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Abstract 
Speech recognitioii is a cornpntationally demanding task, 
particularly the stages which use Viterbi decoding for 
coiiwrfifig pre-processed speech data into words or sub- 
word mit, and the associated observation probability 
calciilatioris. which employ nzulrivariate Gaussian 
disrribufions: so any device that can reduce the load on, 
for example. a PC’s processor, is advantageous. Hence we 
preseiir two irnple,nentations of a speech recognition 
system incorporating an FPGA, employing continuous 
hidden Markov models (HMMs) ,  and capable of 
processing three speech files simultaneously. The first uses 
~nonophones, and can perform recognition 250 times real 
time (in terms of average time per observation), as well as 
oirrperfonning its software equivalent. The second uses 
biphoires arid triphones, reducing the speedup to 13 times 
real time. 

1. Introduction 
Real time continuous speech recognition is a demanding 

task which tends to benefit from increasing the available 
computing resources. 

A typical speech recognition system starts with a pre- 
processing stage, which takes a speech waveform as its 
input, and extracts from it feature vectors or observations 
which represent the information required to perform 
recognition. The second stage is recognition, or decoding, 
which is performed using a set of phone-level statistical 
models called hidden Markov models (HMMs). In most 
systems, several context-sensitive phone-level HMMs are 
used, in order to accommodate context-induced variation 
in the acoustic realisation of the phone. 

The pre- and post-processing stages can be performed 
efficiently in software (though some of the pre-processing 
may be better suited to a DSP). The decoding and 
associated observation probability calculations, however, 
place a particularly high load on the processor. and so it is 
these parts of the system that have been the subject of 
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previous research using custom-built hardware. However, 
with ever more powerful programmable logic devices 
being available, such chips appear to offer an attractive 
alternative [6]. 

Accordingly. in this paper we describe our monophone 
and biphonettriphone implementations on an P G A ,  of an 
HMM-based speech recognition system, which 
incorporates floating-point units for processing 
multivariate Gaussian distributions, along with a Viterbi 
decoder, to process three speech files simultaneously. This 
work follows on from [31 and [4], which dealt with single- 
file monophone implementations. 

The paper is organised as follows. In section 2, we 
explain the motivation behind attempting to build a speech 
recogniser in hardware. In section 3, we explain the basic 
theory of speech recognition, with an overview of the 
implemented system in section 4. Sections 5 and 6 deal 
respectively with the theory of observation probabilities 
for continuous HMMs. and Viterbi decoding, detailing the 
design and implementation of the hardware in each case. 
The results are summarised in section 7, followed by 
conclusions. 

2. Motivation 
The ultimate aim of this work is to produce a hardware 

implementation of a speech recognition system with an 
FPGA acting as a co-processor. that is capable of 
performing recognition at a much faster rate than software. 

For most speech recognition applications, it is sufficient 
to produce results in real time, and software solutions that 
do this already exist. However, there are several scenarios 
that require much quicker recognition rates and so could 
benefit from hardware acceleration. 

For example, in telephony-based call-centre 
applications (e.g. the AT&T “How may I help you?” 
system [I]), the speech recogniser is required to process a 
large number of spoken queries in parallel. There are also 
analogous non-real time applications, such as off-line 
transcription of dictation, where the ability of a single 

399 

mailto:S.J.Melnikoff@iee.org
mailto:S.F.QUigley@bham.ac.uk
mailto:M.J.Russell@bham.ac.uk


system to process multiple speech streams at high speed 
may offer a significant financial advantage. 

Altematively, the additional processing power offered 
by an FPGA might be used for real-time implementation of 
the “next generation” of speech recognition algorithm, 
which are currently being developed. 

3. Speech recognition theory 
The most widespread and successful approach to speech 

recognition is based on the hidden Markov model (HMM) 
[ 5 ] [ 8 ] ,  whereby a probabilistic process models spoken 
utterances as the outputs of finite state machines (FSMs). 
The notation here is based on [ 5 ] .  

The underlying problem is as follows. Given an 
observation sequence 0 = Oo,O l . . .OT.~, where each 0, is 
data representing speech which has been sampled at fixed 
intervals, and a number of potential models, each of which 
is a representation of a particular spoken utterance (e.g. 
word or sub-word unit), we would like to.find the sequence 
of models which is most likely to have produced 0. These 
models are based on HMMs. 

An N-state Markov Model is completely defined by a 
set of N states forming a finite state machine, and an N x N 
stochastic matrix defining transitions between states, 
whose elements au = P(state j at time t I state iat time 1-1); 
these are the transition probabilities. 

In a hidden Markov model, each state additionally has 
associated with it a probability density function bj(O,) 
which determines the probability that state j emits a 
particular observation 0, at time t (the model is “hidden” 
because any state could have emitted the current 
observation). The p.d.f. can be continuous or discrete; 
accordingly the pre-processed speech data can he a multi- 
dimensional vector or a single quantised value. b,{O,) is 
known as the observation probability, and is described in 
more detail below. 

