
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2016 - 28th Annual Conference Proceedings 

TOPOLOGICAL METHODS FOR THE QUANTIFICATION AND TOPOLOGICAL METHODS FOR THE QUANTIFICATION AND 

ANALYSIS OF COMPLEX PHENOTYPES ANALYSIS OF COMPLEX PHENOTYPES 

Patrick S. Medina 
Purdue University, medinap@purdue.edu 

Rebecca W. Doerge 
Purdue University, doerge@purdue.edu 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Medina, Patrick S. and Doerge, Rebecca W. (2016). "TOPOLOGICAL METHODS FOR THE QUANTIFICATION 
AND ANALYSIS OF COMPLEX PHENOTYPES," Conference on Applied Statistics in Agriculture. 
https://doi.org/10.4148/2475-7772.1484 

This Event is brought to you for free and open access by the Conferences at New Prairie Press. It has been 
accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New 
Prairie Press. For more information, please contact cads@k-state.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kansas State University

https://core.ac.uk/display/267195888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2016
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2016%2Fproceedings%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2016%2Fproceedings%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2016%2Fproceedings%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1484
mailto:cads@k-state.edu


TOPOLOGICAL METHODS FOR THE QUANTIFICATION AND
ANALYSIS OF COMPLEX PHENOTYPES

PATRICK S. MEDINA & R.W. DOERGE

Abstract. Quantitative Trait Locus (QTL) mapping of complex traits, such
as leaf venation or root structures, require the phenotyping and genotyping of
large populations. Sufficient genotyping is accomplished with cost effective high-
throughput assays, however labor costs often makes sufficient phenotyping prohibi-
tively limited. In order to develop efficient high-throughput phenotyping platforms
for complex traits algorithms and methods for quantifying these traits are needed.
It is often desirable to study the spatial organization of these phenotypes from the 
images generated by high-throughput platforms. With the goal of quantifying the
traits, many approaches try to identify several core traits useful in describing the 
phenotypic morphology. This simplification may lose important information about
the phenotype. Rather than reducing the structural information, we introduce a
novel method, the Persistence Intensity Array, for studying complex traits using
tools from the emergent field of Topological Data Analysis. This approach uses
the complete geometry of the phenotype and represents it as a simpler summary
of the key topological shape features contained in the data. We demonstrate this 
method’s efficacy by through a simulated QTL analysis.

1. Introduction

Advances in technology such as imaging, computing, robotics, and unmanned aerial
vehicles has given rise to the widespread development of high-throughput plant phe-
notyping platforms. While these advances have closed the gap between the amount
of phenotypic and genotypic information collected for statistical analysis, accurately
quantifying complex phenotypes as data to be used in statistical methods remains a
challenge. Toward this end, a common approach to quantifying complex phenotypes
is scoring. Specifically, phenotypes with common attributes are assigned an integer
value. For example, a diseased root structure may be assigned a value of one, while a
healthy root structure is assigned a value of zero. Unfortunately, scoring phenotypes
this way results in a loss of potentially important structural information. Further,
methods of scoring may not be consistent across experiments or between the people
who provide the evaluation.
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A more current approach to high-throughput phenotyping, developed for plant roots,
uses imaging software to compute the statistical distribution for the data that rep-
resent certain trait characteristics across the entire structure [1]. While this quan-
tification approach is reproducible and consistent across experiments, it still reduces
the amount of structural information acquired about each phenotype. In addition,
since the approach in [1] is focused on plant root structures, it does not easily extend
to other complex phenotypes.

In this paper we propose a novel approach for quantifying complex phenotypes that
we call the “persistence intensity array;” it is reproducible, consistent across phe-
notypes, and can be easily implemented on a wide range of phenotypes. The pro-
posed method is built on a new area of applied mathematics known as Topological
Data Analysis (TDA) [2, 3]; it quantifies key topological shape features in data, and
sets the stage for statistical inference. Here we introduce the basic ideas of TDA
and the persistence intensity array, and demonstrate its effectiveness in quantify-
ing complex phenotypes for eventual statistical analysis. Because we are developing
a new methodology, we rely on simulated data for evaluation of the proposed ap-
proach.

