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Abstract 5 

Friction tests are a valuable tool for the analysis of food formulations to understand how they may 6 

behave during oral processing. Generally, food laboratories do not own specialist tribological testing 7 

equipment. It is more common for them to own or use a rheometer for which most commercially 8 

available instruments now offer an attachment to measure friction. The objective of this study was to 9 

examine the effect of using a three-ball-on-plate rheometer attachment for soft tribology 10 

measurements by assessing the friction properties of various model food-like systems. In addition, 11 

results were compared to an existing tribological instrument frequently used in oral processing 12 

applications (a mini traction machine) under pure sliding conditions. Results show similarities 13 

between the two techniques for simple systems, showing friction results depend less on the specific 14 

geometry compared to complex systems. The three-ball-on-plate geometry for the rheometer allowed 15 

detailed measurement of the boundary lubrication regime due to achieving low speeds unavailable 16 

when using the mini traction machine. Going forward, the three-ball-on-plate tribology attachment 17 

will be an incredibly useful tool in oral processing applications.  18 
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1. Introduction 19 

Traditionally tribology, the study of friction, lubrication and wear, has been used to determine the 20 

properties of systems concerning contacting surfaces like machine components and bearings (Hailing, 21 

1991). More recently, tribology has been used with focus on oral processing to study the frictional 22 

properties of food systems, for example oil-in-water emulsions (Chojnicka et al., 2008; Dresselhuis et 23 

al., 2007), dairy products (Chojnicka-Paszun et al., 2012; Joyner et al., 2014) and chocolate 24 

(Rodrigues et al., 2017). Tribological measurements of foods are generally performed on soft 25 

surfaces, such as rubbers, silicones and biological tissues as these more closely resemble oral surfaces 26 

than typical steel-steel contacts (Bongaerts et al., 2007; Chen and Stokes, 2012; Dresselhuis et al., 27 

2008; Sarkar et al., 2019). Tribometers, like the Mini-Traction Machine (MTM) by PCS Instruments 28 

(Garrec and Norton, 2012; Myant et al., 2010), custom-made laboratory apparatus (de Wijk & Prinz, 29 

2004; Dresselhuis et al., 2008) or rheometers with tribological attachments (Kieserling et al., 2018; 30 

Krzeminski et al., 2012) have all been used to understand the tribological properties of foods. Many 31 

rheometer manufacturers now offer tribology attachments for their instruments. These systems vary 32 

between instrument manufacturers but generally consist of a rotating aspect and a stationary aspect. 33 

The contacts can be plates, balls, discs or rings and can consist of two or more contacting surfaces. 34 

For example Joyner (Melito) et al. (2014) investigates two tribological apparatus: ball-on-three-plate 35 

and double-ball-on-plate. The authors found the tribological measurement system did not affect 36 

friction regimes observed for each material, but did affect the magnitude of friction coefficient. The 37 

difference in these results were attributed to the set-up of the contacting surfaces as the double-ball 38 

system had a horizontal plate; whereas the ball-on-three-plate system had angled plates meaning 39 

lubricant flowed off them and measurements were not accurate.  40 

Using a rheometer for tribological applications is advantageous as a range of normal forces, speeds 41 

and testing surfaces can be examined with ease suggesting this method can provide similar 42 

information to other commercially available tribometers. The advantage of using the rheometer 43 

attachment for tribology measurements would be reduced cost and advanced measurement techniques 44 

for institutions that own or have use of a rheometer, but cannot warrant the purchase of a specialist 45 
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piece of equipment for tribology. Rheometer based tribological measurements are relevant for food 46 

applications as many food scientists already own a rheometer. In this study, a three-ball-on-plate 47 

rheometer attachment is compared to a Mini Traction Machine (MTM), which is well established for 48 

use in soft surface tribology. The MTM consists of a disc mounted in a sample pot onto which a ball 49 

on a shaft is lowered to be in contact with at a 45° angle. Entrainment occurs between these surfaces 50 

as they rotate. Entrainment for the rheometer relies on the mounting plate repelling from the rotating 51 

geometry; separating to allow lubricant in between. The plate/disc surface in the rheometer is 52 

stationary giving only pure sliding friction measurements, whereas for the MTM a mixture of sliding 53 

and rolling friction can be used as both surfaces are able to rotate independently. During oral 54 

processing, the tongue moves up and down, pressing the food against the palate in order to process it. 55 

