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General: Stratification and mixing in large enclosures

* Hydrogen release in containment under severe accidents

* Helium jets entering reactor cavity- High Temperature Gas-cooled Reactors

Air AirsHe o Distribution of Helium concentration.

Air

o Impacts safety

* Reactor plena- Buoyancy, Free Jets, Stratitied flows
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Thermal transients in the pools of Liquid Metal-cooled Reactors

Core cover plate
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Th ermm al S tr lppln g Handbook of Nuclear Engineering: Vol. 4.
New York: Springer, 2010. Print.

P. Chellapandi et al. / Nuclear Engineering and Design 239 (2009)2754-2765
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Thermal stratification — Natural circulation

—Hot Pool Level Height

)
T

Upper Instrumentation
Structure (UIS)

[HX Inlet Height

[HX

Core Exit Height

A Reactor Core
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Natural circulation

Low flow

Cold transients
Unprotected loss of flow

Unprotected loss of heat sink

Thermal
Stratification
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Thermal stratification - thermal fatigue & reactivity feedback

. Control Rod Control Rod
* Thermal fatigue Drive Line Y v Line
Carmvection Expansion _
n hot pool
Strailfication * Extensional strain
interface
'y Control \
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Expansion, L4
[1] Handbook of Nuclear Engineering: Vol. 4. uel

New York: Springer, 2010. Print.
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Thermal stratification — Cold transients

* Buoyant dissipation

* Turbulent generation

* Pr<<1
Iy gpw"T"
lf = ——
- r 3 -a r 3 A 3 u,wldU/dZ
Uo Uo Uo
* Experiments
Pr=1 Pr=0.01 Pr=0.01
BAT = 0.01 BAT = 0.01 BAT = 0.001

e CFD simulations
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Experimental studies to understand thermal stratification in LMRs

Experiment Fluid Vertical Spatial Resolution [mm| | Entire length | Temporal Resolution
leda (1 Sodium, Water 150, 100, 50, 20 No Thermocouple
Kimura 2 Water 20, 5 Yes & No, resp. Thermocouple
Puustinen 37 | Water, Steam None given No Thermocouple
Tanaka 4 | Sodium, Water None given - Thermocouple
Uotani 19/ Pb-Bi One Traversing Point Yes Thermocouple
Vidil 161 Sodium 100 Yes Thermocouple

[1] Y. leda, et. al. Experimental and analytical studies of the thermal stratification phenomenon in the outlet plenum of fast breeder reactors. Nuclear engineering and design, 120(2-3):403—414, 19¢
2] N. Kimura, et. al. Experimental study on thermal stratification in a reactor vessel ofinnovative sodium-cooled fast reactor— ... Journal of Nuclear Science and Technology, 47(9):829—-838, Jan 2
3] M. Puustinen, J. Laine, and R. Antti. Ppoolex experiments on thermal stratification and mixing. Technical report, NKS, 2009.

4] N. Tanaka, S. Moriya, S. Ushijima, T. Ko?a, and Y. Eguchi. Prediction method for thermal stratification in a reactor vessel. Nuclear Engineering and Design, 120:395-405, 1990
M. Uotani. Natural convection heat transfer in thermally stratified liquid metal. Journal of Nuclear Science and Technology, 245\(/3):442- 51, June 1987. )
6] R. Vidil, D. Grand, and F. Leroux. Interaction of recirculation and stable stratification in a rectangular cavity filled with sodium. Nuclear Engineering and Design, 105:321-332, 1988
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Low Prandtl number fluids- Completely different than Pr-1

In EA

InE,

* Eddy thermal diffusivity is larger

than molecular thermal diffusivity at much

higher Re (Re>100,000 for Pr~0.005)

* L.MRs- Transition zone between conduction
and convection

* Amplitude of thermal fluctuations
is much higher than velocity fluctuations

E, E,(Pr=1)

/"y

E . (Pr<<1)

Re, Pr

_ k-SIS

* Spectrum shifts for all length-scales

G. Grstzbach /NuclearEngineering and Design 264 (2013) 41— 55
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Temperature field information is difficult to gather experimentally

Previous experiments have used thermocouples
- Errorin gradient- spatial resolution