1.1. Introduction to Topological Data Analysis. TDA is a new area and cul-
mination of applied mathematics, statistics, and machine learning that studies the
key topological shape attributes of a given collection of data for the purpose of high
dimensional visualization, classification, and statistical inference on shapes. A brief
overview of the TDA workflow and its’ use in phenotyping is provided. A thorough
introduction to TDA can be found in [4] and in the review papers [3, 5]. A conceptual
introduction to TDA may be found in [6].

The main goal of TDA is to quantify shape features of an object so that the shape
can be analyzed quantitatively. To do this, TDA uses simplicial homology, a subject
of algebraic topology [7]. The shape features that are quantified are the 0th homology
group (i.e., connected components or clusters), the 1st homology group (i.e., holes),
the 2nd homology group (i.e., voids), and their higher dimensional equivalents. For
each feature, simplicial homology calculates the number of unique features that ap-
pear in a mathematical space and quantifies them as a Betti number. Differences in
the Betti numbers of two mathematical spaces allows one to conclude that the spaces
are topologically distinct. This fact provides a means for researchers to distinguish
between two shapes. For example, Figure 1(a) illustrates a two-dimensional repre-
sentation of a disk (left) and an annulus (right). Both shapes have a single connected
component and the Betti number for the number of connected components, β0, is
one. The annulus has a single large hole in the center and the disk does not. The
Betti number for the number of holes, β1, in the annulus is one, while it is zero for
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Figure 1. (a) A disk (left) and an annulus (right) embedded in R2.
These two shapes are topologically distinct, with Betti numbers β0 = 1,
β1 = 0 for the disk, and β0 = 1, β1 = 1 for the annulus. (b) Samples
drawn uniformly from the disk (left) and the annulus (right) using
accept-reject sampling.

the disk. Hence, we can distinguish between these two spaces with only knowledge
of their Betti numbers.

To compute homology of the underlying shape from a discrete collection of data,
methods for constructing a representation of the shape are used. Common methods
for achieving this are simplicial complexes [5], or approximating functions [8], such
as the kernel density estimator. A commonly used simplicial complex used in TDA,
the Vietoris-Rips complex, is illustrated in Figure 2(b) and (c), while an example of
the kernel density estimator is illustrated in Figure 2(d).

One challenge of these methods for constructing a representation of the underly-
ing shape is their dependency on the choice of parameters used for approximating
the shape. Different choices of parameters may result in different homology calcu-
lations (Figure 2(b) and (c)). Since the underlying shape is not necessarily known
beforehand, knowing which parameter results in an accurate representation of the
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Figure 2. (a) One hundred points uniformly sampled from a circle
with radius one and Gaussian noise added to each point. (b) The
Vietoris-Rips complex is constructed with a parameter of 0.25. From
this complex, we observe two connected components and one small
hole, which is not consistent with our understanding of the topology
from which the underlying points were sampled. (c) The Vietoris-Rips
complex constructed with a parameter of 0.50. From this complex, we
observe one connected component and one hole, which is consistent
with our understanding of the topology of the underlying shape. (d)
A kernel smoothed representation of the noisy circle.

underlying space is not known. To resolve this issue, the idea of persistent homol-
ogy was introduced [2] for the purpose of tracking the change in homoolgy as the
parameter changes.

Persistent homology tracks the number and scale topological features present in
data by recording the appearance (birth) and disappearance (death) of topological
features as a scaling parameter changes (time) [2]. Persistence enables researchers
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to study the topological properties of a shape or mathematical space from noisy
data. This lays the groundwork for developing statistical methods for determining
the topological features in data and for distinguishing between two mathematical
spaces. Birth-death information computed for each homology group is stored in the
summary statistic called the persistence diagram. A persistence diagram is a multiset
of the birth-death values for each unique feature that appears in the data.

