Kansas State University Libraries

New Prairie Press

Kansas State University Undergraduate Research Conference

Spring 2019

Design of sensors for in-vivo detection of cancer related enzymes

laura soto

Follow this and additional works at: https://newprairiepress.org/ksuugradresearch

Part of the Alternative and Complementary Medicine Commons, and the Nanomedicine Commons

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Recommended Citation

soto, laura (2019). "Design of sensors for in-vivo detection of cancer related enzymes," *Kansas State University Undergraduate Research Conference*. https://newprairiepress.org/ksuugradresearch/2019/ posters/43

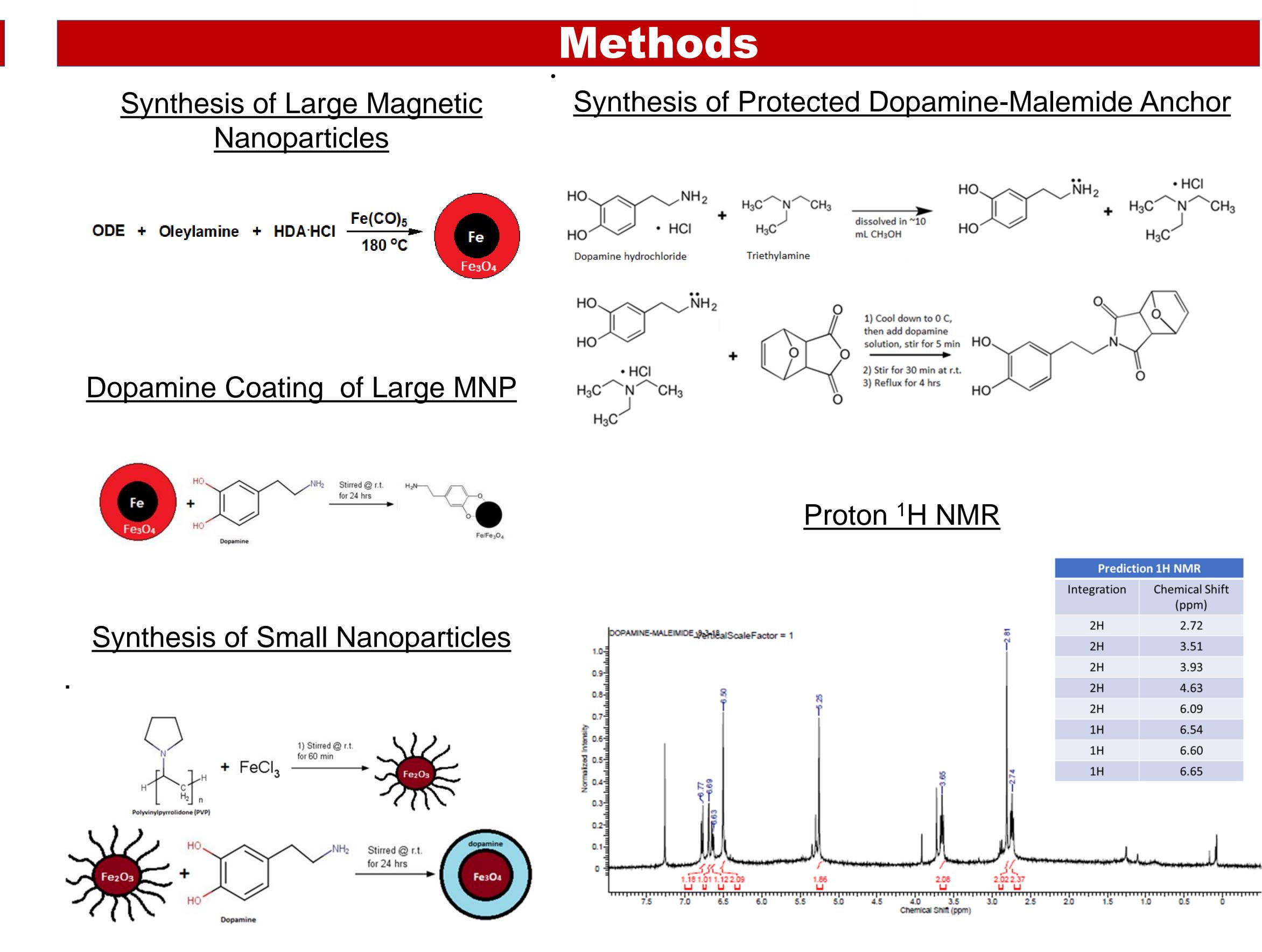
This Event is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Kansas State University Undergraduate Research Conference by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Background

- Cancer is among the leading causes of death in the world.
- In 2018, there were approximately 9.6 million cancer deaths.
- In the U.S. alone there were 1.7 million new cancer cases and 600,000 deaths.

