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EFFECT OF VEGETATION ON TRANSPORT OF
GROUNDWATER AND NONAQUEOUS-PHASE LIQUID
CONTAMINANTS
Q. Zhang1, L.C. Davis2, L.E. Erickson1

1Dept. of Chem. Eng., Kansas State University, Manhattan, KS 66506, Phone: (785)532-5584,
FAX: (785)532-7372; 2Dept. of Biochemistry, Kansas State University, Manhattan, KS 66506,
Phone: (785)532-6124, FAX: (785)532-7278

An aquifer model system was established to examine and delineate the presence, fate and transport of
nonaqueous-phase liquid (NAPL) contaminants.  The system consists of six independent channels with identical
dimensions.  The channels were constructed with steel bottoms, side panels, and end panels.  Trichloroethylene
(TCE) was selected as a representative compound to model NAPL groundwater contaminants in the saturated zone of
the aquifer.

The flow regime of groundwater in the saturated zone was investigated by conducting a bromide tracer
experiment. The movement of TCE in both horizontal and vertical directions was studied by monitoring the ground-
water effluent stream and the gas phase at the soil surface after a pulse injection of liquid TCE into each channel at
the bottom inlet.  A multistage compartment model was developed to help interpret the experimental data and
observations.

Key words: NAPL, groundwater, transport, vegetation, trichloroethylene

INTRODUCTION

Industrial processes related to petroleum refining, chemical manufacturing, coal coking, coal

gasification, and wood processing result in the production of motor fuels, chlorinated and fluorinated

hydrocarbons, coal tar, creosote, heavy oils, wood products, and waste by-products.  These organic

liquids are often toxic or carcinogenic and can sparingly dissolve in water, and in the context of soil and

sediment contamination are termed non-aqueous phase liquids or NAPLs.  NAPLs are widely distrib-

uted because of spills or leakages from storage tanks and pipe lines.  The aqueous solubility of these

organic liquid contaminants is low enough for them to exist in the subsurface as NAPLs but large enough

to seriously degrade water quality.  NAPLs in the subsurface are long-term sources of groundwater

contamination and may persist for centuries before dissolving completely in adjacent groundwater.

Large pools of NAPLs result from natural processes; they are of great value to the petroleum industry.

 When NAPLs are released to the subsurface environment (e.g., from oil spills or leaking storage

tanks), they will migrate downward from the site.  After moving downward through vadose zone, some

light NAPLs (LNAPLs) float and move on top of the water table, while more dense NAPLs

(DNAPLs) move downward through the water table and penetrate into the saturated zone.  DNAPLs

such as trichloroethylene (TCE) can sink to the bottom of an aquifer and be a source of contamination

for many years.  In the saturated zone, NAPLs exist as pools or individual blobs that slowly dissolve

into groundwater and provide a persistent source of pollutant (Mackay et al., 1989).  The total mass of

contaminants in saturated soil and groundwater is the sum of that in free (NAPL) phase, adsorbed

phase, vapor phase, and aqueous phase.
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After the initial migration following a spill, mobility of a contaminant in the aquifer is determined

largely by the relative concentration of it in the water and air phases of the soil. Transport of the con-

taminants takes place in both water and air by convection and diffusion following dissolution from the

NAPL phase.

Convective transport of contaminant in the water phase is a function of the concentration of the

contaminant in the water phase and the movement of the water in the soil due to pressure gradients

(Mercer and Cohen, 1990).  Vertical movement in the upward direction can take place as a result of

evapotranspiration or capillary rise following evaporation of water at the soil surface.  Convective

contaminant transport in the soil gas phase takes place when the soil gas moves as a result of several

processes, e.g. rising or falling groundwater table, changes in gas phase density due to heating or

cooling, air sparging, or gas production.

For NAPLs in the saturated zone of the aquifer, dissolution of the constituent from the NAPL

phase to the groundwater phase has been considered to be the rate-limiting step of the entire transport

process (Hunt et al., 1988; Abriola, 1989; Powers et al., 1991).  For most VOCs in the unsaturated

zone of the soil, diffusion through the gas phase is considered by far the predominant route of transport

(Marrin and Kerfoot, 1988), and thus of loss of volatile compounds from the soil system. The rate-

limiting NAPL-groundwater mass transfer has been found to be influenced by a variety of factors

including NAPL properties, aquifer characteristics, and fluid movement(Powers et al., 1991; Brusseau,

1992).

While searching for cost-effective bioremediation techniques, researchers have found that plants

can play an important role.  Vegetation may be used to actively promote microbial restoration of chemi-

cally contaminated soils and groundwater (EPA, 1992; Aprill and Sims, 1990; Davis et al., 1993b;

Narayanan et al., 1996; Zhang et al., 1996; and Walton and Anderson, 1990).  With growing plants,

the rhizosphere is a zone of intense microbial activity in which plant enzymes may also be active.  The

metabolic diversity of microorganisms and plants suggests that many xenobiotic organics can be de-

graded by at least some species.

