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Abstract 

Idaho is ranked 5
th

 in the United States in overall wheat production and makes over $500 million 

in profit annually from wheat. Many pests have detrimental effects on wheat; some of the most 

predominant ones are aphids. Four species of aphids having economic effects on wheat crops in 

Idaho are: Diuraphis noxia, Metopolophium dirhodum, Rhopalosiphum padi, Sitobion avenae.  

Predictive regression models could be useful for better understanding of the occurrence of these 

aphid species. Count data for the four species were collected over 17 years via suction traps at 12 

locations in wheat fields throughout Idaho. Species specific nonlinear logistic growth models 

were fitted to each suction trap location to model the aphid accumulation process during the 

wheat growing season. The nonlinear model used was parameterized to provide inference on 

three main aphid characteristics, the onset of trapped aphid accumulation, the rate of increase in 

aphid accumulation, and the maximum accumulated abundance of trapped aphids. Suction trap 

locations were further aggregated into 5 environments using hierarchical clustering based on 

climate data. Species specific models were then fitted to each of the 5 environments.  Within 

each environment, the maximum yearly aphid abundance was determined to have a lag (1) 

autocorrelation structure across years, indicating a biotic feedback. A full nonlinear logistic 

growth model was then fitted to the entire data set using dummy variable regression to 

investigate potential climatic environmental patterns in the aphid accumulation process.  

Predicted models were validated both externally and internally. External validation used suction 

trap locations in Idaho that were excluded from the model building process to assess the 

predictive capabilities of the specified models. Internal validation was conducted using bootstrap 

simulation of the residuals for each model. Statistical models similar to those developed in this 

study can aid in understanding and evaluating the dynamics of the abundance of cereal crop 

aphid species in Idaho. 

Keywords: Nonlinear Regression, Logistic Growth Models, Autocorrelation, Suction Traps 
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I.  Introduction 

Idaho is well-known for its agriculture, in particular for its potato production.  Idaho is 

also one of the biggest producers of cereal crops, in particular wheat, in which it is ranked 5
th

 in 

the U.S.A. for production (Idaho Wheat Commission, 2014).  Wheat production for Idaho 

averages approximately 100 million bushels with a total value of over $500 million, providing 

over 8,500 jobs (Idaho Wheat Commission, 2014).  Because wheat is such an important 

agricultural product in Idaho and the Pacific Northwest, the management of wheat crops is of 

great concern.   

Among the challenges for wheat production are insect pests, weeds and diseases.  Some 

of the common pest insects include aphids, cereal leaf beetles (Oulema melanopus), thrips 

(Thysanoptera), and wireworms (Elateridae) (Bechinski, 1998).  Aphids, one of the most 

harmful pests of wheat, are the focus of this study.  Aphids can damage crops both directly 

through feeding, as well as indirectly through the transmission of destructive viruses such as 

Barley yellow dwarf virus (Araya et al., 1986). Several of the most common aphid pest species of 

wheat, found nearly worldwide, include: the bird cherry-oat aphid (Rhopalosiphum padi (L.)), 

the corn leaf aphid (Rhopalosiphum Maidis (F.)), the English grain aphid (Sitobion avenae 

(Fabricius)), the greenbug (Schizaphis graminum (Rondani)), the rose grain aphid 

(Metopolophium dirhodum (Walker)), and the Russian wheat aphid (Diuraphis noxia 

(Kurdjumov)) (Araya et al., 1986).  

Producers employ several preventative strategies for these problem species.  Essentially, 

all Idaho wheat producers plant weed-free (certified) seed on more than half of their commercial 

wheat acreage (Bechinski, 1998) and most producers also tend to plant pest-resistant varieties, 

when these are available.  In addition, some producers alter their fall planting times to avoid peek 

aphid populations, and most spray pesticides to prevent establishment and spread of aphids in 

their crops (Bechinski, 1998).  According to a survey conducted in 1998, about 80 percent of 

wheat growers use field scouting and thresholds to determine the need for pesticide applications, 

60 percent claim their fields are monitored weekly during growing seasons, and only about 14 

percent use forecasts from the aphid suction trap network (Bechinski, 1998).  A better 

understanding of the populations of wheat pest species and how they fluctuate both within and 

across years could greatly advantage wheat producers of Idaho. 

In an effort to monitor aphid population fluctuations and movement of invasive aphid 

species, a study was conducted in the Pacific Northwest (Halbert et al. 1990).  The wingless 

forms of pest aphids are of greatest concern as they can reach high abundances and produce the 

greatest damage to crops.  Nonetheless, these wingless forms result from colonization by winged 

individuals that migrate from their overwintering hosts to grasses and cereals during the early 

spring.  For this reason, the study used a network of suction traps consisting of 28 sites across the 

Pacific Northwest to document aphid occurrence and accumulation.  By using the data from this 

aphid suction trap network, a better understanding of the patterns and dynamics of occurrence for 

several pest aphid species may be developed.  The four focal species for this study were the bird 

cherry-oat aphid (R. padi), the rose grain aphid (M. dirhodum), the English grain aphid (S. 

avenae), and the Russian wheat aphid (D. noxia) (see the subsequent chapters for additional 
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details regarding these species).  This research utilizes data from 12 of these suction trap 

locations, all within the state of Idaho: Aberdeen, Arbon Valley, Burley, Kimberly, Lewiston, 

Moscow, Parma, Picabo, Ririe, Rockland, Soda Springs, and Tetonia.  Aphid count data from 

these sites were obtained for the years 1986 through 2003, with the exception of 2002. 

The objectives of the study are as follows: 1. Modeling the occurrence and underlying  

autocorrelation structure associated with aphid species abundances across time using the data 

collected from suction traps throughout Idaho; 2. Developing site-specific cumulative population 

growth models for individual species of aphids, determination of potential inter-annual 

variability, incorporating possible environmental correlates; and 3. Comparing individual or 

multiple species abundances over time and space as well as potential regional differences across 

Idaho. 