Since the palate does not move, it can be assumed that sliding motions likely dominate in the mouth. 56 

However, in practice this process is more complex as mastication, saliva incorporation and tongue 57 

motion mean food experiences both sliding and rolling motions (Chojnicka et al., 2008). 58 

This study aims to use a range of previously tribologically examined model food systems. These 59 

include Newtonian fluids, a shear-thinning hydrocolloid solution, a simple emulsion and a soft 60 

particulate system. Hydrocolloids cover a wide range of materials, including a variety of 61 

polysaccharides and gums. These are widely used in food formulations as thickeners, rheology 62 

modifiers and gelling agents which give structure and specific textural properties to the product 63 

(Dickinson, 2003). Guar gum is frequently reported in literature due to its extensive use in foods and 64 

Non-Newtonian shear thinning behaviour. Malone previously studied guar gum tribologically finding 65 

correlation between concentration and oral perceived slipperiness (Malone et al., 2003). The use of 66 

emulsions in food is commonplace; both in manufactured and processed foods, and natural products 67 

like milk. Emulsions give textural (for example creaminess, oiliness) and taste to a product. The basic 68 

structure of an emulsion consists of two immiscible liquids, typically an oil phase and an aqueous 69 

phase. One is dispersed in the form of droplets within the other. Food based emulsions have been well 70 

examined tribologically (Anvari and Joyner (Melito), 2017; Douaire et al., 2014; Dresselhuis et al., 71 

2007; Malone et al., 2003). A range of gels are used in food applications where the gelation process 72 
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leads to a quiescent gel. The gelation process can be modified by applying shear during the cooling 73 

process, allowing discrete gel particles to form in suspensions. The resultant material, a fluid gel, is 74 

both solid-like and liquid-like. These gels are increasingly being used as fat replacement, due to being 75 

able to impart structural properties whilst comprising of mostly water. These show non-typical 76 

Stribeck behaviour so will be of interest to compare in this work (Fernández Farrés and Norton, 2015; 77 

Gabriele et al., 2010).  78 

The MTM has long been the most widely used instrument in food tribology, however researchers are 79 

increasingly using rheometers with tribology attachments to study friction (Pradal and Stokes, 2016). 80 

To the author’s knowledge, a comparative and evaluative study of rheological apparatus for the 81 

application of oral processing has not been performed. Therefore, the objective of this study was to 82 

examine the effect of using a three-ball-on-plate rheometer attachment for soft tribology 83 

measurements by assessing the magnitude and variation of friction coefficient as well as comparing 84 

data to that obtained from the MTM in as close conditions as possible. A range of model food systems 85 

were used to compare measurements: Newtonian fluids, a shear-thinning hydrocolloid solution, an oil 86 

in water emulsion and a soft particulate fluid gel.  87 

2. Materials and methods 88 

Polydimethylsiloxane (PDMS) (Sylgard 184 Silicone Elastomer kit) was purchased from Dow 89 

Corning, US.  Guar Gum, Agar and Tween 20 were obtained from Sigma Aldrich, UK. Vegetable oil 90 

for use in emulsions was purchased from Sainsbury’s, UK. Materials were used with no further 91 

modifications or purification.  92 

2.1. Disc preparation 93 

Discs were fabricated using a two-part kit (Sylgard 184) consisting of silicone elastomer and curing 94 

agent which were mixed in the manufacturers recommended 10:1 ratio. The binary mixture was 95 

poured into a sheet of 4 mm thickness, degassed and placed in an oven at 70 °C for 2 hours. The sheet 96 

was left to cool for at least 24 hours and discs were cut out for use in the tribometer using a 46 mm 97 