Evidence is accumulating that plants have a role in the degradation of TCE and other persistent

organic contaminants (Walton and Anderson, 1990; Ferro et al., 1994; Narayanan et al., 1995a; Davis

et al., 1993a; Davis et al., 1993b; Newman et al., 1997; Schnoor et al., 1995; Erickson et al., 1994;

Tracy et al., 1992; Shimp et al., 1993; and Schnoor et al., 1995).  Plants can transpire water from the

saturated soil to the vadose zone.  Within the vadose zone, there may be either degradation or volatiliza-

tion of the contaminant (Narayanan et al., 1995a; Narayanan et al., 1995b; and Narayanan et al.,

1996).  Plants transpire measurable amounts of TCE and other compounds under laboratory conditions

(Davis et al., 1993a; Schnoor et al., 1995; Burken, 1996; and Davis et al., 1998), but under field

conditions the actual amount of compound transpired is less. In the field, plants and associate microor-

ganisms are more capable of degrading the compound of concern and releasing less of it to the atmo-
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sphere. Uptake and transformation of TCE in poplar tissues has been reported (Newman et al., 1997).

Vegetation can, to a certain extent, enhance TCE transport, transformation, and immobilization. Our

study (Zhang et al., 1996) has indicated that alfalfa plants (Medicago sativa) can grow well in the

presence of aqueous-phase TCE up to 1-2 mM and transiently tolerate higher levels. However, Ryu et

al. (1996) placed alfalfa plants in treatment bottles containing water of TCE levels from 0.09 to 0.45

mM and observed rapid photobleaching of leaves at all levels at or above 0.18 mM. These studies

show that TCE in the saturated zone is not as toxic as TCE in a closed container in which the gas phase

is in contact with the stems and leaves.

Our research group has been studying the fate and transport of various organic compounds in soils

with plants for several years (Narayanan et al., 1995a; Davis et al., 1993a; Narayanan et al., 1995b;

Davis et al., 1993b; Zhang et al., 1996; Narayanan et al., 1996; Zhang et al., 1997a; Makepeace et al.,

1996; Ryu et al., 1996; and Zhang et al., 1997b). Contaminant transformations and enhanced adsorp-

tion/immobilization have been observed in soil chambers with growing alfalfa plants (Narayanan et al.,

1995a and Davis et al., 1993a).  Alfalfa plants survived well in contaminated soil channels and signifi-

cantly increased the volatilization rate of both water and contaminants (Zhang et al., 1996 and Zhang et

al., 1997a). In field studies, alfalfa roots have been found at depths greater than 10 meters (Shimp et al.,

1993).

Air sparging is a relatively new technology that is being implemented at numerous sites around the

country (Mercer and Cohen, 1990; Johnson et al., 1993; Lord et al., 1995; and Reddy et al., 1995).  It

is primarily applied to removal of VOCs or biodegradable organic compounds from groundwater

aquifers.  This remediation technique involves forced introduction of air under sufficient pressure to form

bubbles in the groundwater.  The bubbles move through the aquifer to (1) strip volatile organic hydro-

carbons from the dissolved phase and from any NAPLs present along the path of the bubbles; (2) add

oxygen to the water to spur in situ bioremediation; and (3) for certain designs, establish large circulation

cells in the subsurface.  After the bubbles make their way to the unsaturated (vadose) zone, a soil vapor

extraction system may be used to capture the vapors for treatment prior to release to the atmosphere

(Johnson et al., 1993).

We have previously reported the use of in situ air sparging in conjunction with vegetation (Zhang

et al., 1997a and Zhang et al., 1997b).  These studies focused on the effects of vegetation and air

sparging on TCE flux rates entering the atmosphere.  Under the conditions of our experiments, both

vegetation and air sparging significantly increased TCE losses into the atmosphere.

The objectives of this study are to characterize the effects of vegetation on groundwater flow

(tracer test); to examine the presence, fate, and transport of NAPL contaminant deposited in saturated

zone of an aquifer during vegetation and air sparging; and to delineate the factors that affect NAPL

dissolution and transport within the aquifer.
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EXPERIMENTAL SETUP AND METHODS

Setup Description

To examine and delineate the presence, fate, and transport of NAPL contaminants, an aquifer

model system was established.  As schematically shown in Figure 1, the system consists of six indepen-

dent and identical channels constructed with steel bottoms, side panels, and end panels.  Each channel is

110 cm long, 10 cm wide, and 65 cm deep with soil depth of 60 cm.  The channels were packed with

alluvial silty sand soil (with <10% silt) collected near a landfill in Riley County, Kansas.  Five channels

(Ch 1,2,3,5, and 6) are planted with alfalfa and one (Ch 4) is unplanted, to allow an investigation of the

impact of vegetation.

The whole system was continually illuminated with 12, cool-white fluorescent lights (40W) at a

height of 50 cm above the soil.  Alfalfa plants, spaced at 10 cm intervals along the channels, were

harvested monthly before blooming.  Distilled water was fed from water jugs to maintain a stable water

supply to the system.  Water flow rate was controlled under gravitational flow by adding 1L/day to each

inlet water jug.  The water table was kept at approximately 35 cm (measured from the bottom) by

holding the outflow tubing at a constant height.

For air sparging, five air pipes had been installed at the bottoms of channels 1 and 6 prior to

planting alfalfa.  At the end of each pipe, an alumina gas dispersion stone was connected to distribute air

into very fine bubbles.  Air input volumetric rate to each channel was 2.14 L/m2·day (Zhang et al.,

1997b).