T_1 and T_2 maging

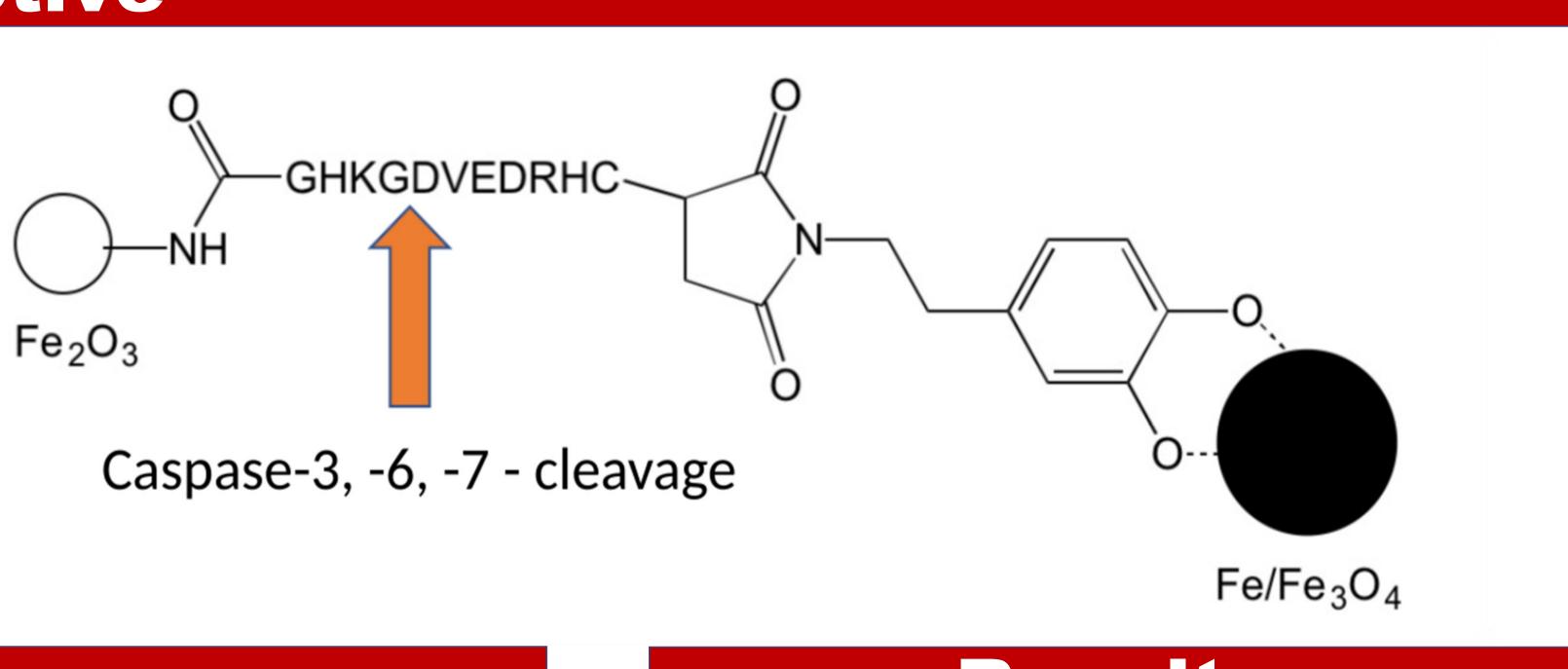
Water T_1 and T_2 measurements (600MHz)


