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EVALUATION OF COMBUSTION PROCESSES FOR
PRODUCTION OF FEEDSTOCK CHEMICALS FROM
AMMONIUM SULFATE AND AMMONIUM BISULFATE
Y. Liske1,3, S. Kapila1,3, V. Flanigan2,3, P. Nam3, and S. Lorbert4

1Department of Chemistry, University of Missouri, Rolla, MO 65409-0010; Phone: (573) 341-
6187; Fax: (573) 341-6033.  2Department of Mechanical Engineering, University of Mis-
souri, Rolla, MO 65409-0530; Phone: (573) 341-6606; Fax: (573) 341-6605. 3Center for
Environmental Science and Technology, University of Missouri, Rolla, MO 65409-0530;
Phone: (573) 341-6603; Fax: (573) 341-6605. 4Novus International, St. Louis, MO 63141;
Phone: (314) 576-8886; Fax: (314) 576-2148.

The combustion of ammonium bisulfate and ammonium sulfate solutions in hydrocarbon/air flames was
studied under varied flame conditions. The objective of the study was to optimize the recovery of sulfur value
from aqueous waste streams containing these salts. Combustion of ammonium sulfates yielded different sulfur
species such as sulfur dioxide (SO

2
), hydrogen sulfide (H

2
S), and carbonyl sulfide (COS). The types of sulfur

species obtained and their yields were dependent on the flame stoichiometry. When combustion was carried out
in stochiometric flames or in flames with excess oxygen, the sulfur present in the salts was quantitatively
converted to SO

2
. However, these flames also produced nitrogen oxides (NO

x
) above the 200ppm level. Combus-

tion of ammonium sulfates in the sub-stoichiometric (oxygen-deficient) flames resulted in the formation of
reduced sulfur species, particularly H

2
S. This species accounted for nearly 90% of the total sulfur present in the

salts. Introduction of a secondary air stream in cooler regions of the combustor led to quantitative oxidation of
H

2
S and other reduced species such as COS to SO

2
. The SO

2
 obtained through the secondary oxidation con-

tained nitrogen oxides at comparably lower levels.

INTRODUCTION
Several million tons of ammonium sulfate ((NH

4
)

2
SO

4
) and several thousand tons of ammo-

nium bisulfate (NH
4
HSO

4
) are produced annually during varied chemical manufacturing processes

such as the production of lactam, methionine, and methionine hydroxy analog (HMB), an animal

feed additive. A substantial portion of ammonium sulfate (AS) is used as fertilizer; however, due to

concerns for sulfate buildup this use is coming under increased scrutiny, especially in developed

countries. As a result, a significant portion of the ammonium sulfate production is disposed of as

waste. The high acidity of the ammonium bisulfate (ABS) limits its industrial application, and essen-

tially all of this salt is disposed as waste in deep wells at considerable cost to industry. Furthermore,

this practice may lead to a potential long-term environmental problem. The problem can be reduced

or eliminated by converting the ammonium bisulfate/sulfate into feedstock chemicals such as sulfuric

acid and methanethiol. Both of these chemicals are used in methionine and HMB synthesis. A few

processes for the conversion of ammonium sulfate and ammonium bisulfate have been reported in

the literature.

A thermal process for the degradation of ammonium sulfate to ammonia and sulfur dioxide was

first reported in the mid 1940s (Dixon, 1944). Similar processes have been reported by other

researchers (Halstead, 1970; Kiyoura and Urano, 1970). The chemical transformations that occur
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during these processes are depicted in Equations 1–3.