The purpose of this experimental work was to obtain quantitative information on the effects of

vegetation and air sparging on the movement of groundwater and contaminant under known inlet flow

conditions. Emphasis was placed on the evaluation of the influence that vegetation and air sparging have

on the transport and removal of contaminant. We chose TCE as a representative compound to model in

this study. At field sites, TCE, perchloroethylene (PCE) and other chlorinated solvents frequently make

up at least 1 to 2% of the NAPL (Boersma et al., 1995), while TCE is the most frequently found

contaminant at hazardous waste sites on the EPA�s National Priority List (Olsen and Kavanaugh, 1993).

Experiments and Mathematical Methods

Bromide Tracer Test

A KBr tracer solution was added to each channel at the concentration of 40.0 mg/L of Br.  By

switching the inlets from water jugs to KBr solution tanks, about 1.1 liters of tracer solution were added

within 12 hours in the same way the water was supplied.  Water samples were taken at the exits imme-

diately after the switch and every half-day thereafter.  The concentration of bromide was determined by

the phenol red method with flow injection analysis techniques.  This method can quickly detect bromide

concentration down to 0.1 mg/L (Freeman et al., 1993).
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The time period to feed bromide tracer is not short enough for us to assume a pulse experiment,

rather we can treat the input as a square wave function.  According to the linear property of residence

time distribution density function f(t) (Shinnar, 1987), we know that

where C(t) is the outlet concentration; C
f
(t) is the inlet concentration; and * denotes the convolution

integral.

We then utilize the Laplace transforms of C(t) and C
f
(t) to obtain the Laplace transform of f(t).

That is,

in which C(s)
output

 is the Laplace transform of the groundwater outlet concentration; C(s)
input

 is the

Laplace transform of the tracer input function; and f(s) is the Laplace transform of density function f(t).

The Laplace transform g(s) of a function g(t) is given by

(1)

in our case,

(2)

(3)

where C(t) is the groundwater effluent concentration which was monitored over time and C
f
(t) is a

square wave function as shown in Figure 2.

Because the data for C(t) as a function of time are discrete, we can only use numerical integration

to find out C(s)
output

. On the other hand, the continuous square wave function form of C
f
(t) allows us to

obtain C(s)
input

 by analytical integration over the time range of 0 to 12 hours.  Consequently f(s) is

obtained.  From f(s), the rth moment of f(t) will be calculated (Shinnar, 1987) through the rth derivative

of f(s) with respect to s, namely,

(6)

C t f t C tfb g b g b g= *

f s
C s

C s
output

input

b g b g
b g=

g s e g t dtst
sb g b g= −z0

(5)

(4)C s e C t dt
input

st
f

sb g b g= −z0
C s e C t dt

output

st
sb g b g= −z0

µ r f
r

s

r
r

rE t
d f s

ds
= = −

→
c h b g b g

lim
0

1

5

Zhang et al.: Effect of Vegetation on Transport of Groundwater and Non-aqueous

Published by New Prairie Press, 2017



Journal of Hazardous Substance Research8-6

Because the mean residence time is the first moment of f(t), bromide mean residence time can be

obtained as:

TCE Test

Initially 20 mL (29.2 g) of TCE as pure liquid was injected into each of the inlet streams at the

bottoms of channels 1,2,4,5 and 6 through a syringe pump, while channel 3 was used as control to

examine the effect of TCE on plants.  After the injection, groundwater samples were regularly taken

from the exit sampling ports with a syringe and transferred to small vials to measure the concentration of

TCE.  The gas-phase TCE concentration in the vial head space, (mM), was determined using a gas

chromatograph equipped with a flame-ionization detector and then, according to the mass balance of

TCE in the sample, we converted C
G
 to the liquid sample TCE concentration, C

L 
(mM), as follows:

(7)

where H(=0.383) is the Henry�s law constant of TCE; and V
B
 ,V

S
 and V

J
 are volumes (ml) of the vial

bottle, liquid sample, and the chromatograph syringe, respectively.

To monitor transfer of TCE through the vadose zone, the following strategy was adopted to obtain

the gas-phase flux rates of TCE.  Six identical one-end-opened containers, 400 mL in volume and 38.4

cm2 in cross sectional area, were placed along the top of each channel at six different positions.  Gas

samples were taken using 1 mL gas syringes through septa in the tops of the containers 40 minutes after

placement.  Sample compositions were then analyzed using the gas chromatograph equipped with a

flame-ionization detector.

Because TCE injection was performed within a very short time period (20 minutes) compared to

the longevity of the entire test period (more than 160 days for TCE test), we can assume pulse injection

of the 20 mL of TCE.  Therefore, the time records of TCE effluent concentrations can be thought of as

residence time distribution curves of TCE moving in the aqueous (groundwater) phase within each

channel.  The corresponding mean residence time of TCE moving horizontally through the saturated

zone can accordingly be obtained by integrating the effluent concentration over the testing time as

follows:

(8)

(9)

C
C

H

C V V
L

G G B s= +
−b g

C
C

H

C V V V

VL
G G B S J

S

= +
− +b g

t
tC dt

C dt

t C t

C tTCE L

TCE

TCE

i TCE i i

TCE i i
,

,

,

= =

∞

∞
z
z

∑
∑

0

0

∆
∆
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where t
TCE,L 

is the mean residence time for TCE based on analysis in groundwater; and C
TCE  

is TCE

concentration measured at the groundwater exit of the channel
.