diameter disc cutter. Before all tests, PDMS discs and steel balls were sonically cleaned in 98 
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isopropanol followed by distilled water for 6 minutes each. They were dried in air and fitted into the 99 

tribometer cell. Each disc was used for one experiment and then discarded.  100 

2.2. Guar gum solutions 101 

Samples were prepared by adding the desired concentration (wt%) of guar gum to distilled water and 102 

stirring for ~30 minutes. Whilst still stirring, samples were hydrated by heating for a further 30 103 

minutes at 80 °C. In this study, solutions of 0.2%, 0.4% and 0.6% guar were examined. Samples were 104 

produced on the same day as testing and tested three times to obtain an average. 105 

2.3. Oil in water emulsions 106 

Oil in water emulsions were prepared using required w/w% of vegetable oil, 1% Tween 20 and 107 

distilled water. The samples used in this study contained 20%, 30% and 50% vegetable oil in addition 108 

to pure water and pure oil samples. The samples were sheared for three minutes in a Silverson high 109 

shear mixer at 10000 rpm. Droplet sizes for all emulsions ranged from 5-10 μm (measured using an 110 

optical laser particle size analyser (Mastersizer 2000, Malvern Instruments, UK)). Samples were 111 

produced on the same day of testing and tested three times to obtain an average. 112 

2.4. Soft particulate gels 113 

Agar fluid gels were prepared in a lab-scale continuous process pin-stirrer (method replicated from 114 

Ellis, Norton, Mills, & Norton (2017)). The required mass of agar was dispersed in deionised water 115 

and heated to 90 °C whilst stirring. The resultant hot solution was fed into the jacketed pin-stirrer 116 

cooled to 5 °C via a peristaltic pump, set to a speed of 25 mL min-1. The inlet temperature was 117 

controlled to ~ 70 °C and the outlet to 5 °C to ensure gelation occurred under shear (gelation 118 

temperatures ~ 30 °C). The shaft rotation speed was set to 2000 rpm. Fluid gels were tested after 48 119 

hours to ensure post-production particle ordering completion and stored at 5 °C until use. Particle 120 

sizes were measured using an optical laser particle size analyser (Mastersizer, Malvern Instruments, 121 

UK). Agar fluid gels of concentration 1%, 2%, 3% and 4% agar were found to have average particle 122 

diameters of 188 ± 11 µm, 132 ± 9 µm, 112 ± 14 µm and 125 ± 5 µm respectively. 123 
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2.5. Shear rheology 124 

Rheological measurements were performed using a Kinexus Pro rheometer (Malvern Instruments, 125 

UK). For the agar fluid gels, viscosity curves were obtained by recording shear viscosity through a 126 

range of applied shear rates at equilibrium (0.001–500 s−1). Measurements were performed at room 127 

temperature (25°C). To avoid slip a serrated parallel plate geometry was used (60 mm serrated 128 

parallel plate) with 1 mm gap. Experiments were carried out in three replicates. 129 

2.6. Tribology 130 

Two different tribological set ups were investigated and compared. A rheometer with three-ball-on-131 

plate tribo-geometry attached and a mini traction machine were used to determine friction properties. 132 

A tribo-pair of stainless steel ball and lab-made PDMS discs were investigated; materials previously 133 

used to represent of oral surfaces due to similar mechanical properties to that of the tongue (Bongaerts 134 

et al., 2007; Dresselhuis et al., 2007). The stainless steel balls were provided by the manufacturer of 135 

the instrument used.  136 

2.6.1. Mini-traction machine 137 

A mini traction machine (MTM) manufactured by PCS Instruments, UK was used to perform 138 

tribological measurements to compare data obtained from the rheometers. The MTM consists of a ball 139 

loaded onto a disc producing a small point of contact where material can be assessed. The ball and 140 

disc are independently driven which gives precise control over speeds and direction of rotation of the 141 

contacting surfaces as well as ratio of speeds of the contacts. The MTM also allows for control over 142 

applied normal force. As the rheometer only has sliding functionality, pure sliding conditions of 200% 143 

slide-roll-ratio (SRR) was used. Three tests of ascending sliding speed 1 to 1000 mm/s were 144 

completed and the average reported. A volume reducing insert was used allowing for a sample size of 145 