- Information on thermal fluctuations

- Too much interference in the experiment

Experiment Fluid Vertical Spatial Resolution [mm| | Entire length | Temporal Resolution
Ieda [y Sodium, Water 150, 100, 50, 20 No Thermocouple
Kimura [z Water 20, 5 Yes & No, resp. Thermocouple
Puustinen 371 | Water, Steam None given No Thermocouple
Tanaka | ;4 | Sodium, Water None given - Thermocouple
Uotani 5 Pb-Bi One Traversing Point Yes Thermocouple
Vidil [e) Sodium 100 Yes Thermocouple

[1] Y. leda, et. al. Experimental and analytical studies of the thermal stratification phenomenon in the outlet plenum of fast breeder reactors. Nuclear engineering and design, 120(2-3):403—414, 19¢
2] N. Kimura, et. al. Experimental study on thermal stratification in a reactor vessel ofinnovative sodium-cooled fast reactor— ... Journal of Nuclear Science and Technology, 47(9):829—-838, Jan 2
3] M. Puustinen, J. Laine, and R. Antti. Ppoolex experiments on thermal stratification and mixing. Technical report, NKS, 2009.

4] N. Tanaka, S. Moriya, S. Ushijima, T. Ko?a, andY. Eﬁuchi. Prediction method for thermal stratification in a reactor vessel. Nuclear Engineering and Design, 120:395-405, 1990
M. Uotani. Natural convection heat transfer in thermally stratified liquid metal. Journal of Nuclear Science and Technology, 24(6):442-451, June 1987. )
6] R. Vidil, D. Grand, and F. Leroux. Interaction of recirculation and stable stratification in a rectangular cavity filled with sodium. Nuclear Engineering and Design, 105:321-332, 1988
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Scaled outlet plc?num design — Reference geometry (ABTR)
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Scaling to conserve both Richardson number and Peclet Number

Po = density atreference temperature, T, 14

A_p =normalized density difference at Ty,;

U, = ABTR pP g = body force

c - -
\ Ri, prR k = thermal dif fusivity

Dg. = scaled length

Do — RiABTR U.%C USC = scaled vel()City

Sc — A
Fp Pesprr = 213

Rijprr = 553

Ward et al. Annals of Nuc. Ener.(2018)
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Scaling cannot feasibly conserve both Ri and Pe

Tei{r?l)l;a;g;-e Fluid Dia(nnlgter
ABTR 355 to 510 Sodium 1.02
Scaled Na 120 to 200 Sodium 0.83
Scaled Ga 50 to 200 Gallium 0.27

Richardson number conservation alone is acceptable along with
geometric sca]ing 3] 4] [5]

[4] Aoki, Tadao, and Keizo Okada. "Experimental study on thermal stratification.” Proc. IAEA Specialists. Meeting Internal Working Group on Fast Reactors, Grenoble. 1982.
[5] Tenchine, D., and P. Gauthé. "Occumence ofthermal stratification in sodium cooled fast reactorpiping." Nuclear Engineering and Design 274 (2014): 1-9.
[6] leda, Y., et al. "Experimental and analytical studies of the thermal stratification phenomenon in the outlet plenum of fast breeder reactors. " Nuclear engineering and design 120.2-3 (1990,
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Gallium can be used to meet the experiment’s requirements

UDV Sensors can only go up to 200°C
Melting point of sodium is 97°C (Pr=0.006) giving a small working

lemperature range
Other Candidates (low Pr): Mercury, Potassium

Gallium is not toxic, reactive with air/water, nor prohibitively expensive

= Gallium Thermal-hydraulic Experiment (GaTE) facility

> 1/20% gealed upper plenum
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GaTE facility
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SWI-DTS can be used to measure temperature data

Swept-wavelength interferometry based distributed temperature sensors
are based on Rayleigh backscattered signal

There is a fast response time along the entire length of the probe (250Hz,

2.5mm)

Passes through

Variable-wavelength “1l./ Rayleigh scattering in fiber
laser source M |

Measured light

Reflected light

—) Reference beam

Detector
ODiSI

[1] (2018). Technology. Retrieved from http://lunainc.com/ttechnology/
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Thermal stratification front behavior is a function of the core exitvelocity

Distance from bottom [m]
‘Inner

'UIS'
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Velocity measurements- UDV or Acoustic Backscattering

A"