Such a model can only generate an ohservation 
sequence O =  4.0, ... O,-,via a state sequence of length 
T, as a state only emits one observation at each time I. Our 
aim is to find the state sequence which has the highest 
probability of producing the observation sequence 0. This 
can be computed efficiently using Viterbi decoding 
(below). 

Subject to having sufficient training data, the larger the 
number of possible utterances, and hence the larger the 
number of HMMs, the greater the recognition accuracy of 
the system. 

4. System details 
The complete system consists of a PC. and an FPGA on 

a development board inside it. For this implementation. the 
speech waveforms are processed in advance, in order to 
extract the observation data used for the decoding. This 

pre-processing is performed using the HTK speech 
recognition toolkit [71. HTK is also used to verify the 
results produced by our system. 

The speech data is sent to the FPGA. which perfoms 
the decoding, outputting the set of most likely predecessor 
states. This is sent back to the PC, which performs the 
backtracking process in software. 

4.1. System hardware and software 
The design is implemented on a Xilinx Virtex 

XCV2000E FPGA [ I l l ,  sitting on Celoxica’s RC1000-PP 
development board 191. The RClOOO is a PCI card, whose 
features include the FPGA. and 8 Mb of RAM accessible 
by both it  and the host PC. The RAM is configured as 4 
hanks of 2 Mb, each with a 32-bit data bus between i t  and 
the FPGA, and there is arbitration logic to prevent 
contention between the PC and FPGA. 

The RClOOO sits inside a PC with a Pentium 111 450 
MHz processor. Our C++ software performs pre- and post- 
processing, and is also capable of carrying out all the same 
calculations as the FPGA, in order to compare 
performance, and to make i t  simpler to experiment with 
and debug the design during the development of the 
hardware version. The code is written so as to be as 
functionally similar to the FPGA implementation as 
possible. 

In order to ensure uniformity of data between HTK 
and our software and hardware, our software uses the same 
data files as HTK, and produces VHDL code for parts of 
the design and for testbenches. 

4.2. Speech data 
The speech waveforms used for the testing and training 

of both implementations are taken from the TIMIT 
database [IO], a collection of speech data designed for the 
development of speech recognition systems. 

For these implementations, we use 49 monophone 
models for the first implementation. and 634 hiphone and 
triphone models (i.e. pairs and triplets of monophones) for 
the second, all with 3 states, and no language model. 

5. Observation probability computation 

5.1. Theory 
Continuous HMMs compute their observation 

probabilities bj(O,) based on feature vectors extracted from 
the speech waveform. The computation typically uses 
uncorrelated multivariate Gaussian distributions [Z]. 

Calculating values using the regular form of the 
equation would require significant resources if 
implemented in hardware with any degree of parallelism, 
as i t  requires multiplications, divisions and exponentations. 
Fortunately. as with Viterbi decoding, the process can be 
made more efficient if performed in the log domain: 
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Note that the values in square brackets are dependent 
only on the current state. not the current observation, so 
can be computed in advance. For each vector element of 
each state. we now require a subtraction, a square and a 
multiplication. 

5.2. Design 
The block which computes the observation probabilities 

for continuous HMMs processes each observation’s 39 
elements one at a time, using a fully pipelined architecture. 
Due to the large dynamic range encountered during these 
calculations. the data values are processed as floating-point 
numbers. 

A floating point subtractor, squarer and multiplier are 
used, with the resulting value sent to an accumulator. The 
output probability is then converted to fixed point and 
buffered, before being sent to the Viterbi decoder core. 

Note that because the same observation data is used in 
the calculations for each state, these values need only be 
read i n  once for each time frame, freeing up part of the 
data bus for other uses. A buffer stores the values when 
they are read. then cycles through them for each HMM. 

5.3. Implementation 
The above design is implemented on the FPGA 

alongside the Viterbi decoder, with the observation, mean 
and variance data being read from off-chip RAM, one 
element of each per clock cycle. The constant in the first 
set of square brackets in equation (1) is treated as a fortieth 
element. 

Because each observation probability depends on the 
sum of fony elements, a value is only written to the buffer 
once every forty cycles. The contents of this are sent to the 
decoder only when all of the HMMs’ probabilities have 
been computed. As a result, the decoder sits idle for much 
of the time. 

A convenient way of taking advantage of this spare 
processing time and the bandwidth freed up by only 
reading in the observation data once, rather than for each 
state. is to implement more observation probability 
computation blocks, operating in parallel on different 
observation data and the same model data. 

For the monophone-based system, each observation 
probability computation block uses around 4400 LUTs 
(look-up tables) and 3700 FFs (D-type flip-flops). For the 
biphondtriphone system, each one uses 4500 LUTs and 
5000 ITS. In both cases, the XCV2000E has sufficient 
resources to allow three such blocks to be instantiated. 