 

 

II. Material and Methods  

Source and Description of Data 

 The data used for this study consisted of two types: abiotic and biotic.  The biotic data 

pertain to cereal aphid pests. In Idaho some are anholocyclic, meaning they feed only on grassy 

hosts year around, while others are holocyclic or host-alternating species.  Host-alternating 

aphids typically overwinter on woody plants (the so-called primary host) and feed on grains and 

grasses in the summer (secondary host).  Four cereal pest aphids that have been of economic 

concern (Pike et al., 1990) were selected for this study: Diuraphis noxia, Metopolophium 

dirhodum, Rhopalosiphum padi, and Sitobion avenae.  Of these four species, R. padi and M. 

dirhodum are host-alternating species, while S. avenae and D. noxia live primarily on grains and 

grasses.  Rhopalosiphum padi host alternates between chokecherry (Prunus virginiana) bushes in 

the winter and a variety of grain crops and grasses in the summer.  Metopolophium. dirhodum 

alternates between rose bushes (Rosa sp.) in the winter and small grain crops and grasses in the 

summer.  Upon emergence in the spring, the populations produce winged (alate) generations 

which then migrate to summer host plants of grains and grasses (Halbert et al. 1988). Host-

alternating aphid species typically overwinter as eggs on their woody hosts. Year around, S. 

avenae and D. noxia colonize various small grains, annual and perennial wild grasses (Halbert et 

al., 1988). 

In 1986, a network of traps was established in the PNW consisting of 27 sites throughout the 

states of Idaho and Oregon. The data for this study were from a subset of this trap network. Each 

sampling location consisted of one suction trap of 8 meters in total height.  The traps used a fan 

to draw air down the 8 meter, 30 cm in diameter tube through a screen funnel where the insects 

were collected in a jar of ethylene glycol (Allison & Pike, 1988).  The suction traps extended 

into the air above local insect populations to target migrating insect populations.  Each of the 

suction traps was placed in a cereal grain-dominated field, primarily wheat. The PNW trap 

network was operated each year from May to November from 1986 through 2003 with the 

exception of 2002. During the periods of operation, each trap was serviced weekly.   
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Table 1. Table of PNW suction trap network data for all Idaho sites: Each cell represents the 

number of times a site was sampled per year. Empty cells indicate that no samples were taken. 

 

  1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 9 16 16 14 16 19 14 21 23 16 14 12 17 14 16 17 14 

Arbon Valley 7 16 15 16 15 18 11 20 20 15 13 7 17 14 16 16 12 

Bonners Ferry     17 10 19 19 8 14 11 11               

Burley 11 16 5 16 18 22 13 20 21 16 13 13 17 14 16 17   

Caldwell   15 17 16 19                         

Conda               16 22 16               

Corvallis             18 20 22   3             

Craigmont     17 14 21 22 14 21 21                 

Hermiston             13 16 20 7 11             

Holbrook   16 17 12 17                         

Kimberly 12 16 16 11 13 15 12 21 22 15 14 13 13 13 16 13 11 

Klamath Falls             18 21 22 6 12             

Lewiston     13 11 15 20 9 19 20 15 13 13 17   13 15   

Madras             18 21 22 8 10             

Moro             18 21 22 8 12             

Moscow 14 18 17 16 22 22 14 21 22 13 11 11 13 22 15 12   

Mountain Home   12 15 12 20                         

Neeley 10 17 15 14 16                         

Parma 14 18 17 16 22 22 13 19 21 16 14 13 16 14 16 16 11 

Pendleton             14 21 23 8 10             

Picabo     14 11 22 22 13 20 22 16 13 13 13 9 12 17 13 

Preston 9 16 16 15 22 10 11 19 22                 

Ririe 3 14 16 10   18 12 20 20   13 10 17 12 15 14   

Rockland 14 16 16 16 17 21 13 21 20 16 12 13 17 14 16 17 13 

Shelley 8 17 11 8                           

Soda Springs 11 10 9 14 15 14 7 14 14   13 13 17 14 16 15   

Tetonia 14 14 13 16 20 22 14 20 22 16 14 9 17 14 17 17   

Low  High 

 

The subset of traps used for this study was selected for completeness of the sampling record 

and to focus on the dynamics of aphids in the state of Idaho.  Of the 21 sites in Idaho, data from 

12 sites were retained, each of which had continuous and consecutive collections of aphid data 

for a minimum of 13 years and a maximum of 17, as indicated by table 2 below. 
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Table 2. Table of final selected data: Each cell represents the number of times a site was 

sampled per year. Empty cells indicate that no samples were taken. 

 

 

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2003 

Aberdeen 9 16 16 14 16 19 14 21 23 16 14 12 17 14 16 17 14 

Arbon Valley 7 16 15 16 15 18 11 20 20 15 13 7 17 14 16 16 12 

Burley 11 16 5 16 18 22 13 20 21 16 13 13 17 14 16 17 

 

Kimberly 12 16 16 11 13 15 12 21 22 15 14 13 13 13 16 13 11 

Lewiston 

  

13 11 15 20 9 19 20 15 13 13 17 

 

13 15 

 

Moscow 14 18 17 16 22 22 14 21 22 13 11 11 13 22 15 12 

 

Parma 14 18 17 16 22 22 13 19 21 16 14 13 16 14 16 16 11 

Picabo 

  

14 11 22 22 13 20 22 16 13 13 13 9 12 17 13 

Ririe 3 14 16 10 

 

18 12 20 20 

 

13 10 17 12 15 14 

 

Rockland 14 16 16 16 17 21 13 21 20 16 12 13 17 14 16 17 13 

Soda Springs 11 10 9 14 15 14 7 14 14 

 

13 13 17 14 16 15 

 

Tetonia 14 14 13 16 20 22 14 20 22 16 14 9 17 14 17 17 

 
Low  High 

 

The minimum record of 13 years of data was to support a robust time series analysis.  