For TCE moving upward to the soil surface, the concentration measured in the gas collecting

containers (C
TCE,m

) was used to calculate the mean residence time, t
TCE,G

, of TCE which exits to the

atmosphere through the soil surface.  Because the concentration appears in both the numerator and the

denominator terms with same order in the equation of mean residence time, we can directly use C
TCE

,
m

to estimate the mean residence time even though the measured concentration differs from the effluent

concentration at the soil surface.

Groundwater Flow Model

To help interpret the experimental data and observations, the soil channel is assumed to consist of

n identical soil compartments in series, as schematically shown in Figure 3. Groundwater flows sequen-

tially through the saturated void volume of each compartment.  At the same time, upward water move-

ment due to evapotranspiration is assumed to be uniform over the n compartments.  The volumetric flow

rates of water in the horizontal and vertical directions are designated as Q
H,i

 and Q
V,i

 (i = 1,2,...,n),

respectively.  The mean residence time for a water molecule to flow through the whole channel is t
H 

for

horizontal flow and t
V
 for vertical movement.

The void volume of every compartment is V
i
 and

where V
sat.,i 

= V
sat.

/n; V
unsat.,i 

= V
unsat.

/n. V
sat.

 is the volume occupied by water in the saturated zone,

which is equal to the saturated zone volume multiplied by the water volume content, q
v
.; V

unsat
 is the void

volume of the unsaturated zone and is equal to the unsaturated zone volume multiplied by the porosity.

Assuming the soil channels have porosity h = 0.30, we choose q
v 
as 0.30.  Then,

(10)

in which L is the length; W is the width; and H
sat

 and H
unsat

 are heights of the saturated and unsaturated

zones of the channel.

According to the sequential uniform flow model assumptions, we can write

(11)

(12)

(13)

V V Vi sat i unsat i= +, ,

V LWH Lunsat unsat. .= =η 8 28

V LWH Lsat sat v. .= =θ 116

τ τH H i
i

n

=
−

∑ ,
1
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with the mean residence time in the ith compartment equal to:

where

(14)

in which Q
H,0

= Q
in
; Q

H,n
= Q

out
; and Q

E.T.
 is the evapotranspiration rate of the channel, which was

calculated from the difference of the measured channel inlet and outlet water volumetric flow rates.

Since

(15)

and

(16)

(17)

equations (13) and (14) may be written as:

Therefore, given n compartments and the corresponding channel saturated zone volume occupied

by water, groundwater inlet volumetric flow rate, and evapotranspiration rate, we can estimate the

residence time of water flowing out as groundwater, i.e., t
H
.

For the vertical water movement, the expression of t
V,i

 for each compartment can be written as:

(18)

(19)

τH i
sat i

H i H i

V

Q Q
,

.,

, , /
=

+ −1 2d i

Q Q Q Q
Q

nH i H i V i H i
E T

, , , ,
. .= − = −− −1 1

Q Q
Q

n
Q

iQ

nH i H i
E T

in
E T

, ,
. . . .= − = −−1

Q Q Q
Q

n
Q

i Q

n
Q

i Q

nH i H i in
E T

in
E T

in
E T

, ,
. . . . . .+ = −F

HG
I
KJ + −

−F
HG

I
KJ = −

−
−1

1
2

2 1b g b g

τ τH H i
i

n
sat

in

E Ti

n V n

Q
i Q

n

= =
−− −

∑ ∑
−

,
.

. .

/

1 1 2 1

2

b g

τ
θ

τ
θ θ

τ

τ
θ

τ

V
sat unsat w

V

V
sat unsat w

V

sat

H H

sat unsat w

V
H

V i
sat i unsat i w

V i
H j

j

i

V V

Q

V V

Q

V

Q Q

V V

Q

V V

Q

,
., .,

,

,
., .,

,

.,
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,
,
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,
,

/

.......
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2
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2
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+
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in which q
w
  is the fraction of unsaturated zone void volume occupied by moisture; it is chosen as 0.80 in

this study.

By substituting V
sat.,i 

= V
sat..

/n, V
unsat.,i 

= V
unsat.

/n; and Q
V,1 

= Q
V,2 

= ... = Q
V,i  

= � = Q
E.T.

/n, the

above equations can be expressed in one equation as follows:

The mean residence time of the upward moving water is different for each compartment.  It

depends on the path from the groundwater inlet point to the soil surface for each compartment.  The

arithmetic average of mean residence time values of n compartments is used as the estimated upward

mean residence time for the whole channel, i.e.,

(20)

RESULTS AND DISCUSSION

Figure 4 gives the time records in terms of bromide concentrations at the channel exits responding

to the input at the inlet streams.  The time scale is zero when bromide feeding was started.  These results

suggest that similar flow patterns exist in the saturated zone for both planted and unplanted channels.

However, the fraction of water flowing upward into the unsaturated zone is smaller in the unplanted

channel.

