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ABSTRACT 

Land Use and Land Cover Change (LULCC) influence the climate at a global and local 

scale. Using long term microclimate data (2002-2009, 2011-2012) from the Carbon 

Sequestration Project (CSP), Mead, NE, this study examines how crop selection and 

water management can mitigate heat in the atmosphere. Mitigation of global warming is 

dependent on the management of crop lands, and the amount and timing of rainfall during 

the growing season.  Rainfed crops were found to heat the passing air. The irrigated 

maize crop was able to mitigate 20 to 62% of the sensible heat (H) compared to the 

rainfed maize counterpart, the lower value for wet years and the larger value for dry 

years. Soybeans under irrigation, on the other hand, extracted a maximum of 37% of 

cumulated H in comparison to rainfed soybean. The irrigated maize field can reduce the 

warming by as much as 76% compared to the rainfed soybean crop. In addition to 

increasing yields, irrigation of maize greatly reduces the heating of air, thus moderating 

regional climate in east central Nebraska. 
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1.0 Introduction 

There exists worldwide evidence at the local to the global scale of significant climatic 

impacts attributed to land use and land cover change (LULCC ) (e.g. Adegoke et al., 

2007; Douglas et al., 2009; Pielke et al., 2011; Mahmood et al., 2010; Dirmeyer et al., 

2010; Deng et al, 2014; Verheggen et al., 2014). The most significant land cover changes 

(LCC) occur as a result of agricultural expansion, desertification, urbanization, 

deforestation and afforestation (Mahmood et al., 2014). The impact of LULCC on the 

natural ecology and its processes vary at different scales.  It is vital to estimate the effects 

of LULCC in order to prepare and mitigate the effects of LULCC on global warming 

since natural resources such as air, water and soil are significantly impacted with some 

regions being more vulnerable than others (Loveland and Mahmood, 2014). Long term 

research is therefore key to informing mitigation efforts to prevent devastating effects 

such as global warming, extinction of plant and animal species, disruptions of water and 

nutrient cycling among others. 

Crop and livestock production have increased significantly with more land under natural 

vegetation being converted to crop lands for food production (Adegoke et al., 2007). 

Additionally, irrigation has converted tracts of land in otherwise unproductive areas such 

as semi-arid and desert areas into productive bread baskets (Adegoke et al., 2007; Lo and 

Famiglietti, 2013). Access to inputs such as fertilizers, water, improved seeds and 

pesticides has made agricultural production both intensive and profitable.  Farmers have 

invested in irrigation systems to reduce crop failure risks due to insufficient and 

unreliable precipitation. Due to intensive irrigation, evapotranspiration has been shown to 

exceed rainfall. For example, in the Central Valley of California, in a year, precipitation 

is below evapotranspiration by about 60% (Faunt, 2009 as cited in Lo and Famiglietti, 

(2013). 

In the Great Plains, LULCC from native grasslands to intensively managed irrigated 

croplands has had a dramatic influence on ecological processes, near-surface 

meteorology, surface fluxes and natural resources (Adegoke et al., 2003; Mahmood and 

Hubbard, 2002; Mahmood et al., 2006; Adegoke et al., 2007; Sohl et al., 2012; Mahmood 

et al., 2013; Mutiibwa et al., 2014). Nebraska for example has a total of 3.5 million 

hectares of irrigated land which is more than any other state.  The application of irrigation 

is by sprinkler (72.96%), micro- (0.01%) and surface (27.03%) irrigation (Maupin et al., 

2014). On average about 1 out of every 14 ha are irrigated in the state.  This dramatic 

change in LULCC in the Great Plains has been prompted by the presence of underlying 

water in the Ogallala Aquifer which provides immense volumes of water for both 

drinking and irrigation purposes (Sohl et al., 2012). By applying extra water to crops 

during the growing season, irrigation has been noted to influence the local climate 

through enhanced land surface cooling and precipitation in several sites that have been 

studied (e.g. Mahmood et al., 2006; Mahmood et al., 2014). Huber et al., (2014) 

conducted simulations using the Advanced Research Weather Research and Forecasting 

(WRF) model and compared the rainfed and irrigated portions of the Great Plains region. 