Among the 12 Idaho sites, Lewiston had the minimum of 13 years of data (from 1988 to 2001, 

excluding 1999).  Aberdeen, Rockland, Parma, Arbon Valley, and Kimberly each had data for 17 

years, and Moscow, Burley, and Tetonia each had 16 years of data from the time period 1986 to 

2001.  Picabo had 15 years of data recorded from 1988 to 2003 and data from Soda Springs 

included 15 years, from 1986 to 2001, excluding 1995.  Ririe had 14 years of data collected from 

1986 to 2001, excluding years 1990 and 1995.  Figure 1 shows a map of the final suction trap 

locations selected for subsequent analyses.   
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Figure 1. Map of the suction trap locations. 

The suction traps were operated throughout the cropping season of spring wheat and 

winter wheat varieties (May to November).  Approximately weekly during this period, samples 

were collected from the traps and mailed to the University of Idaho’s Southwest Idaho Research 

Extension Center in Parma, to be sorted, and identified to species when possible. 

 The abiotic data consisted of climatic variables measured daily from 1986 to 2003 for 

each trap location.  Directly measured climatic data were not available for some of the suction 

trap locations, so a gridded surface meteorological data model, developed by Abatzoglou (2011) 

was used to supplement the directly measured climatic data.  These observed and modeled 

meteorological data contain daily measurements of: maximum temperature, minimum 

temperature, precipitation, wind speed, and wind direction.  Calculations such as growing degree 

days were computed using these data.  All the data used in this study were acquired through the 

Regional Approaches to Climate Change (REACCH) for Pacific Northwest Agriculture project, 

a USDA-funded Coordinated Agricultural Project.  The aphid suction trap data is available at: 
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https://www.reacchpna.org/geoportal3/download?docUUID=erichs%2F%7B9DFCDF59-7F0D-4AE5-

B16E-AABF1D8AE77A%7D. 

Statistical Analysis 

 Data Management  

 In order to model the accumulation of aphid abundance through time, some data 

management was necessary.  Within each aphid species, the raw aphid counts for each year at 

each sampling site were accumulated as follows:            
      where      are the raw aphid 

counts at sample event time  , for year   and site  , and       are the corresponding cumulative 

counts of aphids up to the     sampling event.  The abiotic data were managed to develop a 

standardized growing degree-day scale for the intra-annual variability in the aphid accumulation 

process.  Growing degree days measure the daily accumulation of average temperature relative to 

a base temperature of the subject of interest.  In this case, both the host (wheat) and the organism 

(aphids) have a similar base temperature, considered here to be 4°C (Slafer & Rawson, 1995; 

Honek & Martinkova, 2004). 

Cumulative growing degree days were calculated as follows: 

          
                                   

        
        

 
    (1) 

where      represents the cumulative growing degree day of the     sampling event at site   in 

year  ,           and          represent the daily high and low temperatures, respectively for the 

    day of the year, and   being the day of the year corresponding to the     sample event. The 

value 4 represents the base temperature (C°).  Growing degree days were calculated at each site 

beginning with January 1       for each day the average temperature was above the base 

temperature. 

 Nonlinear Model 

  A nonlinear logistic model was chosen to model the process of aphid abundance 

accumulation within a year.  A logistic model form is parsimonious (has a reasonable number of 

parameters) while having relevant biological or ecological interpretations for the parameters.  

Similar models have been used for: the determination of cardinal temperatures in germination 

(Shafii and Price 2001), estimation of Escherichia coli growth at different temperatures 

(Fujikawa et al. 2004), and dose-response modeling (Price et al. 2012).  

Initially, models were developed separately for each site-year-species combination as 

follows: 

     
  

   

   
              

 (2) 
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Where        represents the estimated cumulative aphid abundance as defined above, for a given 

species, at a particular growing degree day (    ) as defined above, given parameters     ,    , 

and     within a year,  , and site,  .  The parameter     represents the theoretical maximum value 

of the aphid accumulation, and controls the upper asymptote of the “S” shaped curve. The 

parameter     represents the value of cumulative growing degree days at which the rate of aphid 

accumulation is greatest, and is visually represented by the inflection point in the “S” shaped 

curve.  Interpretation of     is particularly important in dose-response studies as it represents the 

median lethal dose (Price et al., 2012). In our model,     can also be interpreted as the value of 

cumulative growing degree days at which half of the accumulation of aphids has occurred.  The 

parameter     represents a rate related parameter for accumulation of aphid abundance.   

 Both least squares (Procedure NLIN) and maximum likelihood (Procedure NLMIXED) 

in SAS ver. 9.3 were used to estimate and assess the fit of Eq (2) to each data set.  Procedure 

NLIN was used to fit the data using an iterative Gauss-Newton nonlinear least squares estimation 

routine, under the assumptions of uncorrelated, zero mean, homoskedastic, and normally 

distributed errors.  While least squares estimation provided an initial assessment of the adequacy 

of Eq (2), a more appropriate approach was employed using Procedure NLMIXED to fit Eq (2) 

under the process of maximum likelihood estimation.  Procedure NLMIXED estimated the 

parameters of Eq (2) by maximizing the likelihood function with a dual quasi-Newton algorithm 

(SAS Ver. 9.3 documentation).  A general form of the likelihood is given as follows: 

          
       

     
      

        (3) 

Eq (3) states that the likelihood of the data given a vector of parameters, is proportional to the 

product of the density function evaluated for each cumulative aphid count, where     is a vector 

of unknown parameters,     
  is the observed     cumulative aphid count for a given site and 

year, and      is the total number of sampling events. Estimation proceeds by identifying the 

parameter values that maximize the likelihood assuming the mean of the distribution is the 

nonlinear function given by Eq (2). Several likelihood forms were evaluated, including: normal, 

negative binomial, and Poisson forms.  

