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THEORETICAL ANALYSIS OF CONCENTRATION 
POLARIZATION EFFECT ON VOC REMOVAL BY 
PERVAPORATION
1S.X. Liu, 2L.M. Vane, and 1M. Peng
1Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520; Phone: 
(732) 932-9611 X240; Fax: (732) 932-6776; Email: liu@aesop.rutgers.edu.
2Clean Process and Product Division, National Risk Management Research Laboratory, U.S. Environ-
mental Protection Agency, 26 W. Martin L. King Dr., Cincinnati, Ohio 45268; Phone: (513) 569-7799; 
Email: vane.leland@epa.gov.
ABSTRACT
 Pervaporation is an innovative membrane-based separation technology for volatile organic compound (VOC) 
removal from contaminated groundwater. Concentration polarization is a process phenomenon occurring in pervaporation 
and several other membrane-based separation technologies. Concentration polarization, defined as concentration gradient of 
permeating solute between the bulk and the region near the membrane surface, becomes a limiting factor in pervaporation 
separations using high-performance membrane materials in VOC removal operations.  Thus, the ability to predict the impact 
of concentration polarization upon process performance is highly desirable in process design and optimization.  A mathemati-
cal model was developed to illustrate the interplay between concentration polarization and process performance in pervapora-
tion operation of VOC removal in a membrane channel with rectangular cross section.  By incorporating pervaporative mass 
transfer, laminar hydrodynamics, and boundary-layer theory, the model was built to allow theoretical analysis of the sensitiv-
ity of flow velocity, feed concentration, and concentration polarization index (CPI) upon the transmembrane flux and longitu-
dinal mass flow.

Key words: pervaporation, concentration polarization, VOC removal, boundary-layer mass transfer 

INTRODUCTION

 Volatile organic compound (VOC) removal from contaminated groundwater by pervaporation is 

a membrane-based environmental technology that achieves separation of liquid mixtures with minimal 

mechanical and thermal energy inputs. The overall process is a combination of evaporation and mem-

brane permeation occurring continuously and simultaneously. Acting as a semi-permeable barrier, a non-

porous perm-selective membrane is able, under proper operating conditions, to remove dissolved VOCs 

from water (Jiang et al., 1997a; Vane et al., 1999; Abou-Nemeh et al., 1999, George et al., 2000; Ura-

gami et al., 2001; Vane and Alvarez, 2002; Peng and Liu, 2003b), dehydrate alcohols (Shieh and Huang, 

1998; Lee et al., 2000; Jiraratananon et al., 2002; Hilmioglu and Tulbentci, 2003; Aiouache and Goto, 

2003), recover food aroma compounds (Karlsson and Trägårdh, 1996; Alvarez et al., 2000; Shepherd et 

al., 2002; Peng and Liu, 2003a), and separate mixtures of components with close boiling points or azeo-

tropes that are difficult to separate by distillation or other conventional separation technologies (Böd-

deker et al., 1990a; Böddeker et al., 1990b; Kusakabe et al., 1998; Matsui and Paul, 2003). For a general 

review of VOC removal by pervaporation, the reader is referred to the paper written by the authors (Peng 
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et al., 2003). Pervaporation is a contraction of words describing the two major operations involved in the 

separation process, namely, permeation and evaporation, and is defined as a separation process in which 

a liquid feed mixture is separated by means of partial diffusion-vaporization through a non-porous poly-

meric membrane. Pervaporation is usually carried out by placing a liquid stream containing two or more 

species in contact with one side of the membrane, while a vacuum or sweeping gas is applied to the other 

side. The species, with various affinities to the membrane sorb into the membrane, permeate through it 

and evaporate into the vapor phase. The vapor is then condensed. The membrane can be considered as a 

dense homogenous medium in which diffusion of species takes place in the free volume present between 

the macromolecular chains of the membrane material. Thus, pervaporation represents a new type of unit 

operation with the potential to replace a number of conventional separation processes for some 

separation tasks. 