Figure 3 presents the persistence diagrams for the disk (left) and the annulus (right).
The x-axis denotes the birth time of a feature and the y-axis is the death time. The
black line across the diagonal is the line y = x. The black dots are the connected
components and the red triangles are the holes. For the disk in Figure 3 there is
a single connected component born at time zero that persists until a time before
0.40. The other connected components appear later in time and die quickly. In
addition, a small hole is born later in time and dies quickly. These features are
considered topological noise since their lifetimes are small and not consistent with
the true homology of the disk. For the annulus in Figure 3 there is a connected
component and a hole born at time zero that persists for a long time. These features
are consistent with our knowledge of the true topology of the annulus. The remaining
features are topological noise and are due to their small lifetimes and inconsistency
with the true topology of the annulus.

Persistence diagrams have been useful for classification and machine learning [9,
10]. However, there are challenges in using the persistence diagram with statistical
methods due to the fact that the mean is not guaranteed to be unique nor stable
[11]. To overcome these issues, a new summary statistic, the persistence landscape,
transforms the persistence diagram into a mathematically more useful space [12].
This said, the Persistence Landscape may be difficult to interpret, so instead, we
focus on a growing number of kernel methods for persistence diagrams [10, 13, 14, 15],
specifically the persistence intensity function [16].

1.2. The Persistence Intensity Function. The persistence intensity function
transforms the persistence diagram to a function space that is more amenable to
statistical methods. This is accomplished by applying a kernel smoothing function
to the elements of the persistence diagram. In [16], the authors demonstrate that
the intensity function contains sufficient topological information to classify different
shapes and establish a hypothesis testing procedure for differentiating between sam-
ples of intensity functions. The formal definition of the persistence intensity function
and theoretical results is found in [16].
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2. Introduction of the Persistence Intensity Array

One feature of the intensity function is that it combines all of the available topological
information contained in the different homology groups. However, in the context of
high-throughput phenotyping, a significant amount of topological information can
be documented and knowledge of which topological features are most important for
analysis is known from simple empirical observations. For example, if we consider
quantifying leaf venation, it is clear that the veins are all connected, however the
smaller veins may form intricate loops, which are useful in differentiating the leaves of
different plant species. In this situation, more emphasis on the persistent homology
of loops may be more relevant than that of the connected components.

Although a weighting mechanism on the different homology groups has been proposed
[16], it remains unclear how the weights should be placed. Rather than combining
this information in the intensity function and weighting, we propose computing the
intensity function for each homology group separately. We call this new statistic the
persistence intensity array. The principal difference between the persistence intensity
function and the persistence intensity array is that the intensity array defines a
function for each homology group. The intensity function can be recovered from the
intensity array by summing across the components of the vector. A formal definition
of the persistence intensity array and theoretical properties are the subject of future
work.

3. Simulation Study

The motivation and purpose of this paper is to introduce the intensity array as a
mechanism for quantifying phenotypes for use in statistical genetics analysis (e.g.
quantitative trait locus mapping). Our focus is on demonstrating that the inten-
sity array contains topological information about the underlying spaces from which
the data were sampled, and motivating their usefulness for statistical methods in
genetics.

3.1. Methods. One feature of using imaging technologies to study complex pheno-
types is the vast sources of variation that contribute to the final representation of
the phenotype captured by an image. These sources of variation include not only
the genetic and environmental factors, but additional sources of variation such as
the handling of the phenotype prior to imaging, the imaging technology used, and
the image processing steps to isolate a relevant point cloud for use in topological
analysis.
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Figure 3. Persistence diagrams for the disk (left) and annulus (right).
The 0 homology and 1 homology features are represented by a black
dot and red triangle respectively. The disk detects a single connected
component born at time zero and dies before time 0.40. The annulus
detects both a single connected component and hole born at time zero.
Both diagrams detect some minor topological features later in time,
however these are noise. Both persistence diagrams accurately reflect
the topology of the underlying shape from which they were sampled.

