The computation typically uses
uncorrelated multivariate Gaussian distributions [Z].

Calculating values using the regular form of the
equation would require significant resources if
implemented in hardware with any degree of parallelism,
as i t requires multiplications, divisions and exponentations.
Fortunately. as with Viterbi decoding, the process can be
made more efficient if performed in the log domain:

400

Note that the values in square brackets are dependent
only on the current state. not the current observation, so
can be computed in advance. For each vector element of
each state. we now require a subtraction, a square and a
multiplication.

5.2. Design
The block which computes the observation probabilities

for continuous HMMs processes each observation’s 39
elements one at a time, using a fully pipelined architecture.
Due to the large dynamic range encountered during these
calculations. the data values are processed as floating-point
numbers.

A floating point subtractor, squarer and multiplier are
used, with the resulting value sent to an accumulator. The
output probability is then converted to fixed point and
buffered, before being sent to the Viterbi decoder core.

Note that because the same observation data is used in
the calculations for each state, these values need only be
read i n once for each time frame, freeing up part of the
data bus for other uses. A buffer stores the values when
they are read. then cycles through them for each HMM.

5.3. Implementation
The above design is implemented on the FPGA

alongside the Viterbi decoder, with the observation, mean
and variance data being read from off-chip RAM, one
element of each per clock cycle. The constant in the first
set of square brackets in equation (1) is treated as a fortieth
element.

Because each observation probability depends on the
sum of fony elements, a value is only written to the buffer
once every forty cycles. The contents of this are sent to the
decoder only when all of the HMMs’ probabilities have
been computed. As a result, the decoder sits idle for much
of the time.

A convenient way of taking advantage of this spare
processing time and the bandwidth freed up by only
reading in the observation data once, rather than for each
state. is to implement more observation probability
computation blocks, operating in parallel on different
observation data and the same model data.

For the monophone-based system, each observation
probability computation block uses around 4400 LUTs
(look-up tables) and 3700 FFs (D-type flip-flops). For the
biphondtriphone system, each one uses 4500 LUTs and
5000 ITS. In both cases, the XCV2000E has sufficient
resources to allow three such blocks to be instantiated.

While these could be used to process one speech file
three times as fast, it was felt that in a real-world

application, the speech data is more likely to be presented
in real time, so three different files are processed at once
instead. The files are read in and stored one after the other,
and the model data delayed accordingly for the second and
third blocks. They then take it in tums to use the decoder.

6. Viterbi decoding

we can proceed with the recognition process, as follows.

6.1. Theory
The arithmetic associated with Viterbi decoding mainly

consists of multiplications and comparisons. By
performing these calculations in the log domain, we can
convert the multiplications into additions, which are more
speed- and resource-efficient for implementation in
hardware.

We define the value S,Q] as the maximum probability,
over all partial state sequences ending in state j at time t,
that the HMM emits the sequenceO=OO,O1.. .O,. It
can be shown that this value can be computed iteratively -
in the negative log domain - as:

Once the observation probabilities have been computed,

where i is a possible previous state (i.e. at time t-1).

y,Q]. for the current state j at time r, given by:
This value deternines the most likely predecessor state

At the end of the observation sequence, we backtrack
through the most likely predecessor states in order to find
the most likely state sequence. Each utterance bas an
HMM representing it, and so this sequence not only
describes the most likely route through a particular HMM,
but by concatenation provides the most likely sequence of
HMMs, and hence the most likely sequence of words or
sub-word units uttered.

6.2. Design
The Viterbi decoder consists of five parts. The

observation probabilities b,{O,) enter through the
initialisation and switching block, which sets the &)
values at the start of an observation sequence, and
thereafter routes b,(O,) and &> to their respective
destinations.

461 is sent to two places. The scaler scales the
probabilities, removing those corresponding to the least
likely paths, hence preventing (negative) overtlow. The
language model block uses statistical information about the
probability of one phone following another to compute
each phone’s most likely predecessor. In this particular

401

implementation, we are not using an explicit language
model, so this block computes the single most likely
predecessor for all phones, for each observation.

These values are then sent to the HMM processor,
which contain nodes for implementing equations (2) and
(3). As every node depends only on data produced by
nodes in the previous time frame (i.e. at time :-I), and not
the current one, we can - in theory - implement as many
nodes as we like in parallel. In practice, however, three
nodes (corresponding to the three states of one HMM) are
implemented while there is space for more to be processed
in parallel, bandwidth limitations make this infeasible.