Thermal degradation leads to the decomposition of AS to ABS with the release of ammonia at

temperatures ranging between 200 – 400°C. Subsequent thermal treatment of ABS results in the

formation of ammonium pyrosulfate ((NH
4
)

2
S

2
O

7
). The decomposition of ammonium pyrosulfate

leads to the release of ammonia (NH
3
), sulfur dioxide (SO

2
), molecular nitrogen (N

2
), and water

(H
2
O). The conversion efficiencies of 15% and 45% have been reported for NH

3
 and SO

2
, respec-

tively (Montgomery, 1962). Enhanced recovery of NH
3
 from (NH

4
)

2
SO

4
 has been obtained  in the

presence of alkali sulfates (Bonfield and Bohn, 1966; Hüter, 1963).  In such treatments, aqueous

AS was first dehydrated at 300°C and then converted to ABS with the release of NH
3
. The ABS

was transferred to a second chamber, mixed with alkali sulfates, and heated to 500oC. The treat-

ment resulted in the formation of alkali pyrosulfate and the release of additional NH
3
. The mixed salt

melt was then transferred to a third chamber maintained at 900°C, where the alkali pyrosulfate was

decomposed to alkali oxide and SO
2
.

A combustion-based thermal process for generation of NH
3
 and SO

2
 from dry NH

4
HSO

4
 has

been described (Hirabayashi et al., 1980). These researchers introduced finely divided ABS into a

combustion chamber and reacted it with combustion gases from an oxygen-deficient flame. The

reaction was carried out at temperatures ranging between 700 - 900°C. Approximately 82% of the

total ABS nitrogen was converted to NH3, while 90% of the total ABS sulfur was converted to

SO
2
. A small portion (5%) of the ABS sulfur was converted to SO

3
.

A process for the treatment of AS-containing wastewater was reported in a 1992 patent

(Becker, 1992). In this process, AS-containing wastewater was introduced directly into a natural

gas/air flame through a centrally located nozzle. It was reported that essentially all of the AS sulfur

was converted to SO
2
, whereas all of the AS nitrogen was converted to N

2
.  Combustion of AS

solution in an oxygen-deficient flame was also reported. In this case, AS-containing wastewater was

introduced into a sub-stochiometric flame. The term “sub-stochiometric” or “oxygen-deficient”

flame in present context refers to fuel-rich flames. The temperature of the flame was reported to be

around 1000°C. H
2
S was found to be the principle sulfur species. Combustion of ABS in stoichio-

metric and sub-stoichiometric flames has been modeled (Gill and Associates, 1996). This model

suggested that a waste stream containing high concentrations (50 to 70%) of ABS (w/w basis) can

be treated efficiently and economically through combustion.

( )

( )

( )

4 4 4 4 32

4 4 4 2 7 22

4 2 7 3 2 2 22

NH SO NH HSO NH

2 NH HSO NH S O H O

3 NH S O 2NH 6SO 9H O+2N

→ +

→ +

→ + +

Eq. 1

Eq. 2

Eq. 3
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The objective of the present study was to experimentally examine the feasibility of a combus-

tion-based process for the recovery of ABS sulfur as sulfur dioxide or hydrogen sulfide. Three sets

of experiments were conducted to achieve this objective.  The initial experiments involved the

conversion of ABS to SO
2
 in flames with stochiometric and excess air. The conversion of ABS to

H
2
S in oxygen-deficient flames and the generation of a NO

x
 –free, SO

2
 gas stream through a two-

stage combustion process involved production of H
2
S in an oxygen-deficient flame followed by a

low-temperature oxidation of H
2
S to SO

2
.

EXPERIMENTAL
All combustion experiments were carried out in a combustor designed and fabricated in

our laboratory.

Combustion setup
The combustor consisted of a commercial burner and a refractory-lined combustion tube.

Burner: A commercially available nozzle-mix burner (Eclipse ThermJet 150) was used in all

experiments. The burner can deliver up to 158 kJ of thermal energy per hour with a gaseous hydro-

carbon fuel. The burner assembly was mounted on a 6mm-thick stainless steel plate placed at the

bottom of the combustion chamber.

Fuel: Liquefied propane gas (LPG) was used as the fuel in all but a limited number of experi-

ments, in which methane was used as the fuel. LPG and methane were obtained from a local

commercial supplier. The fuel flow rate was regulated with a calibrated mass-flow controller.