1.5	T ₁ Measurement		T ₂ Measurement		
1			1		
0.5			0.8		
0	T ₁ relaxa —Water 13.48 ±	tion time [s] 0.0044			T_2 relaxation time [s] 3.84 ± 0.0041
-0.5	Large Iron 6.69±0	.0019	0.6		0.72±0.0052
-1	NP	.0013	0.4	NP —— Small Iron	2.12±0.0042
	NP 2.54±0		0.2	NP	
-1.5	5 10 15 20 [seconds]	25 30			
			0 5	10 15 20) 25 30 35
			T ₁ (s)	T ₂ (s)	
	D20/H20(5%) 1		8 ± 0.0044	3.84 ± 0.0041	
	0.5 mg/mLFe/Fe ₃ O ₄ NPs (Large)		9 ± 0.0019	0.72 ± 0.0052	
	0.5 mg/mLFe ₂ O ₃ NPs (Small)		2 ± 0.0013	2.12 ± 0.0042	
	T₁ based imag	е			
Newsasm51àtEeOnmpersity M O AVII New small FeO np	IIHD600WB O AVIIIHD600WB Tej Dopamincoated NNP bossmann	ama à::Saage Uni versit O small:lar ge 1;1	y Manhattan WIIIHD600WB bossmann		
20-September 2028-Septem MR	mber 2018 20-September 2020 September 2018 14:41:08 MR 11:02:41	21-September-2028 Sep MR	vtember-2018 10:47:00		
ST 1.00 RT 600.00	ST 1.00 L: 10.00 RT 600.00 L: 26.50 W: 20.00 ET 1.60 W: 53.00	ST 1.00 RT 600.00	L: 25.00 W: 50.00 Sm		NPc aro
Small iron oxide	c1 1.00 W. 55.00	Small:Large	()	all Fe ₂ O ₃	
ama ài:Saage Goiversity M O Avii small:Large 2:1 21-September 2011 September 2011	Manhattan amailstage Bniversity Manhattan IIHD600WB O bossmann small:large 5:1 bossmann 21.5 entamber 2028 Sun anhere 2018	amaài:Saage Wêixersit O small:lorge 10-1 21-Serterna 2012 5	y Manhattan VIIIHD600WB bossmann	od I ₁ contr	rast agents.
MR	12 12 00 MR 12:40	MR	19 10:35		
ST 1.00 RT 600.00 ET 1.60	ST 1.00 L: 19.00 RT 600.00 L: 15.00 W: 38.00 ET 1.60 W: 30.00	ST 1.06 RT 600.00 ET 1.60	L: 13.00 W: 26.00		
Small:Large (2	2:1) Small:Large (5:1)	Small:Large (10:1)		
			T_2	based image)
		NewasmätätEeOnipers O New small FeO np	sity Manhattan AVIIIHD600WB Tej	Bopami5teatedn@WPrsity Manhattan O AVIIIHD600WB Dopamincoated MNP bossmann	ama ài:\$aege Wci versity Manhattan O AVIIIHD600WB small:large 1:1 bossmann
		20-September 1028 MR	September 2018 14:41:08	20-September-20 20 -September-2018 MR 11:02:41	21-September-2023-September-2018 MR 10:47:00
Larg	e Fe/Fe ₃ 0 ₄ NPs	ST 1.00 RT 1000.00	L: 6.00	ST 1.00 RT 1000.00 L: 15.00	ST 1.00 RT 1700.00 L: 14.00
	good T_2 contrast	ET 21.00	w: 12.00 vxide NP	Large iron oxide NP	ET 4.50 W: 28.00 Small:Large (1:1)
	—	ama ài:Saage Øniver O small:large 2:1	sity Manhattan AVIIIHD600WB bossmann	amaà }:Saage Boi versity Manhattan O AVIIIHD600WB small:large 5:1 bossmann	ama à}:\$aag e Wði≵ ersity Manhattan O AVIIIHD600WB small:large 10:1 bossmann
ager	ITS.	21-September-2028- MR	September-2018 12:12:00	21-September-2018-September-2018 MR 13:12:40	21-September-2023 September-2018 MR 14:10:35
		ST 1.00 RT 1000.00	L: 10.00 W: 20.00	ST 1.00 RT 1000.00 L: 8.50 ET 21.00 W: 17.00	ST 1.00 RT 1000.00 L: 9.00 ET 21.00 W: 18.00
		Small:Larg		Small:Large (5:1)	Small:Large (10:1)

- Try new methods to optimize the attachment of large NP to cysteine (peptide).
- Finally, move on to do in-vitro and in-vivo testing.

Design of sensors for in-vivo detection of cancer related enzymes

Laura Soto, Jose Covarrubias, Stefan H. Bossmann Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS


> The goal of this project is to create a nanobiosensor, which would have T_1 and T_2 based imaging capabilities to measure enzymatic activity. This tool will be able to differentiate between benign and malignant tumors invivo and to quantify the effect of cancer treatments, such as chemotherapy and radiation therapy.

Future Work

• Attach small NP to other end of peptide and assemble sensor together.

Objective

Developing Scholars Program Dr. Bossmann's Team at Kansas State Dr. Tej Shrestha & Dr. Simon Sham Johnson Cancer Research Center

KANSAS STATE UNIVERSITY

Results

- Dopamine-maleimide anchor was successfully synthesized.
- Results of the cysteine attachment were not very successful.
- Unfortunately, control had a higher sulfur content than sample.

Sulfur Analysis (ICP-OES)				
Sample ID	Sulfur Content (ppm)			
Standard 1	5.00			
Standard 2	8.00			
Standard 3	10.00			
Standard 4	30.00			
Standard 5	50.00			
Control (1mg/mL)	12.1808			
Sample Strategy (1mg/mL)	7.3509			

Acknowledgements