The July precipitation in the region downstream of irrigated lands increased by about 

50% (Huber et al., 2014).  Additionally, Lo and Famiglietti, (2013) have also reported 

that the southwestern hydrological cycle in the United States has been strengthened by 

the irrigation conducted in the Central Valley of California. They indicated that the 
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Colorado River streamflow over the summer increased by about 30% due to the 15% 

increase in summer precipitation caused by intensive irrigation on 5.2 million hectares of 

agricultural land in the Central Valley. 

A substantial increase in available soil water above that of a rainfed scenario, increases 

both transpiration and soil evaporation. Applying water to increase soil water availability 

will decrease temperature of the microenvironment due to the greater latent energy (LE) 

and associated cooling effects at the irrigated site. Since available incident radiation is 

partitioned to heating the ground, heating the plant tissues in the crop canopy, vaporizing 

water at the surface and soil profile (latent heat, LE), and heating air above the surface 

(sensible heat, H), a soil with a large water holding capacity will maintain or increase LE 

above the rainfed value.  This will result in a cooling of the canopy and a decrease of H 

into the air and possibly even a reversal in H so that it is toward the surface. When soil 

water is limiting, LE decreases and more energy is available for sensible heating thereby 

increasing near-surface temperature (Seneviratne et al., 2010; Lo and Famiglietti, 2013).  

The extent to which irrigation influences the partitioning of net radiation has been 

examined using simulation models and applying major LULCC such as deforestation and 

irrigation. Some models have been applied to quantify the impacts of surface cooling due 

to irrigation. For example, Adegoke et al., (2007) utilized the Regional Atmospheric 

Modeling System (RAMS) to determine that irrigation reduced temperature at the 2m 

level by 1.2°C, increased Latent Energy (LE) by 36% and reduced sensible heat by 15%; 

in Nebraska. Kueppers et al., (2008) utilized 3 regional climate models to measure 

changes in the 2-m level, mean August temperatures (-1.4 to -3.1°C) in the western 

United States. Mahmood et al., (2006) have also examined pre- and post- 1945, 1950, 

1955 periods and compared non-irrigated (Halsey) and irrigated (Alliance) locations in 

Nebraska for near surface cooling using the average maximum growing season 

temperature. The data indicated that there was more cooling of the air in the later part of 

the 20th Century of 1.65°C compared to 0.64°C during the earlier part (post-1945).  Ge, 

(2010) demonstrated the impact of intensive wheat production on surface temperature 

utilizing long-term satellite data (2002-2008). When compared to surrounding grasslands, 

maximum temperatures in the wheat fields were on average, 2.3°C lower during the 

growing season but after harvest, temperatures were 1.61°C higher (Ge, 2010).  

 There exists a general consensus that surface cooling occurs, however, it is important to 

be able to quantify the impact of irrigation at the field-level for specific crops and their 

water management practices e.g. soybeans and corn in rainfed and irrigated regimes in 

order to ensure that modelled results compare favorably with ground measurements. 

The main objective of this study is to quantify the effect of irrigation on microclimate 

energy partitioning in adjacent rainfed and irrigated sites in Mead for both Maize and 

Soybean in the east central part of Nebraska.   

2. Materials and Methods

2.1 Site Description and Data 

The microclimate and yield data from the long term Carbon Sequestration Project (CSP) 

at Mead, Nebraska were used in evaluating the sensitivity of crops under rainfed and 
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irrigated regimes. The study sites are located at the University of Nebraska Agricultural 

Research and Development Center. Data from three sites (1, 2 and 3) were used in our 

analysis. Since 2001, site 1 has been cropped under continuous maize while site 2 and 3 

are cropped alternately under a maize and soybean rotation.  At sites 1 and 2, irrigation 

provided supplemental water while site 3 was rainfed. Site 1 will be referred to as 

Irrigated Continuous Maize (ICM); site 2 will be referred to as Irrigated Maize-Soybean 

Rotation (IMS) while Site 3 is Rainfed Maize-Soybean Rotation (RMS). The details of 

management practices for each site are given in Table 1.  

Irrigation was conducted in site 1 and 2, using center pivot irrigation, to achieve 

sufficient available soil water for the crops. It is important to note here that the amount of 

litter under continuous maize was higher than that in the other sites. IMS and RMS are 

similar with respect to crop rotation and their soil chemical and physical properties 

(Table 2), but not water management.  