Air: House compressed air was used as the oxidant. Its flow was regulated with an in-line

pressure regulator in tandem with a calibrated, standard orifice plate and a water manometer. The

pressure difference across the plate was measured and used for determining the air-volume flow

rate into the burner.

Combustion chamber: The combustion chamber consisted of a stainless steel pipe (210 cm x

35 cm i.d. with a 1.5mm wall thickness) lined with 7.5 cm-thick layer of Kaolite refractory. The

inner dimensions of the combustion chamber were 210 cm x 20 cm. One side of the chamber wall

was lined with a set of 13, 12 mm ports; and another set of 13, 25 mm diameter ports was placed

on other side, perpendicular to the 12mm ports. The spacing between ports of both sizes was

15.2cm. The smaller (12mm) ports were used for placement of thermocouples, while the larger

(25mm) ports were used for sampling the flue gas. The flue gas samples were drawn through quartz

tubes (6mm o.d. X 2 mm i.d.) placed along the central axis of the combustion chamber.  The larger

ports were also used for viewing the combustor operation. A cross-sectional view of the combustor

is shown in Figure 1.

Combustion of aqueous ABS and AS
The combustion of aqueous ABS was evaluated under varied flame stoichiometry. For a fuel

3
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flow rate fixed at 7.9 L min-1, a stable flame was obtained with air flow between 130 to 220 L min-1,

corresponding to flame stoichiometry of 50% to 110%, respectively.  For the two-stage operation,

a ceramic restrictor with a 10cm opening was placed 60cm above the flame, Figure 2.

The salt solutions were pumped, at flow rates between 1 to 10mL min-1, into the combustion

chamber with a microprocessor-controlled, dual-piston pump (Model LC-6A, Shimadzu). Pumps

with higher flow capacity, either a dual-piston pump  (Model Series 3, Perkin-Elmer Instruments) or

a diaphragm pump (Model LMI, Milton Roy), were used for introducing larger volumes of salt

solutions. The maximum ABS solution feed rate used in the present study was 50mL min-1, which

corresponds to the introduction of 32g ABS min-1. The salt solutions were delivered into the flame

through a centrally located quartz tube and formed fine mist with the aid of a small (5 L min-1)

auxiliary air stream.

Analysis of product gases
Determination of combustion gases: The combustion gases (H

2
, O

2
, N

2
, CO, CH

4
 and

CO
2
) were sampled through quartz sampling tubes located at different positions along the length of

the chamber. The gas sample was drawn through a six-port sampling valve with a 0.5mL loop. The

sampled gas from the valve was introduced into a gas chromatograph (Model 8700, Perkin Elmer

Instruments) equipped with a thermal conductivity detector (TCD). The flue gas constituents were

separated with a column consisting of a stainless steel tube (2.4m x 2mm i.d.) packed with

Carbosieve S (100-120 mesh, Supelco Inc.) and monitored with the TCD. Helium was used as the

carrier gas, and its flow rate through the column was maintained at 25mL min-1. The separation of

gases was facilitated by temperature programming the GC column oven linearly from 40°C to

250°C at 20°C min-1. The TCD was operated with the filament current set at 150mA. The detector

signal was processed with a PC-based chromatography data system (Turbochrom, Perkin Elmer

Instruments). Individual gas components were identified and quantitated with commercial reference

gas standard mixtures (Scotty II Mix 218, 234 and 237, Alltech Associates).

Determination of sulfur gases: Sulfur gases formed during the combustion were determined

with a GC (Model Autosystem, Perkin Elmer Instruments) equipped with a flame photometric

detector (FPD). A rotary valve with a fixed volume (0.5mL) loop was used for introducing the gas

sample into the GC. The sulfur gases present in the gas sample were separated with a column

consisting of a stainless steel tube (2.4m x 2mm. i.d.) packed with mixed Porapak stationary phase

(80% Porapak Q and 20% Porapak N, Alltech Associates). The separated gases were monitored

with the FPD. Helium was used as the carrier gas, and its flow through the column was maintained

at 30mL min-1. The GC oven temperature was kept constant at 100°C during the separations. The

detector response was calibrated with sulfur gas standards obtained from Matheson Gas Products.