 The model fit was first assessed by determining if the iterative estimation methods 

presented above converged successfully.  The significance and adequacy of the parameter 

estimates were assessed using asymptotic 95% confidence intervals and inter-parameter 

correlations, respectively.  The estimated model was also inspected visually by overlaying the 

predicted model on the observed data points.  The ideal structure of this plot is to have the 

predicted model centered on the data and follow the pattern of the data well.  In conjunction with 

the observed versus predicted plots, plots of the residuals were also assessed to determine if the 

assumptions of uncorrelated, normally distributed, zero mean, and constant variance of residuals 

were met. 
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Cluster Analysis 

In order to develop environmental aphid accumulation models, a grouping of sampling sites 

into similar environments was carried out.  Cluster analysis is a common multivariate technique 

used to find natural groupings in data where the observations within each cluster are similar, 

while the clusters are dissimilar to each other (Rencher and Christensen, 2012).  We used 

clustering to group observations (aphid sampling sites) conditionally based on a set of covariates 

(abiotic climate data).  The covariates used in the cluster analysis were minimum temperature, 

maximum temperature, average temperature, precipitation, elevation, latitude, wind speed, and 

wind direction.  The SAS Procedure CLUSTER was used to conduct the cluster analysis by 

means of an agglomerative hierarchical clustering procedure.  In this procedure, each site was 

initially considered as its own cluster, and then each pair of clusters closest to each other was 

merged repeatedly until one cluster was left.  Both the mean and median clustering algorithms 

were used and each yielded the same results.  For simplicity only the formula for the average 

method is displayed as follows: 

    
 

    
      

      
              ;                            

 
 (4) 

Where     is the distance between clusters    and   ,    and     are the number of 

observations in clusters    and    respectively, and            is the Euclidean distance between 

the two observed vectors     and     of the two clusters.   

The results from this hierarchical clustering procedure are typically displayed in a tree 

diagram or dendrogram, which shows all the steps in the hierarchical procedure and the 

corresponding distances (Rencher and Christensen, 2012).  These techniques of clustering have 

been applied to data in many fields including medicine, criminology (Hartigan, 1975), geology, 

geography, economics, and market research.   

 Regional/Environmental Nonlinear Model 

The nonlinear model mentioned previously was refitted to data clustered into 

environments.  Prior to utilizing these clustered data, where each cluster covered multiple sites 

and years, it was necessary to standardize the data to a common scale.  Scaling was achieved by 

dividing each cumulative aphid count of a given site (      ) by the maximum cumulative aphid 

count observed for that site, assessed across all available years.  Hence, all data values over all 

sites and years were rescaled to proportional values between 0.0 and 1.0.  Scaling the data this 

way was helpful in minimizing both the temporal variability present across the multiple years of 

each site, as well as site-to-site variability within a year.  Model estimation was then carried out 

on data pooled across sites within each environmental region (previously identified through 

cluster analysis) using a maximum likelihood algorithm as described above (Procedure 

NLMIXED). Three potential likelihood forms were assessed for the scaled data: the beta, binary, 

and normal likelihoods. 
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 Analysis of Autocorrelation 

 In regression analysis, it is particularly important to determine if the data contain an 

autocorrelation structure.  When observations are measured for the same subject over time it is 

unreasonable to assume that the observations are independent.  Time periods that are closer to 

each other are more likely to be similar than time periods that are farther apart (Fox, 2008). If an 

unaccounted for correlation structure exists in a regression analysis, the parameter estimates 

obtained will not be statistically efficient and their associated estimated standard errors will be 

biased.  An autoregressive model can help mitigate these conditions. A general form of the 

autoregressive model with lag n (AR(n)) may be given as follows: 

  
                 ;                                  

      (5) 

 Eq (5) represents a simple linear regression model where   
  is the     response,    is the 

intercept,    is the regression coefficient,    is the     ordered data observation, and    is the 

autoregressive error term.  The second part of Eq (5) represents the autoregressive function of the 

error term of the simple linear model; where   is the autoregressive coefficient,      is the error 

of the previous observation, and    is the independent and normally distributed random error 

term with zero mean, and constant variance, given    points in time.  AR(n) models assume that  

observations closer in time are more correlated than observations farther apart in time.  Eq (5) 

also satisfies the condition     , and therefore, the autoregressive coefficient approaches zero 

for observations of increasing distance from one another in time.  

Analysis of autocorrelation has been used in many areas of research such as marketing, 

economics, ecology and criminology.  Autocorrelation correction in regression analysis was 

pioneered by Cochrane and Orcutt (1949). One example of analysis of autocorrelation is 

presented by Fox (2008) in which Canadian women’s crime rate was analyzed over time. 

Analyses to assess autocorrelation were carried out within the environmental groups 

resulting from the cluster analysis.  In particular, the previously obtained estimates of 

parameter    , which represents the maximum aphid count within a given year and site, was 

modeled using Procedure AUTOREG in SAS Ver. 9.3.  Conditional heteroskedasticity at lag 1, 

lag 2, and lag 3 were assessed for each environment group across all years of available data.  

 Nonlinear Regression Analysis with Autocorrelation 

To further adapt the model presented in Eq (2) and build a more comprehensive model, 

the temporal variation over years was incorporated into the nonlinear logistic growth model.   

The distribution of the response (relative cumulative aphid abundance) was considered to be 

normal for this model.  Previously, Eq (2) was assessed using a Poisson density function to 

model the raw aphid counts for each year.  The relative, cumulative abundance data, however, is 

scaled on a fine increment between 0.0 and 1.0, and it is reasonable to assume normality of the 

data within each sample time point.  The model below was also assessed under the assumptions 

of the beta and binary distributions, but they yielded poor results and, hence, are not presented 

here.  
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Eq (2) was adapted such that the     parameter accounted for an autocorrelation structure 

of lag 1.  That is, the relative maximum aphid count for a given year and site is a function of the 

relative maximum aphid count of the previous year.  The modified model in Eq (2) then 

becomes: 

    
  

   

   
            

 (6) 

Where     is given as  

         
                (7) 

In Eq (6),     
  is the relative cumulative aphid abundance for the     region (  

       ), the     year, and the     sampling event, the term      represents the growing degree 

day for the     region,     year,     sampling event, and     is now the relative maximum aphid 

count for a given year.       is an auto-correlated function, based on Eq (7), of the relative 

cumulative maximum aphid count of the previous year,        , an intercept term,      
 , and an 

autoregressive coefficient,      .       
 is the mean of the maximum relative cumulative aphid 

abundances for the region across all years.  The       term represents the degree that the 

maximum aphid count changes for a given year based on the previous year’s maximum aphid 

count for the region (i.e.    from Eq (5)).  The     term is a random error associated with the     

parameter and is assumed to be a normally distributed random effect with zero mean and 

constant variance.  This model was fitted to each environment across all sites and years of data 

within those environments. 