Additionally, the amount of surface biomass and its composition were comparable in 

both sites 2 and 3. No-till (conservation tillage) was employed for all sites. The soils in 

the sites are generally deep silty clay loams (Suyker and Verma, 2009).  However, it is 

important to note that in the autumn of 2005, the presence of a “heavy litter layer” 

(Suyker and Verma, 2009) necessitated the use of a conservation-plow that distributed 

litter below the surface (0.2-0.25 m depth) while maintaining 1/3 of the litter on the soil 

surface. Detailed descriptions of the sites and recommended best management practices 

may be found in publications by Verma et al., (2005), Suyker and Verma (2009) among 

others. In 2010, the IMS was converted into irrigated continuous maize. During that year, 

heavy hail caused severe damage and crop losses. Thereafter, in 2011 and 2012; site 2 

was under continuous irrigated maize management. There was a comparatively 

representative range of dry and wet years for this study 2002-2009, 2011- 2012).  

Because of hail damage, 2010 was excluded from the study. 

2.2 Phenology, Leaf Area Index, and Plant height measurements 

Each site had Intensive Management Zones (IMZs) that were 20 m by 20 m in dimension 

and wherein detailed measurements of crop growth, “canopy and soil gas exchange” 

(Verma et al., 2005) were taken. Maize growth and developmental stages were observed 

in the IMZs weekly. During the vegetative development of the plant, the number of fully 

formed leaves (with leaf collar) were counted and recorded. Visual observations of 

silking (R1) stage were recorded at the start of the reproductive period when at least 50% 

of the plants being sampled showed emerging silks from the tip of the ear shoot. Records 

of the blister (R2), milk (R3), dough (R4), dent (R5), and physiological maturity (R6) 

reproductive stages were also observed by examining the kernels. In the case of soybean, 

a visual count of nodes (beginning with the unifoliate node) on the main stem of the 

plant, was used for vegetative staging. For example, V3 was the 3rd node stage with three 

nodes and fully developed leaves on the main stem.  Thereafter, records of observed 

flowering marked the first reproductive stage (R1), opening of flowers on either of the 

two most uppermost nodes, also known as full bloom (R2), beginning pod (R3), full pod 

(R4), beginning seed (R5), full seed (R6), beginning maturity (R7) and full physiological 

maturity (R8).  
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Year Management Crop 

Precipitation 

and/or 

Irrigation 

(mm) 

Grain Yield 

(Mg/ha) 

2002 ICM1 maize 716 13.0 

IMS2 soybean 630 3.9 

RMS3 soybean 426 3.3 

2003 ICM maize 729 12.1 

IMS maize 729 14.0 

RMS maize 393 7.7 

2004 ICM maize 617 12.2 

IMS soybean 588 3.7 

RMS soybean 441 3.4 

2005 ICM maize 670 12.0 

IMS maize 659 13.2 

RMS maize 390 9.1 

2006 ICM maize 705 10.5 

IMS soybean 576 4.4 

RMS soybean 501 4.3 

2007 ICM maize 847 12.8 

IMS maize 899 13.2 

RMS maize 726 10.2 

2008 ICM maize 734 12.0 

IMS soybean 884 4.2 

RMS soybean 802 4.0 

2009 ICM maize 548 13.3 

IMS maize 578 14.2 

RMS maize 517 12.0 

2011 ICM maize 700 12.0 

IMS maize 642 13.4 

RMS maize 521 10.4 

2012 ICM maize 597 13.1 

IMS maize 630 13.9 

RMS soybean 297 2.0 

Table 1: Year, management,  total water added to site through precipitation and/or irrigation (mm) and 

yield of maize (Mg/ha) grown in CSP Mead NE Experimental sites between 2002-2009, 2011-2012 

growing season. 1 Irrigated Continuoius maize,  2Irrigated Maize-Soybean Rotation, 3 Rainfed Maize-

Soybean Rotation 
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Table 2: The soil physical properties measured for soils in sites 1, 2 and 3, Mead, Nebraska, including, soil 

depth (Depth), Saturated Volumetric Water content (θs), field capacity (FC), wilting point (WP), bulk 

density (Bulk Density) and Saturated Hydraulic conductivity (Ks). 1 ICM-Irrigated Continuoius maize,  2 

IMS-rrigated Maize-Soybean Rotation, 3 RMS-Rainfed Maize-Soybean Rotation. 

Leaf Area Index (LAI) measurements were made by destructive sampling in the IMZs on 

a frequency of approximately two weeks (Suyker and Verma, 2009). Samples were taken 

from 1 m linear row sections from six different locations within each of the sites and LAI 

was calculated as the ratio of the total green leaf area to the underlying ground area 

(Suyker and Verma, 2009).  Average plant height measurements were also made and 

recorded. Comparisons in LAI development and crop height were related to phenological 

development and were utilized to explain and relate the differences between irrigated and 

rainfed development of maize.  