15 mL. Experiments were performed at room temperature (25°C). A normal force of 1 N was used 146 

(unless stated otherwise) as in mouth friction was reported to be between 0.1 N and 10 N (Miller and 147 

Watkin, 1996). 1 N would allow low contact pressure, which is of relevance in oral processing 148 

applications. 149 
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2.6.2. Tribology attachment for rheometer 150 

A three ball-on-plate tribology attachment (TA) for Discovery HR-2 rheometer by TA Instruments, 151 

UK was used. The geometry consists of 3 x ¼ inch diameter stainless steel hemispheres, which screw 152 

onto a flat plate (Figure 1). The geometry head where the hemispheres were attached is flexible due to 153 

a spring-like beam coupling. 154 

The torque was the independent variable which enabled calculation of friction coefficient. The friction 155 

coefficient, µ, was calculated by: 156 

µ  
𝑀

𝑑𝐹
 

where M = torque (Nm), d = arm length at 0.015 m and FN = normal force (N). 157 

Flow sweeps were performed measuring torque through a range of applied velocities at equilibrium 158 

(0.0001 to 10 radians/s where the linear speed equates to ~ 0.002 to 150 mm/s sliding speed) with ten 159 

measurements per decade (50 measurements total) at room temperature (25 °C) and normal force of 1 160 

N, unless stated otherwise. During testing, the PDMS disc was secured using a custom 3-D printed 161 

base plate seen in Figure 2 and visible in Figure 1. A sample volume of 15 mL was used. Each 162 

sample was tested three times and an average obtained.  163 

The contact area and average contact pressure at 1 N normal force were calculated for both systems 164 

and are displayed in Table 1 below where total contact area was calculated using equations from 165 

Gabriele (2011). The TA system has a smaller contact area, but a larger contact pressure when 166 

comparing the same applied normal force.  167 

Table 1 – The ball diameter, contact area and average contact pressure at 1 N for the stainless steel ball and 168 

PDMS tribo-pair for each tribological set up. 169 

Instrument 
Ball diameter 

(radius, m) 

Total contact area 1 N 

(m2) 

Avg contact pressure 1 N 

(kPa) 

MTM ¾ inch (0.0095) 5.4 x 10-6 185 
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TA ¼ inch (0.003175) 3.7 x 10-6 270 

 170 

3. Results and discussion 171 

A series of Stribeck curves were investigated to compare and evaluate the tribological systems with 172 

different test samples: Newtonian fluids (vegetable oil and water), shear thinning polymer solutions of 173 

varying guar concentration, oil in water emulsions with varying oil concentration and particulate 174 

suspensions (agar fluid gels) with varying agar concentration are reported. These samples were 175 

chosen as they cover a range of formulations found in food products. They have also been well 176 

investigated tribologically and will be used to allow for comparison between data collected in this 177 

study and existing data from literature.  178 

3.1. Newtonian fluids 179 

The tribological behaviour of a Newtonian fluid, vegetable oil, was examined and shown in Figure 3 180 

comparing the MTM and tribology attachment (TA) for rheometer measurement systems. The TA 181 

system showed typical Newtonian behaviour, with a full Stribeck constructed over the speed range 182 

tested. Above 1 mm/s, the MTM and TA systems show similar behaviour to one another. For the 183 

MTM, it is clear only the hydrodynamic regime is present under these testing conditions as friction 184 

coefficient increases with increasing speed. 185 

The tribological behaviour of water, a lower viscosity Newtonian fluid, was examined and shown in 186 

Figure 4 comparing the MTM and TA systems. The data presented here is different to that of the 187 

more viscous vegetable oil, with an extended boundary regime observed for the TA system. The TA 188 

system shows boundary and mixed lubrication, whereas the MTM system shows a small amount of 189 

boundary, mixed and initial hydrodynamic lubrication behaviour. Again, the systems show a similar 190 

trend in friction behaviour where the speeds overlap. The initial increase in friction coefficient below 191 