Determination of particulates: The weight of particulate matter formed during combustion

was determined gravimetrically by sampling a known volume of flue gas from a selected port

4
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through a pre-weighed glass microfiber filter (Whatman GF/A, 3.7cm diameter). The filter was

dried to a constant weight in a desiccator. The weight difference of the filter before and after sam-

pling was used for estimating particulate matter in the flue gas.

RESULTS AND DISCUSSION

Combustion of ABS and AS in oxidative flames
The oxidative combustion experiments were carried out with a fixed-fuel flow rate (7.9 L min.-

1) while varying the airflow rate from 188 - 207 L min-1.  These flow rates correspond to flame

stoichiometries of 100 - 110%. The temperatures and flue gas composition were monitored with

and without the aqueous salt solutions at selected positions along the height of the combustor

chamber. The flue gas compositions obtained in the oxidative regimes are summarized in Table I.

The flue gas composition in the absence of ABS conformed to the expected values and yielded a

good fit with estimated equilibrium values. The introduction of ABS solutions into the combustor led

to the appearance of SO
2
; however, it had little effect on the flame temperature or the concentra-

tions of the other dry flue gas constituents. A slight increase in the NO
x
 concentration was observed

in experiments carried out in flames with 104 % and 110% stochiometric airflows. The small in-

crease indicated that only a small fraction (<0.1 %) of ABS nitrogen was converted to NO
x
, while

most of the ABS nitrogen was converted to molecular nitrogen.

The change in SO
2
 concentration observed with a fixed ABS input and varied air input is

shown in Figure 3. The solid line in the figure depicts the calculated SO
2
 concentration, assuming

100% conversion of ABS sulfur to SO
2
. A good agreement between the measured and the calcu-

lated values was observed. The highest SO
2
 concentration was obtained when the airflow rate was

4% in excess of the amount required for complete combustion of fuel (propane). This observation

can be attributed to the additional oxygen necessary for the degradation of ABS, Equation 4.

Thus, ~0.014 M O2 (0.34 L min.-1) will be required for the combustion of 0.055M of ABS

(50% solution @ 10mL min –1), an increase of 0.87% above the amount required for complete

combustion of the fuel. Further increase in oxygen (air) flow does not facilitate ABS combustion but

does lead to dilution of SO
2
 concentration in the flue gas. The oxygen requirement will increase with

an increase in the ABS feed rate.

The effect of a change in the ABS input on the operation and the efficiency of ABS to SO
2

conversion was monitored. ABS input was varied either by increasing the flow rate of a fixed

concentration (50% w/w) solution or by changing the ABS concentration of solutions and introduc-

ing these at a fixed flow rate (10mL min -1).  In the first case, the ABS input was varied from 6.4 -

32g min-1 (10 to 50mL min-1), while in the second case the ABS amount was varied from 3.2 - 9.6g

min.-1 (solution concentration of 25% to 75%).

4 4 2 2 2 2NH HSO 0.25 O SO 0.5N 2.5H O+ → + + Eq. 4

5
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An increase in ABS solution flow rate into the combustor resulted in an increase in SO
2

concentration. However, the increase was linear only at flow rates <30mL min-1. Further increase in

the solution flow rate did not result in a corresponding increase in the SO
2
 concentration  (Figure 4).