2.3 Temperature and outgoing longwave radiation measurements 

Aspirated Vaisala HMP 50Y temperature sensors were utilized to measure temperatures 

at 10 cm, 1 m, and 6 m above the soil surface. Incoming and outgoing longwave radiation 

and shortwave radiation were measured using a Kipp and Zonen CNR 1 Net Radiometer 

(Suyker and Verma, 2009).  

2.4 Flux Measurements: 

Sensible heat flux (H) and latent heat flux (LE) measurements were made for each of the 

sites. An omnidirectional 3D sonic anemometer (Model R3: Gill Instruments Let., 

Lymington, UK) and an open-path infrared CO2/H2O gas analyzing system (Model 

LI7500. LI-COR Inc., Lincoln, NE) were used for measurements (e.g. Suyker et al., 

2009). Detailed descriptions on measurements, calculations, and filling of missing data 

are not discussed here but can be found in Suyker et al., (2003). 
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2.5 Data Analysis 

Descriptive statistical analysis was conducted using Microsoft® Excel for most weather 

variables. Additionally, linear regressions to establish correlations between two 

biophysical variables and corresponding phenological development were conducted.  

Using weather station data as a reference, differences between the reference station 

maximum temperature and that of proxy canopy temperatures of all sites were also 

analyzed. In addition, we looked for the point that the sensible heat in the rainfed field 

began to depart from the sensible heat in the irrigated fields. We found this point 

occurring at the first irrigation. We will term this point in time as the phenological 

divergence point (PDP). We used PDP to separate the earlier season, when the two 

microclimates were nearly identical, from the later season when stress in the rainfed and 

extra LE in the irrigated fields began to change the partitioning of evapotranspiration and 

sensible heat.  Thus the phenology development should be nearly identical in all fields 

until PDP. Sensible and latent heat flux was cumulated over the growing season and 

compared for the 33 site-years.  

3. Results and Discussion

3.1 Weather Data and Irrigation 

During the long-term study, planting was conducted between the end of April and mid-

May depending on soil temperature, moisture and field workability. The average maize 

plant population were 82,500 and 61,300 plants/ha for irrigated and rainfed regimes. In 

the case of soybean, a planting population of 370,644 plants/ha, was the general standard 

irrespective of water management. On average, the hottest and driest years were 2003, 

2005 and 2012 (Table 1, Fig 1, 2 and 3). 

A comparison between actual rainfall amounts and potential evapotranspiration indicate 

that evaporative demand in 2003 and 2012 was high (Fig. 2) with limited water 

availability. The Growing Season (GS) precipitation recorded during these three years 

was 393, 390 and 297 mm. During these years an average of 11 irrigations were applied 

over the growing season. During the wet years; 2007 and 2008 that recorded 726 and 802 

mm of precipitation during the GS, 7 irrigation events took place for maize. Despite the 

fact that 2008 was wet, 7 irrigation events were reported and these took place due to the 

distribution of rainfall. Most of the heavy rainfalls fell before July 23rd (DOY 205). An 

average year like 2006 recorded 8 and 4 irrigation events for maize and soybeans 

respectively. The year 2011 in which maize was planted in all sites, only 4 irrigation 

events were scheduled over the GS. The amount and distribution of rainfall during 2011 

was favorable for the crops. 
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Year Management Crop 

Precipitation 

and/or 

Irrigation 

(mm) 

Grain Yield 

(Mg/ha) 

2002 ICM1 maize 716 13.0 

IMS2 soybean 630 3.9 

RMS3 soybean 426 3.3 

2003 ICM maize 729 12.1 

IMS maize 729 14.0 

RMS maize 393 7.7 

2004 ICM maize 617 12.2 

IMS soybean 588 3.7 

RMS soybean 441 3.4 

2005 ICM maize 670 12.0 

IMS maize 659 13.2 

RMS maize 390 9.1 

2006 ICM maize 705 10.5 

IMS soybean 576 4.4 

RMS soybean 501 4.3 

2007 ICM maize 847 12.8 

IMS maize 899 13.2 

RMS maize 726 10.2 

2008 ICM maize 734 12.0 

IMS soybean 884 4.2 

RMS soybean 802 4.0 

2009 ICM maize 548 13.3 

IMS maize 578 14.2 

RMS maize 517 12.0 

2011 ICM maize 700 12.0 

IMS maize 642 13.4 

RMS maize 521 10.4 

2012 ICM maize 597 13.1 

IMS maize 630 13.9 

RMS soybean 297 2.0 

Table 3: Year, management,  total water added to site through precipitation and/or irrigation (mm) and 