Figures 5, 6, and 7 present TCE concentration profiles in the effluent groundwater streams as

response to TCE injection at the channel inlets.  Figure 8 gives gas-phase concentrations of TCE in

containers placed over the channel soil surfaces.  Notice that vegetation affects vertical TCE movement

more than TCE horizontal transport.  This is attributed to root water uptake and plant transpiration

which enhances the upward transport of TCE.  In the unsaturated zone, some TCE moves upward due

to gas-phase diffusion.  Thus, it may move faster than water where gas-void volume is sufficiently large

to allow TCE transport by gas-phase diffusion.  Air sparging increases both the groundwater and the

gas-phase TCE concentrations because it enhances mass transfer and NAPL dissolution.

The mean residence times of bromide for the saturated zone and TCE for the groundwater effluent

and gas-phase release are shown in Table 1.  TCE took much longer than bromide to flow out of the

channels in the groundwater stream.  This is because TCE was present as NAPL and because of mass

transfer limitation of TCE dissolution into groundwater.

When computing values of t
H
 by assigning various values to n (e.g., 1,2,...,18), we found that t

H

varied with n, but approached to a stable value when n > 6.  We chose n=2 and n=6 to estimate the

(21)

τ θ τV i
sat unsat w

E T
H j

j

iV V

Q
i n,

. .

. .
, , ,.....= + + =

=

−

∑
1

1

1 2b g

τ τV V i
i

n

n
=

=
∑1

1
,
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values of t
H 

and t
V
.  Values of the estimated mean residence time, t

H 
and t

V,
 are presented in Table 2 for

the cases of n = 2 and n = 6.  Table 3 lists the channel physical properties and values of parameters

used in the n-compartment model to estimate t
H 

and t
V
.  Values of the evapotranspiration rates Q

E.T.
 are

averages of daily measurement data over a one-year period.

Note that the values are impacted by vegetation and air sparging through parameter Q
E.T.

.  Vegeta-

tion increases the upward water flow rate through transpiration.  Because air sparging negatively af-

fected the plant growth in the initial period when TCE concentration in the saturated zone was higher,

the vegetated and air-sparged channel has lower averaged upward water flow rate compared to the

channel with vegetation only (Zhang et al., 1997a). As a result, the vegetated channel has a smaller value

of t
V
 than that one with both vegetation and air sparging.  The unplanted channel has a smaller mean

residence time for horizontal flow and a much larger mean residence time for vertical flow because

transport to the atmosphere is reduced compared to channels with vegetation.

The mean residence time values from bromide experiments are much lower than those estimated

for water from the model.  This reveals that the actual groundwater flow within the saturated zone is

preferential instead of uniform.  In other words, most of the groundwater flows through a small region of

the saturated zone.  This small region is most likely that part near the channel bottom, because the water

inlets and outlets are at 2 cm above the channel bottom.

Assuming that bromide movement represents the groundwater, the active volume, V
a
, can be

estimated by:

The remaining portion of saturated zone is inactive.  The inactive or dead zone volume, V
d
,  is:

The dead zone volume and its ratio to the total saturated zone volume are listed in Table 4.  The

data show that the dead zones in the experimental soil channels occupy a large portion of the saturated

zones.  The active zone is about 20 cm2 in cross section, extending the length of the channel.

Results of bromide and TCE recovery from five channels are presented in Table 5.  Since only a

portion of the bromide was recovered, it is clear that there is slow exchange with some or all of the

inactive volume.

More TCE was recovered from groundwater effluent than from the gas phase.  When plants are

not present, more of the water leaves as liquid and the fraction of bromide and TCE leaving in the liquid

effluent is larger.  As shown in Table 5 and Figure 8, more TCE is released at the soil surface with air

(22)

(23)

V t
V

a Br
sat

H

= −
.

τ

V V V V
t

d sat a sat
Br

H

= − = −
F
HG

I
KJ

−

. . 1
τ
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sparging and plant growth. Higher recoveries of TCE in evapotranspiration effluents of vegetated

channels resulted mainly from larger evapotranspiration rates of these channels than the unplanted one.

However, the air-sparged channels 1 and 6 have evapotranspiration rates lower than those of channels

2 and 5 which are vegetated but not air-sparged.  This is because, for the air sparged channels 1 and 6,

the plant growth was reduced during the period from about the thirty-fifth day to the 100th day after

TCE injection and starting air sparging. In this period, the detected soil gas TCE and DCE concentra-

tions from channels 1 and 6 were higher than from channels 2  and 5, and the air sparged channels�

monthly evapotranspired water amounts were less than 50% of those before the TCE injection.

The pore-water velocity through the inactive zone is small relative to that through the active zone;

diffusion and/or dispersion may control TCE transport in the inactive zone.  Once TCE reaches the

unsaturated zone, it can move by gas diffusion, which is much faster than liquid diffusion.  Increasing

TCE concentration in the inactive zone, for example, through air sparging, will increase the fraction of

TCE transported to the soil surface.  The upward flow of gas and the convective motion associated with

gas flow affect the upward transport of TCE.

The results in Table 5 suggest that there is some flow along the bottom of each channel with some

mixing with the fluid that is associated with the inactive volume.  Since there is upward flow due to

evapotranspiration, most of the bromide that is lost into the inactive volume appears to move away from

the bottom of the channel.  The fraction of bromide recovered in the groundwater effluent is less than the

fraction of water which leaves as groundwater during the bromide test period.  However, the fraction of

TCE which leaves in the groundwater effluent is larger than the fraction of water which leaves as

groundwater.  Since the NAPL is expected to find its way to the bottom of each channel, this provides

further evidence that some water flows along the bottom of each channel.  The significant difference

between the bromide and TCE results may be because the NAPL density greatly exceeds the density of

water while the bromide solution has a density much closer to that of water.