 Dummy Variable Regression Analysis 

 Dummy variable regression is a technique used to make inference on data that are both 

qualitative and quantitative (Fox, 2008).  In this case, it was of interest to make inference on 

aphid prevalence while incorporating both spatial and temporal variation.  The temporal 

variation was considered quantitative, while the spatial variation (environmental groups) was 

treated as a qualitative factor.  Dummy variables were then assigned according to the 

environment for which the aphid data were recorded.  By creating a dummy variable for 

environment, a full dummy variable regression model that incorporated all the data across all 

sites and years was specified.  A simplified example of the dummy variable regression model is 

presented as follows: 

      
 
       

 
         

 
      (7) 

In the expression above,    represents the estimated response for the     region.  The term     

represents the dummy variable for the regression (0 or 1), and the terms   
    represent the 

estimated reduced model for the     region.  When the dummy variable    is equal to 1, the rest 

of the    terms in the regression are set to zero.  This means that when modeling the effect of 
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   ,    = 1, indicating the effect for region 1is present while the rest of the remaining regional 

effects are absent. 

  Likelihood ratio tests can then be carried out to determine if there is a substantial 

improvement in the likelihood from a reduced model form relative to the full model 

specification.  Through this construct, a full-model dummy variable regression allowed for 

statistical inferences and comparisons of the parameters across the environments.  For example, 

the full model allows comparison of the parameter estimate for the lag of one environment being 

equivalent to the corresponding estimate of a second environment. 

 Validation 

Validation was conducted to assess the predictive capabilities of the constructed models.  

The model was validated externally using independent data as well as internally using 

bootstrapping of the residuals.   

Internal Validation 

The regression models were validated internally using a bootstrap simulation of the 

residuals of each initial fit.  The bootstrap method is a simple computational method used to 

generate samples from an existing sample.  The bootstrap method proceeds by sampling with 

replacement such that every observation in the initial sample has equal probability of being 

selected, thus it is possible to select a single observation multiple times (Efron & Tibshirani, 

1986). This re-sampling procedure is designed to parallel the process by which the sample 

observations were drawn from the underlying population (Fox, 2008). 

The bootstrap technique was used to generate new data sets for each region/environment 

and species combination to assess the fit of each model.  The process proceeds by first fitting the 

region/environment model to the data which was scaled and accumulated as discussed 

previously.  The residuals from these fits were then scaled back to their actual count values by 

multiplying them by the observed maximum for each site across all years of data at each 

respective site.  The count values were then transformed back into un-accumulated counts such 

that the resulting values take the original data form.   

Once the residuals were in original data form, they were then sampled with replacement 

using PROCEDURE SurveySelect (SAS Ver. 9.3), generating a new sample of the same size.  

These residual values were then randomly aligned and added to the predicted values generated 

from the initial fit of the respective region/environmental model.  Negative simulated counts 

resulting from this step were set to zero.  The new bootstrap simulated data were then re-

accumulated and scaled as was previously done with the original data.  The regional model 

(Eq(6), Eq(7)) was then fitted to the bootstrap data, and the resulting bootstrap residuals were 

stored.  This process was repeated until        bootstrap residual samples were achieved.  

These residuals were then examined to assess the model fitting process.   
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 External Validation 

 External validation is used to determine how effective a model is at making predictions 

based on data that were not used to build the model.  Before modeling, numerous aphid sampling 

sites were left out of the original analysis because of insufficient data for some years.  Of the 

sites that were omitted from modeling, five having the most years of data were selected for 

external validation of the nonlinear environment/region level model.    

Linear Discriminant Analysis 

 Linear discriminant analysis, a technique commonly used in multivariate statistics to 

differentiate between observations (Rencher and Christensen, 2012), was used to classify newly 

obtained aphid sampling sites into the environments that had been previously determined through 

cluster analysis. Given a classification into an environmental region, these new sites would allow 

for external validation of the estimated nonlinear aphid abundance model.   

 The purpose of a linear discriminant analysis is to develop a function of variables that 

most effectively separates the observations into the predefined groups.  The linear discriminant 

analysis takes the form: 

        
 

     
 
 

        
    

          ;         
 
 
 
            

        (8) 

Where    is the likelihood that a subject with a vector of observations, q, is classified into 

group  , p is the number of variables considered, and    is the pooled covariance matrix of the 

variables measured for the new group. The term   
 
 
    is the squared Mahalanobis distance of 

the vector   to group  .  Once the likelihood of membership in each group is calculated for a 

subject, that subject is then assigned to the group with which it has the greatest likelihood.  The 

classification process is assessed by determining an error rate for the classifications; this is done 

by comparing the number of misclassified subjects to the total number of classifications.   

 Following discriminant analysis and classification of new validation sites into the 

previously defined environmental groups, predictions of relative aphid abundance were made.  

As was done in the model building process, plots of the predicted model overlaid on the 

observed data points were used for visual assessment of the predictive capability of the model.  

