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Motivation

* Growing interest in high-fidelity models of all
relevant physics; ongoing development of

- NEAMS ToolKit (PROTEUS, and others)
- MOOSE-enabled MAMMOTH/Rattlesnake
 Recognized need to conduct new experiments

and to generate new data that for validation of
such models

* Focus of this work was to generate first-of-a-
kind, transient, reaction-rate measurements.




Where to Generate Date? UWNR.

* TRIGA-fueled MTR
conversion with 2x2 bundles
In square lattice

e Conversion to LEU (from
HEU FLIP) fuel completed in
09/2009

1 MW licensed power with
pulsing capability to ~ 1 GW




(micro-pocket fission detector)

So What i1s a MPFD?

Conductive contact
and neutron reactive

film Insulator with Insulatar with
conductive deposit conductive
followed by neutron deposit
reactive coating
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[1] McGregor, D. S., Ohmes, M. F, Ortiz, R. E., Ahmed, A. S., & Shultis, J. K. (2005). Micro-pocket fission detectors (MPFD) for in- 4
core neutron flux monitoring. NIM A, 554(1), 494-499.

[2] Unruh, T., Rempe, J., McGregor, D., Ugorowski, P., Reichenberger, M., & Ito, T. (2012). NEET Micro-Pocket Fission Detector-FY

2012 Status Report. INL/EXT-12-27274



Simplified, Two-Wire Design

Pocket Filled
with Argon Gas
Reaction Product
Neutron @.
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M.A. Reichenberger,, D.M. Nichols, S.R. Stevenson, T.M. Swope,
Caden W. Hilger a, T.C. Unruh, Douglas S. McGregor a , J.A. Roberts, “Fabrication
and testing of a 4-node micro-pocket fission detector array for the Kansas State
Anode Cathode University TRIGA MK. Il research nuclear reactor,” NIM A 862 (2017)
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S.R. Stevenson, M.A. Reichenberger, D.M. Nichols, T.C. Unruh, J.A. Roberts,
T.M. Swope, C.W. Hilger, and D.S. McGregor, “Micro-Pocket Fission Detector
Instrumentation for Research and Test Reactors,” ANS Winter Meeting (2016)
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MPFD Signal Processing
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four-node array
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» Shaping amplifier with fast |
shaping, discrimination, and ili'
counting capabillity

- Digital “count” output

- USB interface to custom
LabView counting software

» Supports both pulse- and
current-mode operation (not
switchable)




Early Mock-Up Testing at K-State

Goal: use four chambers with Plug
approximately two unique masses in small
region to test new electronics and M\mmm )
understand response. Gas Fill

Nodes 1 and 4 HEU

Nodes 2 and 3 nat. U

Axial separation ~1 cm at
fuel mid plane

| Top Grid Plate

Node 1
} Node 2
Node 3
B Node4 ;2::3

Region

Bottom Grid Plate



Early Mock-Up Testing at K-State

—— M0 power, no bias = node 0 {93% U)) — node 0F3 (93% U}
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107 1 —— at power, no bias 10° 1 —— node 2 {nat U) 35 | = node 2/0 (x100)
—— gt power, bias on — node 3 (93% U) = node 173 (x100)
LLD LLD LLD
= 3':' T
=]
10% 10%
neutrons B
I i II:I_.; 25 1
3 3 =
& 3 ] o 3 =1
2 10 = 10 =9
2 ol e
° 120% of max - & 15
107 - 0% of ma 107 e
channel at 2
power without C 10
10 bias used as 10t
LLD for at 0.5
power with bias
ll}.:l ! ! ! 1'}-3 ! ! I DU ! I I !
0 200 400 e00  BOO 1000 0 200 400 e00  BOO 1000 0 200 400 e0DQ BOO 1000
channel channel channel
Comparison of noise and signal spectra. LEU nodes same as UWNR arrays (within Ratios (With smoothing) suggest
Only the shape is meaningful as fabrication tolerances, etc.). HEU is more somewhat consistent spectra.

magnitudes affected by MCA dead times. sensitive and makes testing easier.

Reasonably promising, but pulse-height spectrum not ideal (no “plateau’)
for calibration, and linearity with power not perfect; same true for 7 wands
constructed for deployment.



Pulse-Mode Operation + Calibration

C(LLD)
R

signal C IS measured count rate (s?)

Meg(LLD) =

noise

R s true fission rate (s* g*)

ldea* is to parameterize
effective mass as a function
4 of LLD for a known flux (or

- fission rate) and then deduce
LLD true fission rate for any
measured count rate in any
other environment.

Valley to the left of which noise can be

eliminated W|th minimum IOwer-level * V. Lamirand, et al.Miniature Fission Chambers Calibration in Pulse
: H. ; Mode: Interlaboratory Comparison at the SCK-CEN BR1 and CEA
discriminator (LI—D) Settmg- CALIBAN Reactors.)I/EEE TNSI, 61(4), 2306-2311 (2014).



Changes, E-field, new materials

Original MPFD Design
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Improved E-field based on common, central cathode.
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Other changes/improvements:
Tikkeewodes - titanium (in place of Fe/Ni materials)
- 20% enriched U (in place of natural)
- better feed-through fittings to eliminate
Node 2 gas leaks into cable
- use of shared cathode leads to
some electronic coupling
Node 0 10

Node 3

Node 1



Experimental Campaign
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reference position.