0.01 mm/s is typical of static friction behaviour due to low sliding speeds (Kieserling et al., 2018). 192 

The correlation coefficient was calculated to show similarities between friction response between 193 

comparable sliding speeds (1 mm/s-150 mm/s). When comparing MTM and TA systems, a strong 194 
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positive correlation coefficient was observed of 0.85 for vegetable oil and 0.96 for water confirming a 195 

good agreement with the trend of data for the overlapping speeds for both measurement systems.  196 

3.2. Normal force comparison 197 

Further experiments were performed to examine a range of normal forces (Figure 5). Test parameters 198 

(speed, SRR, test substrates) were the same as previous experiments but the normal force was 199 

changed. Normal forces examined were 0.1 N - 5 N, to explore the range of normal forces reported to 200 

be experience in the mouth (Miller and Watkin, 1996). The test lubricant was vegetable oil.  201 

For the MTM, the results at 1 N, 3 N and 5 N normal forces are presented, showing the same 202 

lubrication regimes over the speed range tested (Figure 5a). The MTM system showed a reduction in 203 

friction coefficient with increasing load which can be explained by smoothing of the surfaces due to 204 

deformation of the asperities (Prinz et al., 2007).  0.1 N showed high variation due to limitations in 205 

normal force control of the equipment so is not presented in this work.  206 

The TA system allowed the measurement of friction at low normal force and speed (Figure 5b) as a 207 

full Stribeck curve was obtained for the range of normal forces. 0.1 N and 1 N behaved similarly, with 208 

a greater friction coefficient at low sliding speeds compared to 3 N and 5 N, which also behaved 209 

similarly at these speeds. As with the MTM system, the TA system showed a reduction in friction 210 

coefficient with increasing load. A greater reduction in friction coefficient was observed for the MTM 211 

system compared to the TA system. 212 

The normal force capability of both instruments was examined further by comparing the average 213 

applied normal force to assess accuracy. Table 2 shows the variation in the control of normal force for 214 

both instruments at a range of speeds where they both showed values close to 1 N with overlapping 215 

standard deviations.  216 

Table 2 – A comparison of normal force (1 N applied) at different fixed speeds for pure vegetable oil for two 217 

different tribological measurement systems (mean ± 1 standard deviation). 218 

Speed (mm/s) 
Measured normal force (N) 

MTM TA 
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1 1.03 ± 0.02 1.00 ± 0.04 
10 1.03 ± 0.01 0.97 ± 0.04 

100 1.01 ± 0.01 1.03 ± 0.06 
 219 

3.3. Guar gum solutions 220 

The aim of these particular studies were to investigate the friction behaviour of a shear thinning 221 

polymer solution. Guar gum solutions of 0.2, 0.4 and 0.6 wt% were tribologically investigated using 222 

the MTM and TA systems. There is smooth progression between regimes of all samples tested on the 223 

MTM (Figure 6a), although only a small section of the hydrodynamic regime was observed for the 224 

speed range tested. The friction behaviour transitions from boundary lubrication where the ball and 225 

PDMS are in contact, to mixed lubrication as the guar gum solutions begins to be entrained; to the 226 

hydrodynamic regime (>100 mm/s) when the guar solutions are fully entrained. Overall for the MTM, 227 

there was little difference observed between concentrations of guar gum tested under these conditions 228 

and the solutions showed a similar response to water. The TA system showed boundary lubrication 229 

and mixed lubrication over at the speed range tested (Figure 6b). Below 0.1 mm/s, static friction is 230 

observed. The data generally followed the same trend until the speed reached 10 mm/s where 231 

definition between the different samples becomes clearer. Above this speed, the mixed regime is 232 

entered and guar gum solutions with increasing concentration lubricate more effectively. Below 233 

speeds of 0.5 mm/s, greater concentrations of guar gum exhibited the highest friction coefficient. This 234 

is likely due to the increased amount of polymer chains of guar gum which have been suggested to 235 

block the contact inlet, limiting lubrication of the contacting surfaces (Garrec and Norton, 2012). 236 