* Opacity of liquid metals

* Time resolution is important to

Transducer capture velocity fluctuations
> \
P1
P2 =
\\
Signal Processing Inc. (SUI) l
Principle:_Doppler frequency shift . »
pts ¢ i

T

dm-f -cos®- T = 2.f .¢cos®
& pri ¢ 4 probes in scaled plenum
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Velocity measurements- UDV or Acoustic Backscattering
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Velocity measurements- UDV or Acoustic Backscattering
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Corresponding to
Natural circulation
flow rates

Corresponding to
Forced convection
flow rates

KANSAS STATE

Low flow vs high flow rates-CFD (Large eddy 51mu|at10ns> for GaTE facility

L
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(c) 120 sec (d) 180 sec (e) 240 sec

(b) 2.5sec (c)4.5sec

(a) 0.5 sec (d) 6.5 sec

(e) 8.5 sec
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Experiments vs CFD

Normalized temperature at
0.20m
=)
i
L
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Multiple realizations are
performed.

Purple - 95% confidence band

Grey — 90% confidence band

Good Agreement
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Time resolution of the data becomes really important
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System level safety analysis

* SASAA/SASSYS-1 system

level code :

0-D models

16+1=17 Segments

Zone 1

Upper
Reflector
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51.97

36.03

35.785

32.185

28.37

* Couple with 3-D CFD,

Possible but expensive

ll[xZ-uw’ llle-uw‘

-—
—

THX2-sh THX1-sh
< -~
] |
o <
<+ <+

It D(Z-dwl llle-dw}
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Perfect Mixing Model
pVey(Tavg — To) = pVep (Tie — Tp) — f p Auc,(T, — Ty)dt'

1-D Scalar Transport Model

or o (_oT 0 _
P2 (k) - L(ur) S
or ox\ 0Ox) Ox Uil = =Feox
K = k; +«k
/ \
Eddy Thermal diffusivity Molecular Thermal diffusivity
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Empirical- Eddy Thermal Diffusivity

10°

Regime Re,/Ri Interval Ky + K
Molecular Re./Ri < 150 K ‘
Transitional 150 < Re./Ri < 1000  0.015«(%=) =

N . ]/ ]
Energetic Re./Ri > 1000 0.4« (Ref) ’ 0

2 1"lu 10! 10 % 10! 102 N

. gBATD q
I = 2 ReT - —

u 43 Ward et al. Annals of Nuc. Ener.(2018)
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Problem Description

. Adiabatic walls (i

. Inlet velocity varied * .
- Re_/Riin the realm of 10° to 10> -

. T,.=200°C =

e Ty =50°C |
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Computational Fluid Dynamics
. Large Eddy Simulation

» Wall-adapted local eddy-viscosity model

 Second Order Backward Euler Transient
Scheme

« ANSYS-CFX
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LLES simulations-Cold Transients
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Energetic Regime

480 T T T T
1-D Model
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Molecular Regime
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Transitional Regime

480
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Can not capture thermal fluctuations at interface
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Scalar Turbulence- How can you learn from Scaled Experiments or DNS ?

|
; L 0.0 0.2 0.4 0.6
z
l »O0
f M, (z,t,At) = lim '—/ (' —2)"P(2,t + At|x, t)dx .
T N e et SN AN N aomdt ) o . Learning from
,‘ . . . K > Moment—equation . M
'S".a_" '7;' A, uﬁ ‘”’ ) Vi Y. ’ time series

A[l = K, AIQ =D

s

~~
First—two—moments

0.0 02 0.4 06 0.8 10 dz=pdi+odW ] agrangian model for scalar turbulence
Ito— SDE
DNS data provided by Bojan Niceno et al. (Paul Scherrer Institute)

. Nu-EST
ﬁ Laboratory

KANSAS STATE
UNIVERSIT

‘ College of Engineering




Conclusions

e Thermal stratification and associated fluctuations near the interface should be resolved.

o GaTE facility- Scaled plenum at KSU has been used to capture cold transient
experiments such as under protected loss of flow.

« Rayleigh backscattering for temperature and Acoustic backscattering for velocity.
o CFD-LES time resolution is critical for modeling fluctuations.
o Eveni1-D models are good but statistics must be preserved to capture time dynamics.

o Future Work- Unprotected transients, Advanced Reduced Order models, Understanding
fluctuation characteristics
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Questions !
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