CONCLUSIONS

Experiments were conducted to examine the movement of groundwater and TCE with vegetation,

without vegetation, and with vegetation under air sparging conditions.  Due to root water uptake and

plant transpiration, vegetation accelerates TCE upward movement. By enhancing mass transfer and

TCE dissolution, air sparging increases TCE concentration in both groundwater and gas phases.  As a

result, air sparging speeds up the washout of TCE.

Comparing experimental data with flow model results reveals that groundwater flows through the

channels are, to a large extent, preferential rather than uniform because of the way water is introduced

into the channels.  A large portion of the saturated zone appears to remain inactive or less active to

groundwater flow.  Some of the flow appears to be along the bottom of the channels.

11

Zhang et al.: Effect of Vegetation on Transport of Groundwater and Non-aqueous

Published by New Prairie Press, 2017



Journal of Hazardous Substance Research8-12

ACKNOWLEDGEMENTS

This research was partially supported by the U.S. EPA under assistance agreements R-819653

and R-825549 to the Great Plains/Rocky Mountain Hazardous Substance Research Center for regions

7 and 8 under project 94-27.  It has not been submitted to the EPA for peer review and, therefore, may

not necessarily reflect views of the agency and no official endorsement should be inferred.  The Center

for Hazardous Substance Research also provided partial funding.

REFERENCES
Abriola, L.M., 1989. Modeling multiphase migration of organic chemicals in  groundwater systems: A

review and assessment. Environ. Health Perspectives, 83, p.117-143.
Aprill, W., and R.C. Sims, 1990. Evaluation of the use of prairie grasses for stimulating polycyclic

aromatic hydrocarbon treatment in soil.  Chemosphere, 20, p.253-365.
Boersma, P. M., K. R. Piontek, and P. A. B. Newman, 1995. Sparging effectiveness for groundwater

restoration.  In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Pro-
cesses, R.E. Hinchee, R.N. Miller, and P.C. Johnson, Ed., Battelle Press. p.39-46.

Brusseau, M.L., 1992. Rate-limited mass transfer and transport of organic solutes in porous media that
contains immobile immiscible organic liquids. Water Resour. Res., 28(1), p.33-45.

Burken, J. G., 1996. Uptake and fate of organic contaminants by hybrid poplar trees. Ph.D. Disserta-
tion, University of Iowa, Iowa City.

Davis, L.C., L. E. Erickson, E. Lee, J.F. Shimp, and J.C. Tracy, 1993a. Effects of plants on the
bioremediation of contaminated soil and groundwater.  Environ. Prog., 12, p.67-75.

Davis, L.C., C. Chaffin, N. Muralidharan, V.P. Visser, W.G. Fateley, L. E. Erickson and R. M.
Hammaker, 1993b. Monitoring the beneficial effects of plants in bioremediation of volatile
organic compounds.  Proceedings of the 1993 Hazardous Substance Research Conference,
Engineering Extension Service, Kansas State University, Manhattan, KS.  D. Tillison, L. E.
Erickson, S.C. Grant and J. P. McDonald (Eds.), p.236-247.

Davis, L.C., S. Vanderhoof, J. Dana, K, Selk, K. Smith, B. Goplen, and L.E. Erickson, 1998. Chlori-
nated solvent movement through plants monitored by Fourier Transform Infrared (FTIR)
Spectroscopy.  Journal of Hazardous Substance Research, 1(4); http://www.engg.ksu.edu/
HSRC, p. 1-26.

EPA, 1992.  Dense nonaqueous-phase liquids�A workshop summary. EPA/600/R-92/030, February
1992.

Erickson, L. E., L. C. Davis, S. K, Santharam, S. C. Kim, N. Muralidharan, and C. W. Rice, 1994.
Biodegradation in the rhizosphere: Analysis of the beneficial effects of vegetation.  87th Annual
Meeting, AWMA, Cincinnati, OH, June 19-24. Paper No.94-WA86.04.

Ferro, A. M., R. C. Sims, and B. Bugbee, 1994. Hycrest crested wheatgrass accelerates the degrada-
tion of pentachlorophenol in soil.  J. Environ. Qual., 23, p.272-279.

Freeman, P.R., B.T. Hart, and I.D. McKelvie, 1993. Dual flow-injection analysis system for determining
bromide and reactive phosphorous in natural water. Environ. Prog.,12, p.67-75.

Hunt, J.R., N. Sitar and K.S. Udell, 1988. Nonaqueous-phase liquid transport and cleanup: 1. Analysis
of mechanisms. Water Resour. Res., 24(8), p.1247-1258.

Johnson, R.L., P.C. Johnson, D.B. McWhorter, R.E. Hinchee, and I. Goodman, Fall 1993. An over-
view of air sparging. Ground Water Monitoring Remediation, Vol. XIII, No.4, p.127-135.