The decision as to whether to use a pervaporation process for a particular task or not must be 

weighed against competing conventional separation technologies. In evaluating advantages and disad-

vantages for a pre-set objective, or the performance of an existing pervaporation operation, one would 

benefit from a descriptive reliable physical model that permits sufficiently accurate estimation of the 

technical and economic feasibility and potentials or shortcomings. As a result, better membranes and/or 

module designs will be developed and adopted for environmental separations. As the price and perfor-

mance of commercial membranes for VOC removal look increasingly attractive to environmental sci-

entists and engineers these days, more research attention has been paid to process and module design. 

In particular, many researchers in the pervaporation field have focused on modeling mass transfer in the 

boundary layer on the upper stream side of the membrane unit, since results of these efforts will have 

significant impact on both performance and economics of a commercial-scale pervaporation unit for 

environmental cleanup, and ultimately acceptance of this technology for VOC removal. One of the most 

important aspects in developing mass transfer modeling for pervaporation processes is concentration 

polarization prediction and assessment. Concentration polarization is a membrane process phenomenon 

that adversely affects the performance of pervaporation treatment of groundwater contaminated with 

VOCs. It mainly occurs on the upstream side of the membrane and manifests as a steep discrepancy of 
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concentrations between the solute concentration in the bulk (which can be measured) and that in the thin 

layer adjacent to the membrane surface (which is not measurable). Obviously, concentration polarization 

reduces the available driving force across the membrane, since the VOC mass transfer rate is controlled 

by the difference between chemical potentials (approximated by concentrations) in the boundary layers 

at both sides of the membrane. Thus, there is a market for mass transfer models that are able to predict 

the impact of concentration polarization on process performance under certain operating conditions for a 

particular membrane module configuration. Once the sources of problems associated with pervaporation 

operations are identified and quantified, the plant operator can then muster necessary technical resources 

to implement remedies to combat process problems caused by concentration polarization. 

CONCENTRATION POLARIZATION

 Mass transfer in a pervaporation process can be properly described as, based upon basic transport 

functions, a solution-diffusion mechanism (Binning et al., 1961) that delineates the mass transfer with 

the following steps:

1. Diffusion through the liquid boundary layer next to the feed side of the membrane.

2. Selective partitioning of molecules of components into the membrane.

3. Selective transport (diffusion) through the membrane matrix.

4. Desorption into the vapor phase on the permeate side.

5. Diffusion away from the membrane and into the vapor boundary layer on the permeate side of   

  the membrane.

 Often each step can be modeled with different approaches and fundamental assumptions; how-

ever, as with all mass transfer operations, the slowest step in this sequence will limit the overall rate 

of mass transfer and will be the center of research focus. The slowest step is determined by membrane 

characteristics, fluid flow regimes on each side of the membrane, properties of the component being 

separated, and properties of the phases that are involved. Partitioning and desorption steps (steps 2 and 

4) are generally not considered to be rate-limiting. Indeed, it is usually assumed that an equilibrium 

condition prevails at the interface between the membrane and the fluid phases; therefore, one or more of 

steps 1, 3, and 5 may control the rate of mass transfer. Naturally, these steps are conveniently expressed 

3
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in the form of the resistance-in-series analogy as in the case of an electrical circuit, which can be ex-

pressed with mathematical symbols as:

     1 1 1 1
ov bl m vk k k k
= + +

   (1)          

           

The ks appearing in the equation are mass transfer coefficients, and their reciprocals represent the mass 

transfer resistance at each step. For many pervaporation processes involving dilute solutions, the mass 

transfer resistance in the vapor boundary layer tends to be small enough to be ignored since the concen-

tration of VOC is very low. km is strongly determined by polymer properties, thickness of the membrane, 

and chemical and physical properties of the components in the liquid. Although the membrane is at the 

heart of a pervaporation separation, many membrane materials currently available for VOC removal 

operations are composite polymers with ultra-thin active layers and impose very little transfer resistance 

to permeating species. As a result, VOC mass transfer resistance in many well-studied systems, to a 

large extent, is limited by mass transport of VOC molecules in the feed-side liquid boundary layer. This 

rate-limiting effect is often manifested as concentration. Existence of concentration polarization in a 

pervaporation process affects process performance (permeation flux and selectivity) adversely.  