For the purpose of simulation, we seek to generate simple shapes that, while they
may not reflect the complexity of natural phenotypes, they at least mimic the sources
of variability that may be encountered when studying real phenotypes. To simulate
the technical variability involved in dealing with the phenotype, imaging and image
processing, a uniform sample of 6333 points is drawn from a disk with average radius
of one. A uniform sample of 5000 points is drawn from an annulus with an average
outer radius of one and inner radius of one half. The sampling was performed using
accept-reject sampling [17]. The decision for the number of samples taken from each
shape was made so that the shape was accurately reflected in the point cloud, as
might be the case with imaging phenotypes, and so that the proportion of points
sampled relative to the area of the shape is the same. An illustration of the accept-
reject sampling scheme is presented in Figure 1(b). To simulate variability in the
physical structures, the radius of the disk is a uniform random variable with support
[0.9, 1.1]. Similarly, the outer and inner radius of the annulus are uniform random
variables with support [0.9, 1.1] and [0.4, 0.6], respectively.
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A binary covariate is used to generate the shape, with a value of one generating
the annulus and a value of zero generating the disk. For each of the simulations in
Sections 3.3 and 3.4 a sample of 2N shapes is taken with half of the shapes being
an annulus and the remaining disks. The remaining covariates not associated with
the shape are independent Bernoulli random variables with a probability of success
equal to one half.

Persistence diagrams were computed for each shape using the gridDiag() function
in the R package TDA [18]. The point cloud for each shape was smoothed using a
kernel density estimator with smoothing parameter 0.15 and persistence homology
was computed on the superlevel sets of the kernel smoothed shape using the Dionysus
library. The advantage of this approach in working with images over other filtrations,
such as the Rips complex, is that it helps reduce artificial topological noise and
greatly simplifies the number of computations. The ability of this approach to recover
information about the true structure of each sample is discussed in Section 3.2. A
Gaussian kernel is used to compute the intensity array with a scaling parameter of
0.15. At this time, no method was used to choose the scaling parameter, rather they
were chosen based on the appropriate number of features generated. Appropriate
methods for choosing this parameter will be explored in future work. Software for
the computation of intensity arrays was written in C++ and R. Numerical integration
of the intensity array is done with a two dimensional version of the trapezoid rule to
obtain a simple estimate. More appropriate numerical integration methods, such as
Gaussian quadrature, will be implemented in future versions of the software.

3.2. Data Exploration. We begin our analysis by examining the persistence dia-
gram and the intensity arrays. Figure 3 demonstrates the persistence diagram for a
single disk and a single annulus generated as discussed in Section 3.1. The persis-
tence diagram for the disk (left) reveals a single large connected component (black
dots) born at time zero and that dies before 0.4. This should be expected since the
disk is connected. In addition to the single connected component, we observe several
components and holes born later and die relatively quickly. Due to their short lifes-
pan we suspect these points are topological noise since they are not consistent with
our knowledge of the true space.1 The persistence diagram for the annulus (right)
reveals a single dominant connected component and a single dominant hole born at
time zero. These features are consistent with the geometry of the annulus. Again,
we observe some topological noise that is born later in time. While each sample will
vary from the persistence diagrams demonstrated in Figure 3, the key topological
features are captured in the persistence diagram.

1Statistical methods for determining if features are topological noise using confidence intervals
are discussed in (Chazal et al., 2015) and implemented in the R package TDA.
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TOPOLOGICAL METHODS IN STATISTICAL GENETICS

Persistence Intensity Array for the Disk

Persistence Intensity Array for the Annulus
Betti 0 (Connected Components)

Betti 0 (Connected Components) Betti 1 (Holes)

Betti 1 (Holes)

Figure 4. Top: Persistence Intensity Array for the connected com-
ponents (left) and holes (right) of the disk. For the intensity array
of the connected components, a dense region around the area where
a large single connected component appeared in the persistence dia-
gram of the disk. The 0-homology features that appeared later in life
and were considered topological noise are not clearly visible. For the
intensity array of the holes of the disk, a dark region appears around
the area where a hole feature appeared as topological noise. However,
the scale of this feature is small relative to the single dominant fea-
ture of the connected components. This is consistent with the feature
being topological noise. Bottom: Persistence Intensity Array for the
connected components (left) and holes (right) of the annulus. For the
intensity array of the connected components and the holes, a dense
region around the area where a large single connected component ap-
peared in the persistence diagram of the disk. Both the 0-homology
and 1-homology features that appeared later in life are faint, which is
consistent with these features being topological noise.
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Figure 5. Multidimensional scaling of the Persistence Intensity Ar-
ray for the annulus (blue circles) and the disk (green triangles). The
intensity array contains sufficient topological information to be able to
distinguish between these two topologically distinct shapes.