yield of maize (Mg/ha) grown in CSP Mead NE Experimental sites between 2002-2009, 2011-2012 

growing season. 1 Irrigated Continuoius maize,  2Irrigated Maize-Soybean Rotation, 3 Rainfed Maize-

Soybean Rotatio
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Figure 1: Monthly maximum and minimum temperatures (2-m level) recorded at the nearest Automated Data Network (AWDN) MeadTurf Station for the growing season (April-

October) 2002-2009, 2011 and 2012. 

Figure 2: Monthly cumulated potential evapotranspiration and precipitation recorded at the nearest Automated Data Network (AWDN) MeadTurf Station for the growing season 

(April-October) 2002-2009, 2011 and 2012. 
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. 

Figure 3: Total cumulative Precipitation during the growing season (April-October) 2002-2009, 2011 and 

2012 at the CSP Mead, NE experimental station. 

3.2 Crop Yields 

As expected, both ICM and IMS (irrigated maize and soybean) produced a higher yield 

than RMS (rainfed maize and soybean) during all years (Table 1). It is worth noting that 

the effect of rotational management on soil texture and nutrient availability resulted in 

higher yield production in IMS as compared to RMS. The highest maize production 
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Figure 4: Seed yield (Mg/ha) for maize (M) and soybean (S) growing during the growing seasons (April-October) of 2002-2009, 2011 and 2012 at the CSP 

Mead, NE experimental sites.
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Figure 5: The Leaf Area Index (LAI) for maize growing in IMS (irrigated maize-soybean rotation) and 

RMS (rainfed maize-soybean rotation) during 2003 and 2007 growing seasons.  
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Figure 6: The height for maize growing in IMS (irrigated maize-soybean rotation) and RMS (rainfed 

maize-soybean rotation) during 2003 and 2007 growing seasons.  
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under irrigation management was 14.18 Mgha-1 which occurred in 2009 following a 

relatively high soybean yield in the previous year (4.22 Mgha-1). 

As expected, rainfed crop did not do as well as irrigated crop since the growth rate and 

final yields were affected by availability of water in the soil profile to dissolve and supply 

nutrients such as nitrates, phosphates and potassium to the plants. Nevertheless, the 

highest maize yields under RMS occurred in 2009 (12.00 Mgha-1) when the rainfall 

amounts and distribution were favorable (Fig 2). The worst maize yields reported over 

the study duration was during the 2003 drought year, 7.72 Mgha-1   (Fig. 4). Year 2012 

was also a drought year, however maize production was under irrigation and a good 

harvest was reported (ICM – 13.06 and IMS – 13.94 Mgha-1).  Soybean yields were 

adversely affected and a small harvest of 2.01 Mgha-1 was attained in 2012. The highest 

soybean production occurred in 2006 when rainfall was ample (501 mm) and well 

distributed. In 2002 and 2004, the maximum or peak LAI for soybean was 5.7 and 4.4 

respectively (Suyker and Verma, 2008). 

On average, using two contrasting years (2003 and 2007); the maximum LAI for irrigated 

maize ranged between 5 and 6 m2m-2 while that of rainfed maize was slightly above 4 

m2m-2 (Fig.5) Maize height for irrigated site-years was slightly above 300 cm while that 

of RMS was about 50 cm shorter (Fig. 6). Suyker and Verma (2008) found a strong linear 

relationship between daily ET/ETo and LAI between an LAI of 3 and 4. Usually the 

cumulative evapotranspiration for maize was higher than that of soybeans. For example, 

between 2001 and 2005, cumulative ET for the entire growing season (planting to 

harvest) was 430-474 mm for soybean; while that of corn was 544-578 mm. 