Red locations correspond to
configuration 1 (C1).

Green locations correspond to
configuration 2 (C2).

White R’s indicate RTD in
configurations C1* and C2*.
Underline is always an RTD.
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Schematic of UWNR and 13 possible probe locations.



Experimental Campaign

Multiple foil activations in reference location

Single-probe tests for calibration in reference location included
pulse-height acquisition at 100 kW and measurements at
100/300/500/400/200 kW in pulse- and current-mode operation.

Steady-state, multi-probe configurations C1/C1*/C2/C2* for
multiple powers at even control banking and 100 kW for five
flux-shaping control configurations

Ramps from 300 W to 400 kW with 20-, 30-, and 50-second
periods

Square waves from 300 W to 250, 500, and 1000 kW.
Pulses of $1.43, $1.71, and $1.97

12



Facilitating Insertion of MPFDs




Insertion of MPFDs (and RTDs)
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Activation Foil Mock-Up
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Counting Activity uCi

Counting Results (unprocessed)
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- convert to saturation activities (with uncertainties)
- apply unfolding techniques to determine flux
spectrum (e.g., SAND-IV, MAXED, etc.)
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ount rate (1/s)

Single-Probe Tests: Example Data

Potential impact from

ad-hoc filter
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mode operation. Current-mode output includes a baseline
signal of ~1000 cps that must be removed




Single

Wand 1 -- pm -- Linearity -- mean

Probe Tests: Linearity

Wand 2 -- pm -- Linearity -- mean

Wand 3 -- cm -- Linearity -- mean
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Summary of Single-Probe Tests

Testing showed several nodes suffered several, systematic
problems.

A summary of nodes in each wand that exhibited expected
behavior based on initial analysis of single-wand testing is
shown below. Bolded indicates final operation mode.

Wand Pulse Mode Current Mode

1 0,1,2 0,1,2

2 0,1,2 0,1,3

3 0,1,2 0,1,2,3
Estimated that 20

4 0,2 0,2,3 individual detectors would

5 none none provide reliable
responses.

6 0,1,2 0,1,2,3

7 none 0,1,3 19



Even Bank Multi-Power Test with 100 kW for C1/C2 Configurations

|

Normalization:

Rshown = Rmeas :

Comments:
Obvious problems with M2
and M7
Systematic difference in M4
predictions
MCNP uncertainties ~4-5%
(counting statistics no yet
processed)




RTD Results of Even Bank Multi-Power Test with 100 kW for C1*/C2* Configurations

Comments:

* Obvious problems with
M2 and M7
Systematic difference in
M4 predictions
MCNP uncertainties
~4-5% (counting
statistics no yet
processed)
Other uncertainties not
yet processed
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Snapshot of Pulsing Data

$1.43 pulse

._.
2

F— Pulses tracked using built-in buffer with
0.5 ms time binning in current-mode
operation. Shown is the response from
Wand 1 (at left).
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Processing of transients still underway, but initial data suggests
successful data acquisition for all six pulses performed.



Summary of Modeling Effort

Scoping studies to understand material spatial
resolution needed to capture material evolution
and thermal feedback

Systematic review of fuel-vendor information
and other data formally documented

Python-driven, input generator automates 10k+
lines of input for MCNP and Serpent

MCNP Input used as part of automated CAD
model generation for 3-D meshing needed for
PROTEUS, etc.

24



Moving Forward: Device Analysis

Several unresolved issues:
* Pulse-height spectrum inconsistent with prediction
e Sensitivities iInconsistent with measured masses

» Large sensitivity to environment (gamma
background, RF interference, control drives, etc.)

Solution: build from the ground up using a surrogate
device and a software-like approach to debug and
generate data for systematic model validation*.

*See poster this afternoon on initial model development. 25



Moving Forward: Data Analysis

Formal evaluation of data

* Experiments provide several
CRIT and RRATE measurements et oo

for which ample examples exist R
In the IRPhEP handbook

* Transient RRATE experiments
resulted in (we think) first-of-a- .
Kind measurements

» Advanced models needed as
part of bias evaluation effort

26



Conclusions

« System of novel, micro-pocket fission detectors
(MPFDs) produced and deployed at UWNR

* Several steady-state and transient experiments
were conducted to measure local fluxes and
temperatures

» Better understanding is needed of detector
response via evaluation and continued
development/experiments

Thanks! jaroberts@ksu.edu

KANSAS STATE @WISCONSIN

UNIVERSITY.



Fuel-Element Radial Discretization
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38.10 cm

Fuel-Element Axial Discretization
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Approximately 9 axial divisions
required to eliminate bias (with or

without axial temperature profile)



Initial Verification of Fresh Core Model
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Modeling of UWNR iIn PROTEUS

d

Full CAD model automatically produced from Model koo
MCNP after further development of Trelis Serpent | 1.35566 + 0.0007
plugin. MCNP | 1.35536 + 0.0019
Proteus 1.35560
Meshing continues, but issues remain with PROTEUS results are deceptively
some material assignments and surface close to Monte Carlo, but suggests

overlaps that may require manual adjustment. a working flow of data.
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