 Concentration polarization has been receiving a growing amount of attention in the pervapora-

tion field. Michael (1995) pointed out that in very dilute, sparingly soluble organic-water systems, liquid 

boundary layer resistance might be the dominating factor in overall consideration of pervaporation mass 

transfer. His observation was corroborated by a number of investigators (Psaume et al., 1986; Côté and 

Lipski, 1988; Wijmans et al., 1996; Jiang et al., 1997a; Bhattacharya and Hwang, 1997; Rautenbach and 

Hommerich, 1998; Higuchi et al., 2002).

 In many studies of concentration polarization, Sherwood correlations were often invoked to 

correlate the upstream mass transfer resistance with a thin layer of stagnant film that is usually assumed 

to exist next to the membrane (Peng et al., 2003). Sherwood correlations are based upon parallels with 

earlier studies of fluid mechanics and heat transfer of a simple physical system that may not always give 

out accurate results that can be verified with experimental data. This imperfection, however, does not 

preclude Sherwood correlations being a useful customary tool used for interpreting experimental data. 

4

Journal of Hazardous Substance Research, Vol. 4 [2003], Art. 5

https://newprairiepress.org/jhsr/vol4/iss1/5
DOI: 10.4148/1090-7025.1030



Journal for Hazardous Substance Research Volume Four 5-5

This is because Sherwood correlations tend to be straightforward and do not involve complex numerical 

computational schemes and enormous amounts of computing power, unlike the approach of establish-

ing and solving Navier-Stokes and mass transfer equations (which undoubtedly give out more precise 

results). By incorporating a form of the Sherwood correlation prescribed to a particular membrane 

geometrical configuration into the overall mass transport model, one can analyze with relative ease the 

effects of concentration polarization and other process parameters such as feed concentration and feed 

flow rate on pervaporation process performance. Therefore, the objective of this paper was to develop a 

pervaporation mass transfer model that adequately described the mass transfer in a pervaporation mem-

brane channel without being entangled in mathematical conundrums. 

MODEL DEVELOPMENT

 A pervaporation membrane channel with rectangular cross section was considered. One dimen-

sion of the cross section, corresponding to the distance, 2h, between the non-porous membrane walls, 

was taken to be much smaller than the width of the flow channel. This condition enabled the problem 

to be treated as a case of two-dimensional flow. Both channel walls were considered as having equal 

permeability. The equations had to be written over the elementary control volume as shown in Figure 1. 

Further mathematical treatment was based upon the following underlying assumptions:

Figure 1. Flow and concentration boundary layers in a membrane channel (only the bottom half of flow 
channel is shown).
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1. The flow was assumed to be incompressible, continuous, isothermal laminar, and steady state.

2. The concentration of contaminant (VOC) on the vapor side was negligible (Jiang et al., 1997a;  

  Peng and Liu, 2003a, 2003b). 

3. There was no mass transfer across the symmetry plane that delineates the mid-points between  

  the walls and sides of the gap.

4. The distance between inner membrane surface and axial line was assumed to be equal to the 

  hydrodynamic boundary layer: δ  = h.

5. The flow is assumed fully developed so that the velocity boundary-layer thickness, δ , is con 

  stant along the membrane surface.

6. Diffusion of the solute in the horizontal direction of the channel, x, is negligible while convec 

  tion of the solute in y direction (perpendicular to the membrane walls) is neglected.

7. The flow entered the channel with a uniform velocity of Umax and upon entering the flow is in 

  stantaneously fully developed.

 The modeling effort described here comprises development of a correlation between longitu-

dinal mass flow rates of permeating VOC and parameters of concentration and velocity profiles in the 

boundary layer in the slit formed by the membrane walls. Since the flow is symmetrical about a plane 

midway between the walls, the modeling solution will be carried out over half the channel, i.e., from 

the mid-plane to one wall. The general equation for the longitudinal mass flow rate of a model VOC, 

Mlong, can be represented mathematically as:

          

   
( ) ( )long

A

M u y c y dA= ∫∫ 

      

where feed velocity parallel to membrane is designated by y-component of velocity in the horizontal 

direction, u(y), of which there exists a gradient in the direction that is perpendicular to the membrane 

walls; c(y) is the concentration field in the same direction as the velocity field; y is the coordinate in Fig-

ure 1; and dA = Wdy is the control cross section normal to the membrane walls where W is the width of 

the gap. In order for the analytical solution to be developed, the hydrodynamic and concentration fields 