While these could be used to process one speech file 
three times as fast, it was felt that in a real-world 

application, the speech data is more likely to be presented 
in real time, so three different files are processed at once 
instead. The files are read in and stored one after the other, 
and the model data delayed accordingly for the second and 
third blocks. They then take it in tums to use the decoder. 

6. Viterbi decoding 

we can proceed with the recognition process, as follows. 

6.1. Theory 
The arithmetic associated with Viterbi decoding mainly 

consists of multiplications and comparisons. By 
performing these calculations in the log domain, we can 
convert the multiplications into additions, which are more 
speed- and resource-efficient for implementation in 
hardware. 

We define the value S,Q] as the maximum probability, 
over all partial state sequences ending in state j at time t, 
that the HMM emits the sequenceO=OO,O1.. .O,.  It 
can be shown that this value can be computed iteratively - 
in the negative log domain - as: 

Once the observation probabilities have been computed, 

where i is a possible previous state (i.e. at time t-1). 

y,Q]. for the current state j at time r, given by: 
This value deternines the most likely predecessor state 

At the end of the observation sequence, we backtrack 
through the most likely predecessor states in order to find 
the most likely state sequence. Each utterance bas an 
HMM representing it, and so this sequence not only 
describes the most likely route through a particular HMM, 
but by concatenation provides the most likely sequence of 
HMMs, and hence the most likely sequence of words or 
sub-word units uttered. 

6.2. Design 
The Viterbi decoder consists of five parts. The 

observation probabilities b,{O,) enter through the 
initialisation and switching block, which sets the &) 
values at the start of an observation sequence, and 
thereafter routes b,(O,) and &> to their respective 
destinations. 

461 is sent to two places. The scaler scales the 
probabilities, removing those corresponding to the least 
likely paths, hence preventing (negative) overtlow. The 
language model block uses statistical information about the 
probability of one phone following another to compute 
each phone’s most likely predecessor. In this particular 
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implementation, we are not using an explicit language 
model, so this block computes the single most likely 
predecessor for all phones, for each observation. 

These values are then sent to the HMM processor, 
which contain nodes for implementing equations (2) and 
(3). As every node depends only on data produced by 
nodes in the previous time frame (i.e. at time :-I), and not 
the current one, we can - in theory - implement as many 
nodes as we like in parallel. In practice, however, three 
nodes (corresponding to the three states of one HMM) are 
implemented while there is space for more to be processed 
in parallel, bandwidth limitations make this infeasible. 

The nodes output the most likely predecessors of each 
HMM, fib), these values being written to RAM and 
processed in software, and the new 40) values. 

These probabilities are sent to a buffer which provides 
space for the 4b) values for all three speech files to be 
stored within the pipeline, before being sent back to the 
scaler. 

6.3. Implementation 

This part of the system is somewhat smaller than the 
observation probability computation blocks, using 1600 
LUTs and 2800 FFs for the monophone version, while the 
hiphone/triphone version uses 2500 LUTs and 2200 FFs. 

Whereas the data for the observation probabilities is 
stored off-chip, the transition probabilities are stored in 
Block RAM, and the between-HMM probabilities (which 
form part of the language model block) are stored in 
distributed RAM. 

7. Results 

7.1 Monophone model 
The full design occupies 74% of the XCVZOOOEs 

slices, requiring I6000 LUTs and 15000 FFs, and runs at 
50 MHz. 

The average time taken to process one observation is 
39.3 p. This compares to 5390 ps per observation for the 
software, making the hardware 137 times faster, and I O  ms 
for real time speech, a speedup of 254. As expected, this is 
three times faster than our previous implementation which 
only processed one speech tile at a time. 

7.2 Biphone and triphone model 
With only the minimum of changes made to the original 

implementation, the initial version of this larger model 
required 143% of the FPGA’s resources. After moving 
some of the buffers into Block RAM, this was reduced to 
77%. including 22040 LUTs. 18OOO FFs, and 138 Block 
RAMS (out of 160). The system runs at 33 MH2. 

The average time per observation for the hardware is 
769 ps, which is 95.6 times faster than software’s 73.5 ms, 
and 13.0 times real time. 

8. Conclusions 
We have implemented a continuous HMM speech 

recognition system which uses an FPGA to compute the 
observation probabilities and perform Viterbi decoding for 
three speech files in parallel, using models based on 49 
monophones, and 634 biphones and triphones. 

The observation probability processing blocks compute 
values based on multivariate Gaussian distributions. They 
operate on floating-point data, and contain a total of six 
24-bit multipliers and eighteen adders. 

The Viterbi decoder processes three states 
simultaneously, and interleaves the three speech files under 
scrutiny. 

The monophone system is capable of performing 
recognition over 130 times faster than a software 
equivalent, and 250 times faster than real time. For the 
biphoneltriphone system running at a lower frequency, 
those figures are 13 and 96 times respectively. 
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