In addition,  plotting the validation residuals allowed for assessment of the assumptions of 

uncorrelated, normally distributed, zero mean and constant variance residuals.  This validation 

provided an assessment of the predictive accuracy of the regression model.   
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III. Results and Discussion 

Nonlinear Model 

 The nonlinear model presented in Eq (2) was fitted to the cumulative aphid abundances 

for each site-species-year combination.  As discussed previously, the model was first estimated 

using least squares in order to assess overall model adequacy, which was subsequently followed 

with a maximum likelihood estimation, where distributional forms such as the Normal, Poisson, 

and Negative Binomial likelihood forms could be assessed and evaluated.  While the Negative 

Binomial likelihood provided an over-dispersed, discrete likelihood form that appropriately 

matched the count nature of the data, its implementation proved difficult in the estimation 

process due to the limited replications within sampling events.  The Poisson likelihood, on the 

other hand, also matched the discrete count nature of the aphid data, but had no estimation 

problems.  Because the data consisted of discrete values, the Normal likelihood was deemed less 

appropriate.  An example of the nonlinear model fit using the Poisson likelihood (assuming a 

logarithmic link function) for the site Parma and aphid species R. padi in the year 1999 is given 

in Table 3 and  Figure 2. 

Table 3. Example of parameter estimates with approximate standard errors, significance, 

and asymptotic 95% confidence intervals for model fit (Parma data for R. padi in 1999). 

 

Parameter Estimates for R. padi in Parma in 1999 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

m 270.38 7.7073 14 35.08 <.0001 0.05 253.85 286.91 

  0.009247 0.000633 14 14.61 <.0001 0.05 0.007890 0.01060 

L 1585.51 16.0805 14 98.60 <.0001 0.05 1551.02 1620.00 

 

All parameter estimates in Table 3 are significantly different from zero. The estimated 

maximum cumulative aphid, m, count for 1999 is approximately 270 aphids. The growing degree 

day, L to reach 50% of this maximum is estimated to be 1585 growing degree units.  Correlations 

of the parameter estimates are given in Table 4. 
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Table 4.  Correlation matrix of the parameter estimates obtained from model fit to 

Parma data for R. padi in 1999. 

 

Correlation Matrix of Parameter Estimates 

Parameter m   L 

m 1.0000 -0.3755 0.5761 

  -0.3755 1.0000 -0.6552 

L 0.5761 -0.6552 1.0000 

 

A commonly used acceptable range for inter-parameter correlation is <0.8 or >-0.8, but 

correlation is often of little concern when <0.99 or <-0.99 (Bates and Watts, 1988).  All the inter-

parameter correlations given in Table 3 are well within the smaller bounds of -0.8 and 0.8, 

indicating the three parameters are sufficiently un-correlated, and that there are no parameter 

redundancies in Eq (2). 
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Figure 2. Example observed versus predicted plot (fit plot) of nonlinear model to data from 

Parma for R. padi in 1999. 

 

The fitted curve in Figure 2 follows the observed data pattern well and the associated 

residual pattern in Figure 3 demonstrates a fairly random pattern with no extreme values. 
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Figure 3. Example of residual plot from fit of nonlinear model to Parma data for R. padi in 1999.  

Each point on the plot represents a residual value. 

 

 The parameter estimates and diagnostics for the remaining 3 species for 1999 in Parma 

are available at: https://www.reacchpna.org/geoportal3/download?docUUID=erichs%2F%7B24BD99E9-5A12-

4AF5-9539-EBD83E88DFDD%7D, accompanied by additional tables summarizing the site-year-

species model fits.  All of the remaining parameter estimates and diagnostics for all site-year-

species combinations are also available at the above website.  Additional matrix plots were also 

generated to summarize the model fits for each site-species combination for all years of data.  An 

example of one of these summary matrix plots of model fits for species R. padi at Moscow is 

presented in Figure 4.  
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Figure 4.  Example of fit plot summary of all years of data (Moscow, species R. padi). 

 Figure 4 is useful for assessing model fits across years, showing the temporal variability 

in the maximum cumulative abundance across years, as well as the adequacy of the model fit for 

most cases.  Estimation and diagnostics were assessed for all site-year-species combination for a 

total of 725 model fits.  Additional matrix plots can be viewed at 
https://www.reacchpna.org/geoportal3/download?docUUID=erichs%2F%7B24BD99E9-5A12-4AF5-9539-

EBD83E88DFDD%7D. 
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 After all site-year-species combinations of data were fitted to Eq (2); each fit was 

classified as good, bad, or “non-estimable”.  The nonlinear model was considered a “good fit” 

for scenarios in which: the maximization algorithm converged, parameter estimates were 

uncorrelated; the fitted curve followed the data well; and there were no extreme residual values.  

The model was considered a “bad” fit when; parameter estimates were highly correlated, or the 

fitted curve did not follow the data, or when there were extreme residual values.  Scenarios were 

considered non-estimable when maximum likelihood algorithm failed to converge, and no 

subsequent diagnostics could be carried out.  Scenarios in which researchers sampled the suction 

trap through the entire growing season but counted less than ten aphids total were omitted from 

these evaluations.  Of all the fitted models for D. noxia, M. dirhodum, R. padi, and S. avenae, 

87%, 89%, 82%, and 74% of the fits respectively were considered “good.”  Overall, 83% were 

considered good.  None of the sites, years, or species had particularly low percentages of good 

fits, and therefore all data (refer to Table 2) were considered suitable for further analysis.  

Cluster Analysis 

 Cluster analysis was used to group sites based on environmental covariates and to 

investigate how environmental differences impact the aphid accumulation process (Figure 5). A 

clustering analysis was implemented using Eq (4) based on minimum temperature, maximum 

temperature, mean temperature, wind speed, wind direction, precipitation, elevation, and latitude.  

 
 

Figure 5. Dendrogram displaying results from hierarchical clustering algorithm used to group 

sites based on climatic data.  Sites clustered together are indicated the same color. 
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The results displayed in Figure 5 show how the 12 sites were grouped into 5 clusters   

defined as follows: 1. Moscow and Parma, 2. Lewiston, 3. Tetonia and Soda Springs, 4. 

Kimberly and Burley, 5. Ririe, Rockland, Picabo, Arbon Valley, and Aberdeen.   