This deviation did not result from insufficient energy for evaporation and decomposition. Combus-

tion of 0.323M of propane yielded sufficient energy to vaporize water and decompose ABS. In

fact, combustion of ABS is slightly exothermic. The energy output of the combustor and energy

requirements for vaporization and decomposition of the ABS solutions revealed that even at the high

ABS solution feed rate of 50mL min-1, there are nearly 200 kJ min-1 of excess energy. An examina-

tion of the salt-solution feed tube revealed that inefficient conversion at high flow results from the

nonuniformity of solution introduction by the diaphragm pump used in these experiments. This pump

delivered salt solutions in spurts instead of a continuous and uniform stream. An improved solution

introduction and atomization system would be required to fully exploit the combustion process at

higher flow rates. Despite some difficulties in pumping a highly viscous solution of 75% ABS, a

quantitative conversion of ABS to SO
2
 was obtained in all experiments during which the ABS input

was varied by changing the solution concentration (25-75%) while maintaining a constant flow rate

(10mL min-1).

The optimization of the ABS feed-to-fuel ratio was carried out through experiments in which

the ABS input was held constant (6.4g min-1) while the fuel (propane) input was varied from 3.9 to

8.4L min-1. These experiments were carried out at a constant flame stoichiometry by adjusting the

airflow rate with the fuel flow rate. SO
2
 concentrations in the flue gas were measured and plotted as

a function of fuel input (Figure 5). At the lowest fuel input, the ABS feed-to-fuel (propane) ratio was

1164g ABS/m3 propane. This value is more than an order of magnitude higher than the feed-(AS)

to-fuel (methane) ratio reported in the BASF patent (Becker, 1992).

The AS to SO
2
 conversion efficiency was also monitored at different AS and propane inputs.

Due to lower solubility of AS in water, the maximum concentration of AS in solution used in these

experiments was 25% (w/w). These experiments were conducted with the AS solution flow rate of

10 mL min-1. The results obtained at two different propane inputs are summarized in Table II. The

measured SO
2
 concentration in the two cases was found to be 0.6 and 0.5 percent. These values

were nearly the same as the calculated values. This indicates a complete conversion of AS sulfur to

SO
2
 during the combustion. It should be pointed out that complete conversion was achieved at a

salt-to-fuel ratio of nearly 770g AS/m3 propane. This value also compares favorably to the 150 g

AS/m3 methane ratio reported in the BASF patent (Becker, 1992).

Combustion of ABS and AS in oxygen-deficient flames
Combustion of ABS and AS in oxygen-deficient flames was evaluated with intent to produce

hydrogen sulfide. Hydrocarbon flames sustained under sub-stoichiometric conditions are known to

yield flue gas species such as CO, H
2
, methane, and other lower alkanes, as well as elemental

6
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carbon. These species can facilitate the reduction of SO
2
 to H

2
S and COS (Kohl, 1983). The

formation of COS and H
2
S from SO

2
 involves reduction of sulfur from a S+4 to a S0 or a S-2 state.

The extent of reduction is dependent on the availability of reducing species. The SO
2
 can also be

reduced to S0 by elemental carbon leading to the formation of CO. A secondary reaction involving

CO and elemental sulfur leads to the formation of COS. Yet, another reaction between elemental

carbon and sulfur can also yield carbon disulfide (CS
2
). These reactions are depicted in Equations

5 - 9.

Primary reactions:

Secondary reactions:

Analyses of the flue gas obtained during ABS and AS combustion in oxygen-deficient flames

showed that the reactions depicted above occur to a degree under different flame conditions (Table

III). SO
2
 was the most abundant species in stoichiometric flames and flames with oxygen deficiency

less than 20%. When the oxygen deficiency was 30% or higher, the principal sulfur species were

COS and H
2
S. The change in the measured concentrations of sulfur species resulting from a change

in the oxygen input is shown graphically in Figure 6. The H
2
S concentration increased initially with a

decrease in oxygen input but remained constant thereafter. The concentration of COS was relatively

unaffected by the change in air input under the oxygen-deficient regime used in the present study.

The flue gas samples for these measurements were collected through sampling tubes located 150cm

above the flame.