 237 

For 0.4% guar gum solution, the data from each instrument was compared (Figure 7). Above 1 mm/s, 238 

friction coefficient decreases as the mixed regime is entered. The MTM and TA data show a similar 239 

trend in friction behaviour across the overlapping speed range. 240 

The MTM system shows mixed and hydrodynamic lubrication, but little boundary lubrication. The 241 

TA system shows static, boundary and mixed, with little/no hydrodynamic lubrication behaviour at 242 

the sliding speed range examined. Both systems observed the main differences between increasing 243 

concentrations of guar gum solutions in the mixed regime, as friction coefficient is decreasing with 244 
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increasing sliding speed. When comparing these results to literature, similar mixed lubrication 245 

behaviour has been previously reported by De Vicente, Stokes & Spikes (2004) and Garrec & Norton 246 

(2012) who also used an MTM to examine their samples. However, unlike the MTM system, the TA 247 

system shows differences between the samples in boundary lubrication where with increasing guar 248 

gum concentration, the friction coefficient increases. The MTM does not show the same degree of 249 

differentiation in the boundary regime where all samples behave similarly. This could be attributed to 250 

only using pure sliding conditions (200% SRR) whereas the studies by De Vicente, Stokes & Spikes 251 

(2004) and Garrec & Norton (2012) use a mixture of sliding and rolling conditions; SRR has been 252 

shown to affect tribological measurements (Yakubov et al., 2015).  It may be of interest to complete 253 

further research in order to understand the importance of sliding and rolling conditions to oral 254 

processing applications.  255 

3.4. Oil in water emulsions 256 

Oil in water emulsions with 20%, 50% oil as well as pure water (0%) and pure oil (100%) were 257 

investigated using the MTM and TA systems. The results for the MTM system do not follow a typical 258 

Stribeck curve, there is little distinction between the different samples (Figure 8a) with the exception 259 

of the 0% oil (pure water) sample discussed previously. The oil is highly lubricating; all oil samples 260 

show similar lubrication properties as 100% oil with friction coefficients less than 0.1 across the 261 

speeds tested. Results from the TA system for the speed range studied showed with a greater oil 262 

content providing greater lubrication (Figure 8b). The data observed for 100% oil as previously 263 

discussed shows a near perfect Stribeck curve with clear definition of regimes and smooth transition 264 

between them. The emulsions demonstrated similar friction response, with boundary lubrication 265 

present until around 1 mm/s, where as speed increased mixed lubrication and initial hydrodynamic 266 

lubrication were observed.  267 

Whilst the behaviours for both systems are not similar, generally, the MTM showed poor distinction 268 

between all samples containing oil whereas the TA system showed distinction between 100% oil and 269 

the emulsions. Over the speed range tested, the TA system was successful in showing as much of the 270 

Stribeck as possible allowing better comparison of the samples. For the 20% oil emulsion, the data 271 
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from each instrument was compared (Figure 9). Above 10 mm/s, the MTM and TA systems showed 272 

similar trends in friction behaviour where the mixed lubrication progresses into hydrodynamic 273 

lubrication with increasing speed.  274 

Existing tribological data in literature by Malone et al. (2003) examining emulsions closely resembles 275 

the results obtained using the TA system, where boundary and mixed lubrication was observed for oil 276 

emulsions and mixed and hydrodynamic lubrication was observed for pure oil. The MTM system 277 

demonstrated similar results to Dresselhuis et al. (2007) who reported emulsions exhibiting similar 278 

friction coefficient values to pure oil. Friction is determined by oil covering the contact points and/or 279 

film formation due to oil release from droplets.  280 

3.5. Soft particulate gels 281 

Agar fluid gel particulate systems of varying concentrations of agar (1, 2, 3 and 4 wt%)  were 282 

investigated using the MTM and TA systems. The viscosity profiles of agar fluid gels at various agar 283 

concentrations were measured (Figure 10). All systems showed shear thinning behaviour as expected 284 

for interacting particulate systems (Saha and Bhattacharya, 2010). As agar concentration increases, 285 

the steady shear viscosity increases across the shear rates examined. 286 

The friction measurements for the MTM system showed some mixed and hydrodynamic lubrication 287 