(2)
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have to be approximated and incorporated into Equation (2). We started out by introducing dimension-

less coordinates:

     
h y

h
η −
=

    (3)

        

      
ηθ
λ

=
    (4) 

The coordinate η varies from 0 to 1 and its unit of scale in the coordinate is equal to the thickness of 

current hydrodynamic layer, δ . The coordinate η is introduced to describe the hydrodynamic field; 

therefore, the velocity profile is expressed in terms of the η coordinate. The other dimensionless co-

ordinate θ is launched to depict the profiles within the diffusion layer (concentration) between y=h to 

y=h-δ c, where δ c is the thickness of the current diffusion layer. The unit of scale in the θ coordinate is 

the concentration boundary layer thickness, λ in η coordinate.  λ represents the relative thickness of 

boundary layer and is equal to δ c / h. 

 In order to describe the hydrodynamic boundary layer, a mathematical function whose curve 

corresponds to the shape of the physical profile of velocity distribution in the boundary layer is needed. 

Various approximations of velocity profiles have been compared in boundary-layer studies for 

Figure 2. Influence of feed velocity on dimensionless concentration boundary-layer thickness. 
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different flow-solid interactions (Schlichting, 1979). For a laminar flow in a parallel slit, the velocity in 

the control volume can be expressed as (Bird et al., 2001):

          2

max 2( ) 2 (1 )yu y U
h

= −
   (5)

where 2Umax is the velocity at the mid-plane parallel to the membrane walls, and h is the half distance 

between the walls. Please note, we have assumed that the mass transfer across the membrane is small; 

therefore, the parabolic velocity profile between the walls is unaltered in a pervaporation operation. If 

the mass transfer rate is sufficiently high, a perturbation function has to be incorporated into the hydro-

dynamic consideration to obtain the profile (Berman, 1953). Using the dimensionless variables 

to re-arrange Equation (5) yields: 

   2
max( ) 2 (2 )u Uη η η= −                                 (6)

          (7)

   

2 2
max( ) 2 (2 )u Uθ θλ θ λ= −

 

The new boundary conditions are u (θ =0) = 0 at the membrane surface; and u(θ =1) = u(η = λ) at the 

border of the diffusion layer (the edge of the concentration profile). Like the hydrodynamic field, the 

concentration field also needs to be estimated with a reasonably uncomplicated mathematical function 

Figure 3. Dependence of CPI on velocity.
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or expression. It is customary to express the concentration distribution in a parallel slit free from external 

forces in the diffusion layer in the following way (Bird et al., 2001; Cussler, 1997):    

  
2 20

0

( ) 1 (2 ) (1 )
m

c c
c c
θ θ θ θ−

= − − = −
−          (8)

where cm is the concentration of dissolved VOC at the membrane surface. Equation (8) may be stated in 

terms of the concentration polarization index (CPI):

   
2

0( ) [1 (1 ) ]c c CPIθ θ= − −
     

where:          (9)

   
0

0

mc cCPI
c
−=

            

In steady state operation, the solute flux through the membrane and from the boundary layer to the mem-

brane are the same: km*c0 (1-CPI) = D*(c0-cm)/δ c.  Using this equation and the definitions of λ and CPI, 

the relationship between λ and CPI can be established as:

    1
1 /( * * )mCPI

D k h λ
=

+
   

Figure 4. Effect of feed velocity on PV transmembrane VOC flux.

(10)
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D is the diffusion coefficient of solute in solution. The longitudinal mass flow rate expressed in Equation (2) 

can be simplified by taking into account the assumptions and geometry of the control volume, which gives:

   

0

( ) ( )
y h

long
y

M u y c y Wdy
=

=

= ∫
        (11)

where W is the width of the control volume. Equation (11) can be further simplified by decomposing it 

into two components. One component accounts for the contribution to the mass flow rate in the diffusion 

layer, and the other represents the part of mass flow rate outside the diffusion layer:

 

0

( ) ( ) ( ) ( )
c

c

y hy h

long
y h y

M u y c y Wdy u y c y Wdy
δ

δ

= −=

= − =

= +∫ ∫           (12)

        

The first term on the right-hand side of Equation (12) can be transformed by substituting Equations (7) 

and (9) into u(y) and c(y) variables, and the resulting expression reflects the mass flow of VOC within 

the diffusion layer in the coordinate θ . The mathematical treatment of this term produces:

 
2 3

max 0
12 [(1 ) ( ) ]

6 3 30
diff
long

CPI CPIM U c Wh λ λ= − − −
 

Figure 5. Trans-membrane VOC flux as a function of VOC feed concentration.