3.3 Temperature 

Temperature measured at 10 cm above the surface, (T10) in both ICM and IMS were 

lower than in RMS during all the years (Fig 7) reflecting the effect of additional 

evaporative cooling in the irrigated fields. Irrigation was responsible for higher 

evapotranspiration at the irrigated sites, resulting in evaporative cooling during vegetative 

development as reflected in the 10 cm temperature, T10. The explanation for this 

temperature difference was that solar radiation was partitioned to both latent heat and 

sensible heat for the irrigated field while the rainfed field had more energy directed into 

sensible heat, thereby increasing canopy temperatures.  As the cropping season 

progressed to a fuller canopy cover, more energy went into latent heat, and evaporative 

cooling resulted in the downward flux of sensible heat. Several studies (e.g. Bonan, 2001, 

Mahmood and Hubbard, 2002) have also documented both dew point temperature 

increments and maximum temperature decrements during the summer in the vicinity of 

irrigation.  The differences between T10 in irrigated and rainfed sites will tend to 

disappear when rainfall is adequate and well distributed during the growing season. 

However, in the situation where climatic conditions are drier and hotter, the timing of 

sensible heat departures measured in the different sites is prominent. In Fig. 8 all sites 

(e.g. year 2003 and 2012) have sensible heat moving upward after emergence because the 

canopy is quite sparse and therefore the soil/canopy generally stays warmer than the air. 

The summation of the sensible heat exchange continues upward for both sites through 
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time until the evapotranspiration has depleted the soil to the point that irrigation is needed 

to replenish water lost from the profile.  As the canopy becomes larger and draws more  

Figure 7: Moving 7-day average maximum Ta-Tc at Mead Turf Farm Station for sites 2 and 3 during the 

growing season (April-October) during the years a) 2003 (dry) and b) 2007 (wet). 
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water from the soil, the evapotranspiration causes the temperature of the irrigated canopy 

to fall below the air temperature.  This is the point when sensible heat changes sign and is 

directed downward toward the canopy.  In the past, when sensible heat was directed to 

the canopy it was coined sensible heat advection but as can be seen here, it can also be 

viewed as a consequence of surface cooling due to evapotranspiration. While still using 

2003 as an example, departures in the amount of sensible heat between IMS and RMS 

began around LAI of 4.2 m2m-2 for the irrigated crop and 3.0 m2m-2 for the rainfed crop 

(Fig.5). Sensible heat measurements remained generally upward for the rainfed crop and 

generally downward for the irrigated crop (at about day 190) which corresponds to the 

timing when the irrigated crop had attained larger LAI and height than that of RMS. It is 

important here to note that during the early part of the long-term study (2001 – 2004 GS); 

maize residues were not incorporated into the soil or removed from the soil surface. A 

higher albedo from site 1 (continuous irrigated maize (ICM)) increased the sensible heat 

in atmosphere compared to site 2 (IMS). The maize residue also served to conserve and 

prevent water losses into the atmosphere thereby reducing partitioning of energy to LE.  

After 2005, a large proportion of residue from ICM was incorporation deeper in the soil 

(Suyker and Verma, 2009). Therefore, in the more recent years (e.g. 2012 (Fig 8b)) ICM 

and IMS were in closer agreement as compared to 2003 (Fig 8a).  

Figure 8a: Cumulative sensible heat (H), precipitation and irrigation measured for maize: Irrigated 

Continuous Maize (ICM), Irrigated Maize-Soybean Rotation (IMS) and Rainfed Maize-Soybean Rotation 

(RMS) during the growing season (GS) (April – October, 2003) at the CSP Mead, NE experimental 

stations. 
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Figure 8b: Cumulative sensible heat (H), precipitation and irrigation measured for maize: Irrigated 

Continuous Maize (ICM1), Irrigated Continuous Maize (ICM2) and Rainfed Maize-Soybean Rotation 

(RMS) during the growing season (GS) (April – October, 2012) at the CSP Mead, NE experimental 

stations. 

An annual volumetric soil water time series showed that soil water for most years was 

high at the beginning of the season because precipitation in the form of rainfall in the 

spring and snowfalls in the winter season recharged the soil water profile (data not shown 

here). When crop growth commenced, the soil water declined due to evaporation and 

transpiration from the crops. Recharging occurred with effective precipitation events and 

irrigation applications (ICM and IMS). Stresses to the crop due to water depletion began 

approximately at the point when half of the available soil water (approximately 0.24. 

cm3cm-3) was depleted from the soil profile by evapotranspiration. During a dry year, 

such as 2003, soil water decreased below the stress line in RMS over a continuous period 

that was broken once during the crops reproductive stages. Water stresses in RMS were 

not as severe during the 2007 season for example, because stresses were short-lived.   