12

Journal of Hazardous Substance Research, Vol. 1 [1998], Art. 9

https://newprairiepress.org/jhsr/vol1/iss1/9
DOI: 10.4148/1090-7025.1008



Journal of Hazardous Substance Research 8-13

Komossa, D., C. Langebartels, and H. Sandermann, Jr., 1995. Metabolic processes for organic
chemicals in plants. In Plant Contamination�Modeling and Simulation of Organic Chemi-
cal Processes, S. Trapp and J.C. Mc Farlane(Eds.), Lewis Publishers. p.69-103.

Lord, D., J. Lei, M.-C. Chapdelaine, J.-L. Sansregret, and B. Cyr, 1995. In situ air sparging for
bioremediation of groundwater and soil. In In Situ Aeration: Air Sparging, Bioventing, and
Related Remediation Processes, R.E. Hinchee, R.N. Miller, and P.C. Johnson, Ed., Battelle
Press. p.121-126.

Mackay, D.M., and J.A. Cherry, 1989. Groundwater contamination: pump-and-treat remediation.
Environ. Sci. Technol., 23, p.630-636.

Makepeace, V.D., L.C. Davis, J. Dana, K. Selk, K. Smith, R.M. Hammaker, W.G. Fateley, and L. E.
Erickson, 1996.  �Measuring contaminant flux through plants by fourier transform infrared (FT-
IR) spectrometry,� Proceedings of the HSRC/WERC Joint Conference on the Environment,
http://www.engg.ksu.edu/HSRC, p. 557-582.

Marrin, D.L. and H.B. Kerfoot, 1988. Soil-gas surveying techniques. Environ. Sci. Technol., 22(7),
p.740-745.

Mercer, J.W., and R.M. Cohen, 1990. A review of immiscible fluids in the subsurface: Properties,
models, characterization and remediation.  J. Contaminant Hydrology, 6,p.107-163.

Narayanan, M., L. C. Davis and L. E. Erickson, 1995a. Fate of volatile chlorinated organic compounds
in a laboratory chamber with alfalfa plants.  Environ. Sci. Technol., 29, p.2437-2444.

Narayanan, M., L.C. Davis, J. C. Tracy, L. E. Erickson and R. M. Green, 1995b. Experimental and
modeling studies of the fate of organic contaminants in the presence of alfalfa plants. J. Hazard-
ous Materials, 41, p.229-249.

Narayanan, M., N.K. Russell, L.C. Davis, and L.E. Erickson, 1996. �Experimental and modeling
studies of the fate of trichloroethylene in chamber with alfalfa plants,� Proceedings of the
HSRC-WERC Joint Conference on the Environment, http://www.engg.ksu.edu/HSRC,
p.477-481.

Newman, L.A., S.E. Strand, N. Choe, J. Duffy, G. Ekuan, M. Ruszaj, B.B. Shurtleff, J. Wilmoth, P.
Heilman, and M.P. Gordon, 1997. Uptake and biotransformation of trichloroethylene by hybrid
poplars. Environ. Sci. Technol., 31,p.1062-1067.

Olsen, R.L., and Kavanaugh, M.C., 1993.  Can groundwater restoration be achieved? Water Environ.
Technol., 5(3), p.42-47.

Powers, S.E., C.O. Loureiro, L.M. Abriola, and W.J. Weber, 1991. Theoretical study of the signifi-
cance of non-equilibrium dissolution of nonaqueous-phase liquids in subsurface systems. Water
Resour. Res., 27(4), p.463-477.

Reddy, K.R., K. Sinduja, and J. Zhou, 1995. A review of in-situ air sparging for the remediation of
VOC-contaminated saturated soils and groundwater. Hazard. Waste & Hazard. Mater., 12(2),
p.97-118.

Ryu S.B., L.C. Davis, J. Dana, K. Selk, and L.E. Erickson, 1996. Evaluation of toxicity of trichloroeth-
ylene for plants. Proceedings of the HSRC/WERC Joint Conference on the Environment,
http://www.engg.ksu.edu/HSRC, p.583-588.

Schnoor, J.L., L.A. Licht, S.C. McCutcheon, N.L. Wolfe, and L. H. Carreira, 1995. Phytoremediation
of organic and nutrient contaminants.  Environ. Sci. & Technol., 29(7), p.318A-323A.

Shimp, J. F., J. C. Tracy, L. C. Davis, E. Lee, W. Huang, L. E. Erickson, and J. L. Schnoor, 1993.
Beneficial effects of plants in remediation of soil and groundwater contaminated with organic
materials. CRC Critical Reviews in Environmental Science and Technology, 23, p.41-77.

13

Zhang et al.: Effect of Vegetation on Transport of Groundwater and Non-aqueous

Published by New Prairie Press, 2017



Journal of Hazardous Substance Research8-14

Shinnar, R., 1987.  Use of residence- and contact- time distributions in reactor design. in Chemical
Reaction and Reactor Engineering, J.J. Carberry and A. Varma, (Ed.), Marcel Dekker, Inc.,
New York, p.63-149.

Tracy, J.C., L.E. Erickson, J. Shimp, and L.C. Davis, 1992. Modeling the beneficial effects of vegeta-
tion in the management of landfill leachates.  Proceedings of the Air and Waste Management
Association, 85th Annual Meeting, paper 92-27.03.

Walton, B.T., and T.A. Anderson, 1990. Microbial degradation of trichloroethylene in the rhizosphere:
potential application to biological remediation of waste sites. Appli. Environ. Microbiol., 56,
p.1012-1016.