Concentrations of sulfur species obtained at various points along the length of the combustor

are shown in Figure 7. Measurements showed that the SO
2
 concentration was highest in the imme-

diate vicinity of the flame and decreased downstream; conversely, the concentrations of H
2
S and

COS increased in regions away from the flame. It is likely that the SO
2 
reduction is catalyzed by

Al
2
O

3
 of the refractory lining inside the combustor chamber. The reduction was very effective, and

near quantitative conversion was achieved near the exit end of the combustor tube.

The apparent discrepancies between the measured and calculated concentrations of sulfur

2 2 2

2 2 2 2

2

2 H SO S + 2 H O

3 H  SO H S 2 H O

2 C + SO  S + 2 CO

+ →

+ → +

→

Eq. 5

Eq. 7

Eq. 6

2

S + CO  COS

2 S + C  CS

→

→ Eq. 8

Eq. 8
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gases in the oxygen-deficient environment are in part due to the differences in the FPD response for

sulfur gas standard mixtures in helium and the sulfur gases in flue gas. The flue gas from oxygen-

deficient flames contains significant amounts of residual methane and other hydrocarbons (Table III).

The residual hydrocarbons in gas streams are known to quench S
2
 emission in the FPD and de-

crease its signal for the sulfur species (Kapila et al., 1989).

Two-stage combustion
Another set of experiments was carried out to explore the feasibility of obtaining NO

x
-free

SO
2
. These experiments involved the use of a two-stage combustion process. The first-stage

combustion was carried out in a manner analogous to the oxygen-deficient combustion described in

the previous section. The combustor was operated with the propane and airflow rates set at 7.9L

min-1 and 122L min-1, respectively. This airflow rate was 64.8% of the flow rate needed for com-

plete combustion of propane (stoichiometric combustion). Combustion of ABS in such flame led to

the formation of H
2
S, COS, H

2
O, and molecular nitrogen. To obtain a NO

x
-free SO

2
 stream, H

2
S

and COS were oxidized to SO
2
. The process was facilitated by separating the “reductive” and the

“oxidative” zones with a ceramic baffle. A secondary air stream (10-50L min-1) was introduced

through a 25mm port located just above the baffle. The flue temperature in this zone was approxi-

mately 750oC and led to fast and efficient oxidation of H
2
S and COS to SO

2
. The overall reactions

occurring during the process are depicted in Equations 10 and 11.

Concentrations of product gases were monitored in gas samples collected through the sam-

pling port located 150cm above the flame. The measurement showed that the relative concentra-

tions of H
2
S, COS, and SO

2 
were dependent on the secondary airflow. In the absence of the

secondary air, H
2
S was the most prevalent sulfur species. Introduction of a secondary airflow at

rates greater than 25L min-1 led to the formation of SO
2
 , Figure 8. The highest SO

2
 concentration

was obtained when the secondary airflow rate was approximately 34L min-1. Due to lower overall

gas flow, the SO
2
 concentration obtained in these experiments was in fact higher than the SO

2

concentration obtained during the single-stage oxidative combustion. A further increase in the

secondary airflow resulted in the dilution of SO
2
 in the flue gas, leading to a decrease in the SO

2

concentration.

NO
x 
concentrations were found to be less than 30ppm under all two-stage combustion re-

gimes, and considerably below the 100 - 270ppm NO
x
 concentrations observed during the single-

stage oxidative combustion. The results demonstrate that the two-stage combustion approach can

lead to generation of NO
x
- free SO

2
 from AS- and ABS-containing waste streams.

2 2 2 2

2 2 2

H S + 3/2 O  SO H O

COS + 3/2 O CO SO

→ +

→ + Eq. 11

Eq. 10
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It should be pointed out that despite a two-year operation in a harsh acidic environment, no

damage to the structural integrity of the combustor chamber and burner assembly has been ob-

served. This points to the basic soundness of the concept. However, a detailed economic assess-

ment of a commercial-scale process has not been carried out.