3.4 Irrigated and Rainfed Maize 

The microclimates in irrigated and rainfed maize were comparable up to the phenological 

divergence point (PDP). After PDP, a cooling effect was found in the irrigated compared 

to the rainfed canopy. The effects of the deficits of soil water at the rainfed sites became 

increasingly pronounced on many measures such as H, LE, LAI, and crop height. For 

example, between 2001 and 2005, Suyker and Verma (2009) recorded an average of 548 

and 482 mm of ET for irrigated and rainfed maize respectively. Lower accumulated H 

over the season resulted from irrigation events that supplemented rainfall as compared to 

the rainfed site-years. Additional available water increased transpiration from the crop as 

well as soil evaporation. The rainfed crop lost heat into the air (increased H) as compared 

to the irrigated crop that extracted heat from the air for evapotranspiration thereby 
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increasing LE. For these reasons, the proxy canopy temperatures of the rainfed crop were 

higher than that of the irrigated crop. 

3.5 Irrigated and Rainfed Soybean 

Both irrigated and rainfed soybeans were planted in 2002, 2004, 2006 and 2008. The 

difference in yield between the two water managements was 0.64, 0.30, 0.05 and 0.26 

Mgha-1. The differences between ET measurements over the irrigated and rainfed 

soybean fields were normally low. For example, Suyker and Verma, (2009) recorded an 

average of GS ET of 452 and 431 for irrigated and rainfed soybean between 2001 and 

2005. It was also interesting to note that the cumulated H for irrigated and rainfed 

soybean were nearly the same in the years when the yield differences were very small. 

Additionally, the LE values were similar for both management types. The explanation for 

these similarities lies in the architecture of the plant (e.g. leaf angle distribution) and the 

physiological behavior of plants (e.g. closure of its stomates) in managing and avoiding 

the effects of water stresses (Barfield and Norman, 1983). For instance, a combination of 

a planophile leaf distribution and albedo of approximately 0.21, increases the Rn 

reflective capabilities of soybeans in comparison to that of corn, an erectophile whose 

albedo ranges from 0.2 to 0.23 (Doughty et al., 2011). Soybeans respond to water deficits 

by allocating more resources (photosynthates) to the roots in the lower soil profile, 

thereby avoiding drought conditions and associated yield reductions (Licht et al., 2013).  

Soybeans can also continue to photosynthesize at lower water potentials than those of 

corn thereby withstanding drought (Boyer, 1970). Yield reductions of soybean occur 

significantly during “early formation and pod filling”, (Sionit and Kramer, 1977) and in 

2002, water stress occurred about that critical time while in 2004 and 2006, the rainfall 

distribution allowed rainfed soybean to produce about the same yield as irrigated 

soybean. In 2002, water stresses limited transpiration resulting in the ratio, of LE to 

incident radiation (Rn), to decrease logarithmically as stomatal resistance (rs) increased 

(Baldocchi et al., 1985). The partitioning of net radiation to increase H, decreases the 

cumulative LE in the soybean canopy over the growing season. The similarities in 2004, 

2006 and 2008 may have been fostered by the practice of rotating soybean with maize 

since these rotations have been studied and reported to favor an increase in root activity 

(Copeland et al., 1993), thereby increasing rooting depth and water uptake by plants.  

3.6 Role of Irrigation in mitigating global warming 

During the growing season rainfed crops generally release more sensible heat to the air 

than irrigated crops because of the decreased amount of transpiration and limited 

available soil water. Irrigated continuous maize crop (ICM), at Mead, mitigated from 20 

to 62 % (Table 3) of this sensible heating that otherwise would have gone into the air 

because irrigation caused more available energy to be partitioned into evaporation and 

less into sensible heat and even with drew heat from the air under advective conditions. 

Thus, irrigated maize acted to mitigate warming over the irrigated areas. Irrigating 

soybeans, on the other hand did not consistently mitigate atmospheric warming. For 

instance, in 2006 and 2008, the difference between cumulative H in IMS and RMS over 
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the GS, was insignificant (Fig. 9) and so was the yield difference. These results may be 

explained by the edaphic conditions (e.g. available soil water, soil water holding 

capacity) and active rooting depth of the crop (Moore and Heilman, 2011).  In 2002 and 

2004, irrigation of soybeans (IMS) mitigated 37 and 9 % of H released into the 

atmosphere by a neighboring rainfed soybean field (RMS).  The higher level of 

mitigation (in 2002) may be attributed to a larger biomass and yield difference between 

the irrigated and rainfed soybean crop. Upon comparing the irrigated maize and rainfed 

soybean LULLC, the impact of irrigation in mitigating atmospheric warming is amplified 

during 2002 and 2012, which were both hot and dry years. Approximately 56 and 76% of 

the cumulative sensible heat released to the air from the rainfed soybean fields was 

accounted for in the irrigated fields because of partitioning more Rn into LE for 2002 and 

2012 respectively (Table 3). 