3.3. Clustering by Multidimensional Scaling. We continue by examining the
intensity array’s ability to cluster topological objects using multidimensional scaling
(MDS). Persistence intensity arrays were computed for twenty randomly generated
disks and annuli using the methods outlined in Section 3.1. Since the intensity arrays
are a vector of functions, the distance between two intensity arrays can be measured
as the p-norm of their difference. Formally, if κ̂1(b, d) and κ̂2(b, d) are two intensity
arrays, the p-norm distance ∆p between them is

(1) ∆p(κ̂
1(b, d), κ̂2(b, d)) =

(
K∑
k=0

∫
R2

|κ̂1k − κ̂2k|p
)1/p

.

MDS is performed on the distance matrix constructed between the 40 samples, with
p = 2. The MDS is clearly able to separate the samples of the disk and annulus into
their respective groups (Figure 5). This evidence suggests that the intensity array
contains relevant topological information.
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3.4. Multivariate Regression. The ability of multivariate regression to detect as-
sociation between a covariate and the two dimensional shape it generates is tested.
The shapes of interest are the disk and annulus. In each simulation, a single covari-
ate is responsible for determining the physical shape of the response. The remaining
covariates are binary noise. In these initial simulations we study the effectiveness
of multivariate regression in detecting the covariate responsible for generating the
shape in two scenarios: an increase in sample size; and as the number of random
covariates increase.

Since the intensity array is a function of birth-death locations, we reduce the array to
a vector of numbers by integrating the array over R2 for the purpose of using multi-
variate regression. The integrated array may be interpreted as a measure of the total
intensity of a topological feature in the jth homology group. The Hotelling-Lawley
test is used to detect association between the covariates and response [19].

The example presented here serves as a simplification of the problem encountered
in QTL analysis for complex phenotypes. Specifically, we explore the situation in a
backcross, B1, design [20] to detect an association between the quantified phenotype
and the observed marker data. In the scenario outlined at the start of this section,
the observed genetic marker responsible for generating the shape of the phenotype
may be assumed to be at the QTL. The annulus is generated by a QTL with a
heterozygous genotype, while the disk is generated by a QTL with a homozygous
genotype. While this example may be a simplification, it demonstrates the ability of
the intensity array in detecting relationships between genetic markers and complex
phenotypes.

3.4.1. Effect of Sample Size. The first set of simulations tests the effect of sample
size on multivariate regression’s ability to detect the true covariate responsible for
generating the shape of the response variable. Sample sizes used are 14, 20, 50, and
100. In each simulation we observe the true generating covariate to be statistically
significant. Tables 1(a-d) in Section 5.1 of the Appendix contain the results for each
simulation.

3.4.2. Increasing the Number of Random Covariates. The second set of simulations
tests the ability of multivariate regression to detect the true covariate responsible for
generating the shape as the number of random covariates increases. This approach
is further tested by keeping the sample sizes small. In each simulation we observe
the true generating covariate to be statistically significant. Tables 2(a-c) in Section
5.2 of the Appendix contain the results for each simulation.

156

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2016/proceedings/11



4. Discussion and Future Work

This work introduces the idea of the Persistence Intensity Array, a generalization
of the Persistence Intensity Function, and demonstrates its’ usefulness in detecting
covariates associated with topological characteristics of a shape in a multivariate
multiple regression model. In future work, we will formally define the Persistence
Intensity Array and study its’ statistical properties. Of particular interest will be the
statistical properties associated with using the intensity array as a response variable
in the multivariate multiple regression model. Although our focus will be on ensuring
that statistical hypothesis testing procedures used in regression apply to the intensity
array, we remain committed to real world applications that include high-throughput
phenotyping and eventual QTL analysis.