 From Figure 5, environment 2 is the only group with just one site (Lewiston); the rest of 

the groups contain at least 2 sites.  Classifying Lewiston into a group by itself is not unexpected 

because it is the lowest point in Idaho (227m) with a distinctive, warmer climate than the rest of 

the state.  Also, evident from the cluster analysis, no sites in the Southeastern region were 

grouped with sites in the Northwestern region.  This is likely because Southeastern Idaho is 

significantly higher in elevation than the rest of the state.  Also notable, the Moscow and Parma 

sites were classified together even though they are geographically distant.  This classification is 

reasonable because Moscow (786m) and Parma (680m) are close in elevation in comparison to 

other Southeastern sites (all of which are over 1000m). 

Regional/Environmental Nonlinear Model 

 To investigate the similarities in patterns of aphid accumulation from sites classified into 

a common cluster, the nonlinear model from Eq (2) was fitted to the aggregated data, utilizing 

clustered environments in place of sites.  In order to mitigate variability across the sites and years 

within each region, the data were re-expressed in relative values between 0 and 1 as described 

previously. A Beta likelihood form, having variates restricted to the 0.0 to 1.0 range, was 

considered a natural choice for these data.  The estimation process, however, was unstable when 

using the Beta, so a Normal likelihood form was selected as a reasonable approximation for the 

continuous scaled relative accumulation data within the 0.0 to 1.0 range.  Initially, Eq (2) was 

fitted to each clustered environment, incorporating all years of data for the respective cluster 

sites.  The parameter estimates of one such fit is presented in Table 5. 

Table 5. Parameter estimates and corresponding, approximate t-values, p-values, and confidence 

intervals generated from the fitting of Eq (2) to data for environment 4, R. padi.   

 

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

m 0.1260 0.02246 494 5.61 <.0001 0.05 0.08191 0.1702 

  0.01141 0.006172 494 1.85 0.0650 0.05 -0.00071 0.02354 

L 1280.22 98.3585 494 13.02 <.0001 0.05 1086.97 1473.47 

 

Table 5 shows that the standard errors of the parameter estimates are quite large. This is 

expected because the aggregated, clustered data encompasses more variability due to the 

presence of multiple sites and years within any given fit.  Figure 6 gives an example fit, and 

visually shows how the model from Eq (2) fits the aggregated data.  
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Figure 6. Example of nonlinear model fit to all years of data for species R. padi, environment 4 

(Kimberly and Burley). 

 From Figure 6, it is clear that the model from Eq (2) does not account for all the 

variability of the aggregated data.  The inadequacy of the fit is primarily due to site-to-site and 

year-to-year variability in aphid accumulation.  More specifically, this unaccounted variation 

seems to occur primarily on the upper asymptote of the curve, which is parametrically controlled 

by the relative maximum parameter    . 

The temporal variability was investigated through autoregressive modeling of the 

correlation of estimates for the three parameters of the logistic growth model across years 

obtained previously.  It was determined that for the most ecologically sensible interpretation, the 

dependencies at lag (1), lag (2) and lag (3) should be assessed, primarily in the maximum 

parameter,  .  The remaining parameters   and  , showed less autocorrelation and had limited 

expectation to be biologically correlated across time.  An example of the estimated 
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autocorrelations associated with the relative maximum parameter across years for environment 4, 

and species R. padi is given in Table 6. 

Table 6. Autocorrelation estimates for the relative maximum parameter for region 

4, R. padi at lag (1), lag (2) and lag (3) dependencies respectively. 

 

Estimates of Autocorrelations 

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 0.0511 1.000000            |                      |***************|    

1 -0.0174 -0.339952 |            *****|                    | 

2 -0.00525 -0.102735 |                  **|                    | 

3 -0.00355 -0.069477 |                    *|                    | 

 

 Table 6 shows that lag (1) had an estimate farthest from zero, indicating that the strongest 

correlation in time exists between       and        , which is similar to the findings of Davis et 

al. (2014).  The estimate for the autocorrelation at lag (1) is           which means that the 

relative maximum at       is inversely correlated with the relative maximum at         by a 

factor of approximately         .  Similar autoregressive analyses were conducted on all 20 of 

the environment-species combinations.  Of the 20 combinations, 14 showed the strongest 

autocorrelation at a dependence of lag (1). Hence, a lag (1) autoregressive structure was imposed 

on the relative maximum parameter within the model (refer to Eq (6) and (7)).  Corresponding 

plots and associated tables for the relative maximum parameter estimates of the remaining 

species-environment combinations can be viewed at: 
https://www.reacchpna.org/geoportal3/download?docUUID=erichs%2F%7B24BD99E9-5A12-4AF5-9539-

EBD83E88DFDD%7D. 

Nonlinear Regression Analysis with Autocorrelation 

 To account for the temporal variability in the relative maximum parameter across years, 

the model represented in Eq (6) was fit to each of the five environments.  Table 7 gives the 

parameter estimates and corresponding approximate asymptotic 95% confidence intervals, 

standard errors, t-values and p-values of the model fit to environment 4, species R. padi (same 

data as Figure 6). 
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Table 7. Parameter estimates and corresponding, approximate t-values, p-values, and confidence 

intervals generated from the fitting of Eq (6) to data for environment 4, R. padi.   

 

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

  0.008437 0.000501 30 16.83 <.0001 0.05 0.007413 0.009460 

L 1334.89 7.9965 30 166.93 <.0001 0.05 1318.56 1351.22 

AR1 -0.1925 0.1870 30 -1.03 0.3114 0.05 -0.5744 0.1893 

int_M 0.1958 0.05452 30 3.59 0.0012 0.05 0.08444 0.3071 

ln_Var_M -2.7969 0.2555 30 -10.95 <.0001 0.05 -3.3188 -2.2751 

  

 All the parameter estimates are significant in this case, except for the AR1 term.  

Although the AR1 term is not significant at the       significance level, the AR1 was retained 

in the model because it is important for the model fit and essential to the model structure.  