CONCLUSIONS
Combustion of ammonium sulfates in hydrocarbon/air flames was evaluated as a means to

recover sulfur as SO
2
 or H

2
S. Results showed that an oxygen-rich combustion could be used for

efficient conversion of ABS or AS to SO
2
. An oxygen-deficient flame can be used for converting

ABS or AS to H
2
S. The latter can be easily oxidized to a NO

x
- free SO

2
 gas stream in a two-stage

process. The process holds considerable potential for treatment of highly acidic ABS produced as a

by-product in methionine and methionine hydroxy analog synthesis.

ACKNOWLDGEMENT
The study was in part supported through funds provided by Novus International, Inc., St.

Louis, Mo., and the Manufacturing Research and Training Center, University of Missouri-Rolla.

REFERENCES
Becker, R., Method for the Thermal Workup of Residues that Contain Ammonium Sulfate, Particu-

larly of Wastewater that Contains Ammonium Sulfate, 1992, German Patent 4,101,497.

Bonfield, J.H., and F.L. Bohn, Production of Sulfur Dioxide, 1966, U.S. Patent 3,282,646.

Dixon, P., Formation of Sulphamic Acid During the Thermal Decomposition of Ammonium Sul-
phate, 1944, Nature, 154, p. 706.

Gill and Associates, July 1996, Modeling of Ammonium Sulfate – Bisulfate Combustion, FruCon,
Inc., St. Louis, MO.  Communication through FruCon, Inc.

Halstead, W.D., Thermal Decomposition of Ammonium Sulphate, 1970, J. Appl. Chem, 20, pp.
129-132.

Hirabayashi, T., Process for the Recovery of Ammonia and Suphur Dioxide from a Contaminated
Ammonium Salt of Sulphuric Acid, 1980, U.S. Patent 4,208,390.

Hüter, L., and U. Reichau, Verfahren zur Gewinnung von Ammoniak und Schwefelsäure aus
Ammoniumsulfat und/oder –hydrogensulfat bzw, aus deren Lösungen in Wasser oder
Schwefelsaure, 1963, German Patent 1,151,492.

Kapila, S., D.O. Duebelbeis, S.E. Manahan, and T.E. Clevenger, 1989, “Flame Photometric
Detectors” in Environmental Analysis Using Chromatography Interfaced with Atomic
Spectroscopy, R.M. Harrison, and S. Rapsomanikis, Editors, John Wiley and Sons, New
York, pp. 76-95.

Kiyoura, R., and K. Urano, Mechanism, Kinetics, and Equilibrium of Thermal Decomposition of
Ammonium Sulfate, 1970, Ind. Eng. Chem. Process Des. Develop, 9, pp. 489-494.

9

Liske et al.: Evaluation of Combustion Processes for Production of Feedstock Ch

Published by New Prairie Press, 2017



Journal of Hazardous Substance Research8-10 Volume Two

Kohl, A., Sulfur Dioxide Reduction Process, 1983, U.S. Patent 4,396,594.

Montgomery, J.C., Apparatus for Decomposing Solid Ammonium Sulfate, 1962, U.S. Patent
3,047,369.

10

Journal of Hazardous Substance Research, Vol. 2 [1999], Art. 8

https://newprairiepress.org/jhsr/vol2/iss1/8
DOI: 10.4148/1090-7025.1018



Journal of Hazardous Substance Research 8-11Volume Two

Table I.  Flue gas composition with and without ABS in oxidative flames.

yrtemoihciotSemalF 001 401 011

*)MPL(wolFriA 881 691 702

*)MPL(wolFenaporP 9.7 9.7 9.7

erasnoitartnecnoc;SBAtuohtiwenaporpfonoitsubmocmorfgnitlusernoitisopmocsageulF
.)BGD-sisabsagyrd(stnecrepemulovni