5. Appendix

The following sections contain the tables of the output for the two scenarios tested
in Sections 3.4.1 and 3.4.2 using the manova() command in R. In each of the tables,
T1 is the true covariate that is used to generate the disk or the annulus, while the
covariates starting with a “R” is random noise. Within each table, the first column
contains the degrees of freedom associated with each covariate, the second column
contains the value of the Hotelling-Lawley test statistic, the third column is the
approximate F statistic, the fourth and fifth columns are the degrees of freedom for
the numerator and the denominator of the F -distribution, and the sixth column is
the p-value. In each situation, the null hypothesis is that the regression coefficient
associated with each covariate is zero. The regression coefficient of the true covariate
is significant in each situation.

5.1. Table of Results for the Effect of Sample Size.

Table 1a: 14 samples; 2 covariates (1 true, 1 random)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 7.0359 35.180 2 10 2.984e-05 ***

R1 1 0.0784 0.392 2 10 0.6856

Residuals 11

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 1b: 20 samples; 2 covariates (1 true, 1 random)
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Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 6.9390 55.512 2 16 6.337e-08 ***

R1 1 0.1774 1.419 2 16 0.2708

Residuals 17

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 1c. 50 samples; 2 covariates (1 true, 1 random)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 3.02602 69.599 2 46 1.224e-14 ***

R1 1 0.00017 0.004 2 46 0.9961

Residuals 47

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 1d. 100 samples; 2 covariates (1 true, 1 random)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 3.5253 169.215 2 96 <2e-16 ***

R1 1 0.0244 1.169 2 96 0.315

Residuals 97

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

5.2. Table of Results for Increasing the Number of Random Covariates.

Table 2a. 20 samples; 5 covariates (1 true, 4 random)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 7.0610 45.897 2 13 1.284e-06 ***

R1 1 0.1785 1.160 2 13 0.3438

R2 1 0.2220 1.443 2 13 0.2717

R3 1 0.3554 2.310 2 13 0.1385

R4 1 0.2351 1.528 2 13 0.2535

Residuals 14

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 2b. 20 samples; 10 covariates (1 true, 9 random)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 11.2452 44.981 2 8 4.448e-05 ***
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R1 1 0.0213 0.085 2 8 0.9190

R2 1 0.2801 1.121 2 8 0.3724

R3 1 0.1290 0.516 2 8 0.6154

R4 1 0.6946 2.778 2 8 0.1213

R5 1 0.6310 2.524 2 8 0.1413

R6 1 0.5536 2.214 2 8 0.1717

R7 1 0.1106 0.442 2 8 0.6574

R8 1 0.2104 0.842 2 8 0.4658

R9 1 0.2865 1.146 2 8 0.3651

Residuals 9

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 2c. 30 samples; 20 covariates (1 true, 19 random)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

T1 1 8.8322 35.329 2 8 0.000107 ***

R1 1 0.3650 1.460 2 8 0.288083

R2 1 0.1484 0.594 2 8 0.574885

R3 1 0.0001 0.000 2 8 0.999553

R4 1 0.1613 0.645 2 8 0.549833

R5 1 0.0406 0.162 2 8 0.852880

R6 1 0.0740 0.296 2 8 0.751483

R7 1 0.1220 0.488 2 8 0.630966

R8 1 0.1721 0.688 2 8 0.529828

R9 1 0.0668 0.267 2 8 0.772137

R10 1 0.0079 0.031 2 8 0.969193

R11 1 0.2000 0.800 2 8 0.482303

R12 1 0.1351 0.540 2 8 0.602434

R13 1 0.0568 0.227 2 8 0.801625

R14 1 0.0784 0.314 2 8 0.739310

R15 1 0.0549 0.220 2 8 0.807435

R16 1 0.0375 0.150 2 8 0.863137

R17 1 0.5127 2.051 2 8 0.191004

R18 1 0.1920 0.768 2 8 0.495385

R19 1 0.4732 1.893 2 8 0.212314

Residuals 9

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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