(Figure 11a). As speed was increased to 100 mm/s, friction coefficient decreases for all samples. As 288 

speed increased above 100 mm/s, friction coefficient gradually increases. Above 100 mm/s, the agar 289 

fluid gels show with greater increase in concentration of agar the poorer the lubrication. Increasing 290 

concentration of agar is said to increase particle rigidity (Gabriele, 2011). For the less rigid fluid gel 291 

systems with lower concentrations of agar, it is likely particles are able to be entrained by squeezing 292 

into the gap. For the more rigid particles at higher concentration, where the friction coefficient 293 

changes very little over the speed range tested, it could be possible only few particles are able enter 294 

the gap so the remainder are building up around the contact area thus increasing friction.  For the 295 

speed range studied, the TA system exhibited static, boundary and mixed lubrication with increasing 296 
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speed (Figure 11b). Above 0.05 mm/s, clear distinction between agar concentrations becomes 297 

apparent; where with a greater concentration of agar, there was a lower friction coefficient.   298 

 299 

For 4% agar fluid gel, the data from each instrument were compared (Figure 12). A difference in 300 

friction behaviour can be seen between the systems, where the TA systems shows an unusual increase 301 

in friction coefficeint around 10 mm/s. This can be described as a micro-EHL regime, also observed 302 

by A Gabriele, Spyropoulos, & Norton (2010). This regime describes how at low sliding speeds only 303 

the fluid medium can access the gap between the ball and the disk, and as speed increases particle 304 

entrainment begins which results in an increase in the values of the friction coefficient as gap size is 305 

similar to particle size. As speed increases further, more particles are entrained and this decreases the 306 

friction coefficient. This is not present with the MTM; possibly due to the limited amount of mixed 307 

lubrication observed in the speed range tested. If lower speeds could be achieved, it may be possible 308 

this behaviour is present under these conditions. The differences in friction coefficient between the 309 

two systems with the agar fluid gel may be due to differences in contact area and pressures. The 310 

smaller contact area and greater contact pressure may act to limit the amount of particles in the 311 

contact, increasing friction coefficient for the TA system compared to the MTM system.  Futher 312 

research is required to understand how contact area and pressures affect entrainment of particulate 313 

systems like agar fluid gels.  314 

Measurements performed using the TA system was able to demonstrate similarities in friction 315 

response to the established MTM system for some model food-based formulations. These results 316 

indicate that friction measurements of simple systems depend less on the specific geometry compared 317 

to more complex systems. The TA and MTM systems showed agreement and similar trends in the 318 

Newtonian fluids, guar gum and oil in water emulsions when the speeds overlapped. Differences were 319 

observed between the TA and MTM systems for soft gel particles; although, it has been previously 320 

reported particulate systems are difficult to measure tribologically (Yakubov et al., 2015). Both 321 

systems were comparable to similar studies in literature. The TA system afforded boundary 322 

lubrication features of the Stribeck curve due to achieving lower speeds compared to the MTM. This 323 
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finding is useful for researchers interested in boundary lubrication where surfaces are in contact. 324 

However, at very low speeds there is a larger associated error between measurements; likely due to 325 

stick-slip behaviour between the contacting surfaces (Goh et al., 2010; Zhang and Meng, 2015). The 326 