Table 3: Year, management,  crop, number of full irrigations and % Mitigation of sensible heat energy as a 

result of irrigation of crops grown in CSP Mead NE Experimental sites between 2002-2009, 2011-2012 

growing seasons. 1 Irrigated Continuoius maize,  2Irrigated Maize-Soybean Rotation, 3 Rainfed Maize-

Soybean Rotation. 
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Figure 9: Cumulative sensible heat (H), precipitation and irrigation measured for Irrigated Continuous 

Maize (ICM), Irrigated Maize-Soybean Rotation (IMS) and Rainfed Maize-Soybean Rotation (RMS) 

during the growing season (GS) (April – October, a) 2006 and b) 2008; at the CSP Mead, NE experimental 

stations. 

4.0 Conclusions 

The frequency and severity of drought is expected to increase in Nebraska with 

increasing temperatures necessitating food producers to rely on irrigation much more 

(Wilhite et al., 2014). In 2003 and 2012, for instance, Nebraska experienced drought 

during the growing season (April – October). During those years, water exstraction from 

the Ogallala aquifer for the purposes of irrigation, increased (Hornbeck and Keskin, 

2014). Intensive agriculture coupled with increased irrigation has been observed to result 

in surface cooling and the redistribution of some energy from H to LE.  Irrigation 

influences convective cloud formation and precipitation development at a regional-scale 

as several studies have documented (e.g. Adegoke et al, 2007; Mahmood et al., 2014). 

In realizing our objective, we came to understand the large contrast in the microclimates 

of rainfed and irrigated maize and soybean managed ecosystems and we quantified the 

impact irrigation has on mitigating atmospheric warming.  

The long-term insitu field observations of adjacent fields   provided by the CSP, Mead, 

NE, was an excellent resource for comparing the direct effects of irrigation and crop type 

on both H and LE heat fluxes and temperatures.  It is clear that the microclimate of 

rainfed and irrigated crops begins to depart substantially with the first irrigation.  Further, 
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rainfed crops generally release heat to the air above the canopy.  Irrigated crops however, 

because the canopy is cooled by evapotranspiration, generally remove heat from the air.  

In dry years the amount of heat that is mitigated by irrigated crops is larger than in wet 

years.  The microclimate of irrigated and rainfed crops is not so different in wet years. 

These results also demonstrate that irrigated maize mitigates atmospheric warming more 

than soybean, most likely because of their physiological differences (e.g. rooting depth; 

albedo, surface roughness).  Maize transpires more and is not as tolerate of low water 

potentials as is soybean. In support of this fact, maize was reported to have a lower 

canopy surface conductance (Gsmax) of 29 mms-1 compared to soybean whose Gsmax 

ranged from 36-41 mms-1 with a corresponding LAI of 4.4 and 5.7 between the GS of 

2001 and 2005 (Suyker and Verma, 2008).  Gsmax is the reciprocal of the resistance in the 

Penman-Monteith equation and reflects on the “biosphere’s control” of ET.  Therefore, a 

soybean canopy has a higher control of ET as compared to maize which is positively 

attributed to the content of nitrogen in the leaves (Suyker and Verma, 2008). Soybeans 

which have a higher albedo than corn and better tolerance to low water potentials; have 

been shown here to preferentially increase H into the atmosphere. Such differences, in the 

type of crops and their tolerance and/or avoidance mechanisms to drought, are vital in the 

construction of realistic simulation models that mimic LULCC. More work needs to be 

done to increase understanding of the influence that vegetation type and irrigation have 

on other physical processes such as transpiration, cloud formation and precipitation at the 

local to global scale. The combined impact of irrigation and the promotion of crop 

cultivars with significantly higher albedos (Doughty et al., 2011) and crops with deeper 

active rooting systems (Moore and Heilman, 2011); may potentially offset atmospheric 

warming in temperate regions (latitudes>30°).  
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