(13)
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The second term on the right side of Equation (12) is the mass flow in the region between the border 

of the diffusion-boundary layer and the mid-plane of the slit, Mb
long. It can also be integrated using the 

dimensionless expression in Equation (7):

   3
2

max 0
22 [ ]

3 3
b
longM U c Wh λ λ= − +

          (14)

The longitudinal mass flow rate at inlet becomes:

   
max 02 ( )longM U c Wh A B= +

  

  

where A is  
2 31[(1 ) ( ) ]

6 3 30
CPI CPIA λ λ= − − −

      

          (16)

  

and B is  3
2 2[ ]

3 3
B λ λ= − +           (17)

         

After passing through the membrane module, the concentration of VOC in solution will have decreased 

due to the permeation of solute. The reduced mass flow rate at the outlet can be expressed by an equation 

Figure 6. PV operation yield as a function of velocity.

(15)
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similar to equation (15), with the decreased concentration replacing co. The difference of longitude mass 

flow rate can be expressed in differential form and can be correlated to the overall mass transfer 

coefficient as:

          (18)

  
max2 ( )( ) ( )bl

mU Wh A B dc W k c c dx+ − = −  

 

x is the length from the inlet; kbl is the mass transfer coefficient in the concentration boundary layer; and 

c is the VOC concentration in bulk solution. By separating variables and utilizing boundary conditions of 

c=co at x=0 and c=c’ at x=L, the concentration of outgoing solution can be obtained as:

  
0

max

ln ' ln
2 ( )

blk LCPIc c
U h A B

= −
+          (19)

 The value of kbl usually could not be obtained before experimental data was available. The conventional 

approach has been using a semi-empirical correlation equation for membrane channel configuration 

(Mulder, 1991):

   2 1max 31.85( )bl

n

U Dk
d L

=
          

where D is the diffusivity of solute in the solution, dn the hydraulic diameter of the liquid flow path, L 

the length of module, and Umax the average feed solution velocity. This correlation was originally used in 

System kbl

Hollow fiber Sh = 0.026 Re0.8 Sc1/3 [1]
Spiral wound, Re<1,000 Sh = 0.065 Re0.875 Sc1/4   [1]

Transversal, Re<1,000 Sh = 0.90 Re0.4 Sc1/3   [1]
Circular cell with two parallel plates Sh = 0.30 Re1/2 Sc1/3   [1]
Laminar, tubular Sh = 1.62 ReR

1/3 Sc1/3(2R/L)1/3  [1]
Rectangular membrane channel Sh = 1.82 Reh

1/3 Sc1/3 [2]
Cell with radial flow 100 <ReR< 635 k = 552.2(ReR

)1/3 Sc1/3 [3]
Slit membrane flow channel 20 <Re< 500 k = 0.145 Re1/2   [4]
Radial flow between parallel plates 70 <Re< 5,000 Sh = 1.80 Re0.47 Sc1/3   [5]
Conical cell with radial flow 100 <ReR< 874 Sh (r) = 0.81 [Re(r)] 1/2 Sc1/3   [6]

Where Sh = kl/D, Re = duρ/ µ, Sc = µ/Dρ, and R = radius.

Table 1. Semi-empirical correlations for mass transfer coefficient in concentration boundary layer.

(20)

Note: in a Sherwood correlation, l represents characteristic length of module, such as radius or diameter for circular tube or hy-
draulic diameter for non-circular channels. Sources: [1] Lipski and Cote (1990), [2] Mulder (1991), [3] Dotremont et al. (1994), [4] 
Jiang et al. (1997b), [5] Bandini et al. (1997), and [6] Urtiaga et al. (1999).  
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heat transfer research and the analogy was assumed to exist between these heat transfer and mass transfer 

phenomena. As the trans-membrane flow rate in pervaporation is usually small, the contribution from 

convection to permeation could be neglected. The diffusion is thus responsible for the mass transfer coef-

ficient:

    /bl
ck D δ=      (21)

Equation (21) can be easily re-arranged to:

     ( / )bl
c D kδ =     (22)   

The concentration boundary-layer thickness under steady operation can also be correlated to the bulk 

velocity as:   

    1
3

max

(1/1.85) ( )n
c

d LD
U

δ = ⋅          

          

This will make it possible to calculate the relative thickness of the concentration boundary layer. The 

yield of the pervaporation operation, which was defined as the ratio of the decrease in solute concentra-

tion to the original solute concentration in the feed solution, can be expressed as:

   
max

( )
2( )1

blk LCPI
A B hUY e

−
+= −

  

          (24)

The trans-membrane flux is thus expressed as:

   
max 02 ( ) /transM U c Yh A B L

L W
= +

⋅           

Therefore, at steady state the transmembrane flux is correlated to the bulk velocity in the module, the dif-

ference between the longitudinal flux at the inlet and outlet (x = 0 and x=L) of the module, and concen-

tration polarization characteristics. Thus, by changing those operating parameters that influence the extent 

of concentration polarization the overall mass transfer coefficient will be changed accordingly, which will 

lead to alteration of the transmembrane flux.

SIMULATION AND RESULTS DISCUSSION

 In this section, simulation results are given for the separation of VOC from dilute solutions. The 

pervaporation configuration was composed of polydimethylsiloxane (PDMS) membranes in a slit config-

uration. The concentration was assumed to be below 500 ppm; the maximum velocity of the feed stream 

(25)

(23)
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was restricted to the range of 0.1 to 0.4 m/s (within laminar flow regime); and the length, width, and 

height of the slit were 0.8m, 0.5m, and 0.01m, respectively. The diffusivity of VOC used in the calcula-

tions was 3x10-9m2/s, based on the Wilke-Chang equation (Cussler, 1997). Calculated results are shown 

in Figures 2 to 6. 

 As is shown in Figures 2 and 3, with the increase of feed velocity, the CPI decreases, thus indi-

cating that concentration polarization will be less severe. The transmembrane flux calculated from the 

difference of outgoing longitudinal mass flow rate from total mass flow rate upon entering the membrane 

channel is shown in Figure 4. The transmembrane mass flux increases with the increase of feed velocity. 

The effect of increasing feed concentration on transmembrane flux is also visualized in Figure 5. It can 

be seen that a linear relationship exists between feed concentration and permeation flux.

 As is evident in Figures 2 and 3, feed velocity had great influence on both relative thickness of 

the boundary layer ( λ) and the concentration polarization index (CPI). When the feed velocity was at the 

low end, the increase in velocity brought significant decreases in λ and CPI, indicating that concentra-

tion polarization was severe when flow velocity was low. However, when the flow velocity reached the 

high end, the extent of λ and CPI reductions was less considerable. As the flow velocity in a membrane 

module is constrained by configurations of the membrane and its auxiliary components, this explains 

partially why concentration polarization is difficult to totally eliminate in PV operations.

 Transmembrane flux, calculated from the difference between outgoing longitudinal mass flow 

rate and total mass flow rate upon entering the membrane channel, is shown in Figure 4. Transmembrane 

mass flux increases with the increase in feed velocity for all feed concentrations. Percentage increase in 

transmembrane flux with a certain velocity increase is the same for different concentrations, though at 

high concentration a higher permeation rate, such as 30g/m2hr, would be obtained. The effect of increas-

ing feed concentration on transmembrane flux is also visualized in Figure 5. The linear regression results 

indicate that a linear relationship exists between feed concentration and permeation flux.

 The relationship between yield and velocity is illustrated in Figure 6. It can be seen that yield de-

creased exponentially with the increase in bulk velocity, according to Equation (23). This is because at a 

higher velocity, the concentration boundary-layer thickness is thinner (the concentration at the interface 
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is lower) and the yield decreases substantially, since the bulk velocity is proportional to the concentration 

boundary-layer thickness, raised to the power of three.