Discovery HR-2 three-ball-on-plate tribology geometry is flexible but the contact area is small, 327 

meaning for a given normal force a high pressure is applied when compared to the MTM system. This 328 

may be good for some applications where high pressures are representative of a process, like 329 

mimicking joints. However, it is also possible to examine samples at low contact pressures, as normal 330 

forces lower than 1 N can be used successfully with soft surfaces unlike the MTM, which may be 331 

relevant to some biological, soft tribology applications. 332 

4. Conclusions and future work 333 

The friction properties of a range of model food like systems were measured using a three-ball-on-334 

plate rheometer attachment and compared to measurements obtained from an MTM. Testing using a 335 

soft surface showed similarities between the two different testing equipment for simple systems, 336 

showing the friction results depend less on the specific geometry compared to complex systems. The 337 

data yielded was also comparable to existing studies in literature. The TA system allowed the 338 

boundary lubrication regime to be examined for all samples due to achieving lower speeds compared 339 

to the MTM; speeds as low as 0.02 mm/s are able to be tested using the Discovery HR-2 rheometer. 340 

The rheometer however, is limited to sliding friction only. For the guar gum solutions and oil in water 341 

emulsions, the three-ball-on plate friction data showed similar trends when compared to MTM data, 342 

with relative distinctions between the different samples. However, for the soft particulate system, 343 

discrepancies were observed likely as a result of particle entrainment being affected by difference in 344 

contact area. As there are many parameters that can affect tribological measurements, including the 345 

testing equipment, it is clear more work needs to be done to determine ideal testing conditions to be 346 

able to successfully analyse food products, which are often particulate in nature. Ideally, a standard 347 

protocol for measurements using a rheometer with tribology attachment should be determined and 348 

adopted. It is recommended further studies are completed to compare friction data obtained using a 349 
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rheometer to sensory data with the intent of finding relationships between quantitative measurements 350 

and texture perception.  351 
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 431 

 432 

Figure 1 – Three-ball-on-plate tribology attachment for the Discovery HR-2 rheometer by TA Instruments. 433 

 434 

Figure 2 – Photographs of 3-D printed base plate (tribometer cell) for holding the PDMS disc.  435 

 436 
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 437 

Figure 3 – Friction coefficient vs sliding speed of vegetable oil with the two different tribological measurement 438 

systems at normal force 1 N. 439 

 440 

Figure 4 – Friction coefficient vs sliding speed of water with the two different tribological measurement systems 441 

at normal force 1 N. 442 
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443 

 444 

Figure 5 - A comparison of normal force for pure vegetable oil performed by (a) MTM by PCS Instruments and 445 

(b) Discovery HR-2 rheometer by TA Instruments with three-ball-on-plate tribology attachment. 446 

 447 
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448 

 449 

Figure 6 – Friction coefficient vs sliding speed of guar gum solutions of varying concentration measured using 450 

(a) MTM by PCS Instruments and (b) Discovery HR-2 rheometer by TA Instruments with three-ball-on-plate 451 

tribology attachment at normal force 1 N. 452 

 453 



20 
 

Figure 7 - Friction coefficient vs sliding speed of 0.4% guar gum solution with the two different tribological 454 

measurement systems at normal force 1 N. 455 

  456 
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 457 

458 

 459 

Figure 8 - Friction coefficient vs sliding speed of oil in water emulsions of varying oil concentration measured 460 

using (a) MTM by PCS Instruments and (b) Discovery HR-2 rheometer by TA Instruments with three-ball-on-461 

plate tribology attachment at normal force 1 N. 462 
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 463 

Figure 9 - Friction coefficient vs sliding speed of 20% oil emulsion with the two different tribological 464 

measurement systems at normal force 1 N. 465 

 466 

Figure 10 – The shear rheology for agar fluid gels of varying concentrations.  467 
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468 

 469 

Figure 11 - Friction coefficient vs sliding speed of agar fluid gels of varying concentration measured using (a) 470 

MTM by PCS Instruments and (b) Discovery HR-2 rheometer by TA Instruments with three-ball-on-plate 471 

tribology attachment at normal force 1 N. 472 

 473 
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 474 

Figure 12 - Friction coefficient vs sliding speed of 4% agar fluid gel with the two different tribological 475 

measurement systems at normal force 1 N. 476 

 477 