Zhang, Q., B. Goplen, S. Vanderhoof, L.C. Davis, and L.E. Erickson, 1996. Fate and effect of trichlo-
roethylene as nonaqueous-phase liquid in chambers with alfalfa.  Proceedings of the 26th
Annual Biochemical Engineering Conference, L. E. Erickson Ed., Kansas State University,
p.154-163.

Zhang, Q., J. Hu, L.C. Davis, and L.E. Erickson, 1997a.  Effect of air sparging on fate and transport of
trichloroethylene in chambers with alfalfa plants. Proceedings of the 12th Annual Conference
on Hazardous Waste Research, Kansas City, Missouri, http://www.engg.ksu.edu/HSRC,
p.564-573.

14

Journal of Hazardous Substance Research, Vol. 1 [1998], Art. 9

https://newprairiepress.org/jhsr/vol1/iss1/9
DOI: 10.4148/1090-7025.1008



Journal of Hazardous Substance Research 8-15

0

5

10

15

20

25

30

35

40

45

0 6 12 18 24

Time (hours)

B
r-

 c
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

Figure 2.  Bromide input function.

Soil channel

Water jug
Collecting
bottle

Sampling
port

Syringe pump

TCE
injection

Air sparging

Figure 1.  Schematic diagram of the operating system.

15

Zhang et al.: Effect of Vegetation on Transport of Groundwater and Non-aqueous

Published by New Prairie Press, 2017



Journal of Hazardous Substance Research8-16

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 50 100 150 200 250

Time (hours after Br- injection)

B
ro

m
id

e 
co

nc
en

tr
at

io
n 

(m
g/

L
)

channel 2, planted

channel 4, unplanted

channel 6, planted and air
sparged

Figure 4.  Time records of bromide concentrations in exit stream from channels 2, 4, and 6.  There was
no air sparging in channel 6 during the bromide tracer test.

QH,2  ......

QH,nQH,o

QH,1 QH,n-1QH,i-1 QH,i   ......

QV,1 QV,2 QV,i QV,n

unsaturated zone

saturated zone

1 2         i      n

Figure 3.  A schematic diagram of the n-compartment groundwater flow model for a soil channel.

16

Journal of Hazardous Substance Research, Vol. 1 [1998], Art. 9

https://newprairiepress.org/jhsr/vol1/iss1/9
DOI: 10.4148/1090-7025.1008



Journal of Hazardous Substance Research 8-17

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 50 100 150 200

Time (days) 

T
C

E
 c

on
ce

nt
ra

ti
on

 (
m

M
)
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Figure 6.  Time record of aqueous TCE concentration from channel 4 (unplanted.)
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Table 1. Mean residence time (days) of Br- and TCE for different channels (experimental results).

*These values are based on the measured values in Figure 8.  Measurements were discontinued after more than 150

days when values approached the limit of detection.

lennahc
noitpircsed

rB - )latnoziroh( )latnoziroh(ECT *)lacitrev(ECT

detnalp 83.2,23.2 3.16 8.09

detnalpnu 63.2 6.85 1.301

ria&detnalp
degraps

4.43 1.57

Table 2. Mean residence time (days) for water for different values of n (modeling results).

lennahc
noitpircsed

2=n 6=n

τ
H

τ
V

τ
H

τ
V

detnalp 7.61 0.23 0.71 7.43

detnalpnu 3.31 6.74 4.31 9.94

ria&detnalp
degraps

8.51 2.04 9.51 2.34

Table 3. Parameters used to estimate groundwater mean residence time for six- compartment model.

noitpircsedlennahc detnalp detnalpnu degrapsria&detnalp

V
.tas

)L( 6.11 6.11 6.11

V
.tasnu

)L( 36.9 36.9 36.9

Q
.T.E

)yad/L( 95.0 83.0 54.0

θ
w

)-( 08.0 08.0 08.0
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Table 4. Estimated dead zone volumes within saturated zone of channels based on bromide data and
the six-compartment model results.

Table 5. Recovery of bromide, TCE and water for five experimental cases.

*V
sat

 is assumed to be 11.6 L, so the active zone has volume of less than 2 L.

*The bromide test was conducted without air sparging and lasted less than 9 days.

lennahc
noitpircsed

detnalp detnalpnu
ria&detnalp

degraps

V
d

)L( 58.9 46.9 29.9

V
d

V/
tas

*)%( 9.48 1.38 5.58

snoitpircseddnaslennahc 1lennahc
detnalp(

ria&
)degraps
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)detnalp(

4lennahc
-etnalpnu(

)d

5lennahc
)detnalp(

6lennahc
detnalp(

ria&
)degraps

derevocerECTfonoitcarF
tneulffediuqilni

47.0 58.0 11.1 11.1 17.0

derevocerECTfonoitcarF
noitaripsnartopaveni

tneulffe
81.0 61.0 70.0 21.0 12.0

derevocerretawfonoitcarF
ehtgnirudtneulffediuqilni

tnemirepxeECT
14.0 73.0 85.0 04.0 55.0

edimorbfonoitcarF
tneulffediuqilniderevocer

*470.0 03.0 94.0 62.0 *63.0

derevocerretawfonoitcarF
ehtgnirudtneulffediuqilni

doireptset
04.0 34.0 45.0 94.0 74.0
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