H2 0 0 0

O2 2.1 0.2 6.4

N2 7.48 8.48 0.48

OC 7.0 1.0 0

HC 4 0 0 0

OC 2 4.31 8.21 3.11

ON x )mpp( 601 031 031

)C°(pmeTemalF 8131 979 0011

SBA)w/w(%05htiwenaporpfonoitsubmocmorfgnitlusernoitisopmocsageulF
.)BGD(stnecrepemulovnierasnoitartnecnoC.1-nimLm01tadecudortni

H2 0 0 0

O2 9.1 9.2 8.4

N2 2.38 6.38 5.38

OC 7.1 7.0 0

HC 4 0 0 0

OC 2 3.31 8.21 6.11

ON x )mpp( 601 042 061

H2 )mpp(S 01< 01< 01<

)mpp(SOC 01< 01< 01<

OS 2 37.0 88.0 37.0

)C°(pmeTemalF 8131 5921 0921

*Flow rates measured at ambient temperature and pressure.
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Table II. Compositions of flue gas from combustion of ammonium sulfate (AS).

noitartnecnoC.losSA
)w/wtnecrep(

52 52

yrtemoihciotS% 401 011

)MPL(tupniriA 721 761

)MPL(enaporP 2.5 3.6

)BGD(emuloV%

H
2

0 0

O
2

9.7 0.9

N
2

3.48 9.48

OC 0 0

HC
4

0 0

OC
2

0.8 1.6

OS
2

latnemirepxE 6.0 5.0

OS
2

laciteroehT 6.0 74.0

)C°(erutarepmeTemalF 0221 0521
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Table III.  Flue gas composition with and without ABS in reductive flames.

yrtemoihciotSemalF 05 06 07

*)MPL(wolFriA 301 801 041

*)MPL(wolFenaporP 4.8 7.7 4.8

.SBAtuohtiwenaporpfonoitsubmocmorfgnitlusernoitisopmocsageulF
.)BGD-sisabsagyrd(stnecrepemulovnierasnoitartnecnoC

H2 3.5 4.3 5.2

O2 9.0 7.0 9.0

N2 3.77 4.97 6.08

OC 1.7 5.6 9.3

HC 4 3.1 1.1 3.0

OC 2 9.7 7.8 7.11

ON x )mpp( 03< 03< 04

)C°(pmeTemalF 059 979 0011

)w/w(%05htiwenaporpfonoitsubmocmorfgnitlusernoitisopmocsageulF
stnecrepemulovnierasnoitartnecnoC.1-nimLm01tadecudortniSBA

.)BGD(

H2 3.5 4.3 5.2

O2 9.0 7.0 9.0

N2 3.77 4.97 6.08

OC 1.7 5.6 9.3

HC 4 3.1 1.1 3.0

OC 2 9.7 7.8 7.11

ON x )mpp( 03< 03< 54

H2S 97.0 8.0 77.0

SOC 81.0 71.0 71.0

OS 2 50.0< 50.0< 50.0<

)C°(pmeTemalF 8321 3421 0621

*Flow rates measured at ambient temperature and pressure.
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Figure 1. A cross-sectional view of the combustion chamber.

Figure 2. A schematic of the combustor and instrumentation used for the analysis of flue gas
components.
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Figure 3.  SO2 concentration obtained through ABS combustion in oxidative flames at different
flame stoichiometries.

Figure 4. Calculated and measured SO2 concentrations obtained from ABS combustion at varied
ABS feed rates.
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Figure 5. Measured and calculated SO2 concentrations obtained from ABS combustion at varied
fuel flow rates.

Figure 6. Measured SO2/H2S/COS concentrations obtained from ABS combustion in reductive
flames at varied oxygen deficiencies.
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Figure 7. Measured and calculated SO2/H2S/COS concentrations obtained from ABS combus-
tion in reductive flames at different sampling points along the length of the combustor.

Figure 8.  Measured SO2 and H2S concentrations obtained through ABS combustion in the two-
stage combustor at varied secondary airflow.
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