 Equation (20) for kbl was used to derive Equations (24) and (25). This correlation (Mulder, 1991) 

by no means is the only one available for describing mass transfer in the liquid boundary layer. Several 

expressions have been proposed over the years by various researchers on different membrane modules/

configurations, which are compiled in Table 1. Many of them were developed based on fitting a general 

Sherwood correlation expression with experimental data. The general Sherwood expression is expressed 

as follows:

            32 4
1 Re ( )aa ah

bl
h

dDk a Sc
d L

=    (26)

where a1, a2, a3, and a4 are constants. Correlations obtained from fitting experimental data to Equation 

(26) may not always be applicable to a full-scale pervaporation unit as the “entrance region” effect (de-

veloping flow-velocity profile), which is relatively minor for a full-scale module, but becomes important 

for a bench-scale pervaporation. Compounding this problem are the difficulties of modeling mass trans-

fer within the membrane, which is described in the paper authored by Lipnizki and Trägårdh (2001), and 

of experimentally measuring solute concentration distribution in the liquid boundary layer. One has to 

rely on overall mass transfer data to infer the mass transfer in the boundary layer. As a result, prediction 

of VOC flux with one of these correlations in a full-scale unit evaluation could lead to overestimation 

of the concentration polarization effect. Some researchers employed “dead-end” types of pervapora-

tion cells with magnetic stirrers to verify the membrane mass transfer models. However, the common 

assumption that stirring inside the “dead-end” membrane cell eliminates concentration polarization is 

not convincing. Furthermore, the overall mass transfer picture of a “dead-end” cell is not the same as a 

membrane cell with cross-flow mode, even through the operating conditions (membrane material/area, 

temperature, vacuum, and feed concentration) are the same. Thus, use of the model of mass transfer in-

side a membrane obtained from a “dead-end” experiment to infer the mass transfer in the boundary layer 

of a membrane cell with cross-flow mode is not compelling.

 In order to effectively facilitate VOC removal, the permeation flux of VOCs during pervaporation 

operations should be maximized. In practical operations, concentration polarization can be reduced by 
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increasing the feed flow rate, using a pervaporation module configuration that is less susceptible to con-

centration polarization. For example, use of spiral wounded modules with turbulence-inducing spacers 

may help increase VOC removal in some circumstances. Obviously, advantages and disadvantages of this 

particular type of module should be evaluated before any operational decision is made. Overall, λ and 

CPI are interlinked parameters; the adjustment of one leads to the change of the other. Optimal operating 

conditions for VOC removal should be obtained by considering the specific objective of the operation, 

properties of the feedstock, and economy. The model proposed here can help provide the initial assess-

ment of efficacy of a pervaporation process for this recovery purpose.

CONCLUSION

 This paper introduces a new modeling approach to describing boundary-layer mass transport that 

has been the center of attention lately in membrane research because of the importance of concentration 

polarization on overall process performance, and lack of suitable modeling tools at hand. The model pre-

sented in this paper is able to establish the link between concentration polarization (via CPI) and mass 

transport in both longitudinal and transmembrane directions. Simulation results demonstrated in the plots 

correspond to conclusions of sensitivity analyses of operating parameters in experimental observations 

for a membrane module with similar configuration as described here (Wijmans et al., 1996). We envision 

the model can be incorporated into an integrated VOC removal system model that will provide simula-

tion services to practitioners and system integrators. Designers of membrane modules and membrane 

materials should also find it useful in early stages of developmental work. 
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NOMENCLATURE

A  cross-section area of the membrane channel, m2

c  concentration of solute, kg/m3
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CPI  concentration polarization index, dimensionless

dh  hydraulic diameter, m

D  diffusivity, m2/s

h  half-height of the channel, m

k  mass transfer coefficient, m/s

L  length of the channel, m

M  mass flow rate, kg/m3hr

u  flow velocity in the horizontal direction (x-axis), m/s

U  uniform or average bulk velocity in x direction, m/s

W  width of the channel, m

x  horizontal axis, m

y  vertical axis, m

Y  yield, dimensionless 

Greek Letters

η   coordinate in y direction, dimensionless

θ   coordinate in y direction, dimensionless

λ  relative thickness of boundary layer in the channel, dimensionless

δ   boundary-layer thickness, m

ρ  density of fluid, kg/m3

µ  viscosity

Superscripts and Subscripts

ov  overall

bl  boundary layer

m  membrane

diff  diffusion

b  border

long  longitudinal
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0  zero

m  membrane

max  maximum

h  hydraulic

c  concentration
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