The nodes output the most likely predecessors of each
HMM, fib), these values being written to RAM and
processed in software, and the new 40) values.

These probabilities are sent to a buffer which provides
space for the 4b) values for all three speech files to be
stored within the pipeline, before being sent back to the
scaler.

6.3. Implementation

This part of the system is somewhat smaller than the
observation probability computation blocks, using 1600
LUTs and 2800 FFs for the monophone version, while the
hiphone/triphone version uses 2500 LUTs and 2200 FFs.

Whereas the data for the observation probabilities is
stored off-chip, the transition probabilities are stored in
Block RAM, and the between-HMM probabilities (which
form part of the language model block) are stored in
distributed RAM.

7. Results

7.1 Monophone model
The full design occupies 74% of the XCVZOOOEs

slices, requiring I6000 LUTs and 15000 FFs, and runs at
50 MHz.

The average time taken to process one observation is
39.3 p. This compares to 5390 ps per observation for the
software, making the hardware 137 times faster, and I O ms
for real time speech, a speedup of 254. As expected, this is
three times faster than our previous implementation which
only processed one speech tile at a time.

7.2 Biphone and triphone model
With only the minimum of changes made to the original

implementation, the initial version of this larger model
required 143% of the FPGA’s resources. After moving
some of the buffers into Block RAM, this was reduced to
77%. including 22040 LUTs. 18OOO FFs, and 138 Block
RAMS (out of 160). The system runs at 33 MH2.

The average time per observation for the hardware is
769 ps, which is 95.6 times faster than software’s 73.5 ms,
and 13.0 times real time.

8. Conclusions
We have implemented a continuous HMM speech

recognition system which uses an FPGA to compute the
observation probabilities and perform Viterbi decoding for
three speech files in parallel, using models based on 49
monophones, and 634 biphones and triphones.

The observation probability processing blocks compute
values based on multivariate Gaussian distributions. They
operate on floating-point data, and contain a total of six
24-bit multipliers and eighteen adders.

The Viterbi decoder processes three states
simultaneously, and interleaves the three speech files under
scrutiny.

The monophone system is capable of performing
recognition over 130 times faster than a software
equivalent, and 250 times faster than real time. For the
biphoneltriphone system running at a lower frequency,
those figures are 13 and 96 times respectively.

References
[I] Gorin, A.L., Riccardi, G. &Wright. J.H., “How may I help
you?”Speech Communicandon, 23, N0.l-2, 1997. pp.113-127.

I21 Holmes, I. N. & Holmes W.J., “Speech synthesis and
recognition,” Taylor & Francis, 2001

131 Melnikoff, S.J., Quigley. S.F. & Russell, M.J..
“Implementing a hidden Markov model speech recognition
System in programmable logic,” FPL 2001, Lecture N o m in
Computer Sciencr #2147,2001, pp.81-90.

[4] Melnikoff, S.J., Quigley. S.F. & Russell, M.J., “Speech
recoenition on an FPGA “Sine discrete and continuous hidden
Mariov models,” FPL 2002, I&re N o m in Computer Science
#2438,2002. pp.202-211.

[5] Rabiner, L.R., “A tutorial on Hidden Markov Models and
selected applications in speech recognition.” Proc. IEEE, 11.
No.2, 1989, pp.257-286.

[6] Stogiannos, P., Dollas, A. & Digalakis, V., “A configurable
logic based architecture for real-time continuous speech
recognition using hidden Markov models.” 3. V U 1 Sign01
Processing Systems. 2002. 24, No.2-3, pp.223-240.

[71 Woodland, P.C., Odell. 1.1.. Valtchev, V. & Young, S.J.
”Large vocabulary continuous speech recognition using HTK,”
ICASSP ‘94.1994. pp.125-128.

[SI Young, S., ”A review of large-vocabulary continuous-
speech recognition,” IEEE Signal Processing Magazine, 13.
No.5, 1996, pp.45-57.

[SI http://www.celoxica.cod

[IO] http://www.ldc.upenn.eddCatalognDC93SI.hunl

[l I] http://www.xilinx.cod

402

http://www.celoxica.cod
http://www.ldc.upenn.eddCatalognDC93SI.hunl
http://www.xilinx.cod