Although the AR1 term is not significant in this estimation, the other two terms (int_M, and 

ln_var_M), which comprise the autoregressive aspect of the relative maximum, do show 

statistical significance.  Due to the scaling of the data, all the values associated with the relative 

maximum parameter are very small; therefore the random error term was parameterized in a 

logarithmic form (ln_var_M) in order to stabilize the estimation process. 

As with previous model estimations, it was important to assess the inter-parameter 

correlation.  When there are more model parameters being estimated, the possibility of having 

higher inter-parameter correlation, i.e. redundancy within the model, increases.  The resulting 

correlation matrix of the parameter estimates from Table 7 is presented in Table 8. 

Table 8. Estimated parameter correlations from model fit to environment 4, species R. padi. 

 

Correlation Matrix of Parameter Estimates 

Parameter   L AR1 int_M ln_Var_M 

  1.0000 -0.3462 0.007066 -0.02376 -0.05301 

L -0.3462 1.0000 -0.00765 0.02516 0.05395 

AR1 0.007066 -0.00765 1.0000 -0.5790 -0.00069 

int_M -0.02376 0.02516 -0.5790 1.0000 0.002238 

ln_Var_M -0.05301 0.05395 -0.00069 0.002238 1.0000 

  

The inter-parameter correlation presented in Table 8 shows that all the parameters 

estimated had low correlations, were well within the conservative bounds of -0.8 and 0.8, and the 

parameterization of the model was not redundant.  In the case of fitting Eq (6), all inter-
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parameter correlations satisfied the first criterion for all 20 environment-species combinations.  

Figure 7 shows the two dimensional fit plot of Eq (6) fit to region 4, and species R. padi.   

 

Figure 7. Nonlinear model with incorporation of autoregressive structure on the relative 

maximum parameter fit to environment 4, species R. padi 

 

 From Figure 7, it is evident that the autoregressive structure imposed on the relative 

maximum parameter successfully accounted for more variability in the upper end of the 

sigmoidal curve than did the other estimation.  The 19 remaining 2D and 3D observed and 

predictive plots of the autoregressive-environmental model accompanied by the remaining 3 full-

model parameter estimate tables can be viewed at the website indicated above. 

 The 3D surface of the model fit to the same data and the corresponding observed 3D 

surface are presented in Figures 8 and Figure 9, respectively.  As another example of the fitted 

nonlinear model with autocorrelation, Figures 10 and Figure 11 show the 3D observed and 

predictive surfaces for species M. dirhodum environment 3, respectively.
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Region 4: Observed Relative R. Padi Abundance
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Figure 8.  Observed surface of data from environment 4, species R. padi. 

Region 4: Predictive Relative R. Padi Abundance
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Figure 9. Example of predicted surface generated when fitting model from Eq (6) 

to data from environment 4, species R. padi. 
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Environment 3: Observed Surface M. dirhodum
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Figure 10. Observed surface of data data from environment 3, species M. dirhodum. 

 
Environment 3: Predictive Surface M. dirhodum
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Figure 11. Example of predicted surface generated when fitting model from Eq 

(6) to data from environment 3, species M. dirhodum. 
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The surfaces presented within the respective panels of Figure 8 and Figure 9 are nearly identical, 

indicating that the model from Eq (6) is a good fit to the data.  The 19 remaining observed and 

predictive surfaces of the autoregressive-environmental model can be viewed at the website 

mentioned previously.  To further assess the adequacy of the fit, residual plots were also 

evaluated.  Figures 12 and Figure 13 show the residuals obtained from the fitted model presented 

in Figure 8 and Figure 10, respectively. 

 

Figure 12. Residual plot generated from fitting Eq (6) to data for environment 4, R. padi. 
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Figure 13. Residual plot generated from fitting Eq (6) to data for environment 3, species M. 

dirhodum 

 

 While the residuals show some patterning, the majority of values are close to zero and 

random in distribution. There is no sigmoidal shape to the residuals and relatively few extreme 

residual values. 

 

Dummy Variable Regression Analysis 

 The purpose of conducting a dummy variable regression is to allow for the comparisons 

of the aphid accumulation process among environments.  To enable these comparisons, a dummy 

variable was created for environment, resulting in 4 full models (one model for each species).  

Parameter estimates for the full, dummy variable model, fit to species R. padi are presented in 

Table 9 with their corresponding approximate standard errors, asymptotic 95% confidence 

intervals, t-values, and p-values.  Parameter estimates for the remaining 3 full models fitted to 

the other species can be viewed at the REACCH website mentioned previously. 
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Table 9. Parameter estimates and corresponding approximate standard errors, t-values, p-

values, and asymptotic 95% confidence intervals for full model fit to species R. padi. The 

suffix of each parameter refers to the environment number from which each estimate 

came.   

 

Parameter Estimates 

Parameter Estimate 

Standard 

Error DF t Value Pr > |t| Alpha Lower Upper 

 1 0.004222 0.000238 176 17.75 <.0001 0.05 0.003753 0.004692 

L1 1288.83 16.0431 176 80.34 <.0001 0.05 1257.17 1320.49 

AR11 -0.2369 0.1922 176 -1.23 0.2194 0.05 -0.6162 0.1424 

int_M1 0.4887 0.09868 176 4.95 <.0001 0.05 0.2940 0.6835 

ln_Var_M -2.3694 0.1124 176 -21.09 <.0001 0.05 -2.5912 -2.1477 

 2 0.008206 0.001035 176 7.93 <.0001 0.05 0.006164 0.01025 

L2 1495.16 14.7948 176 101.06 <.0001 0.05 1465.96 1524.36 

AR12 0.1036 0.3168 176 0.33 0.7442 0.05 -0.5217 0.7289 

int_M2 0.2646 0.1343 176 1.97 0.0504 0.05 -0.00051 0.5296 

 3 0.006626 0.000531 176 12.48 <.0001 0.05 0.005578 0.007674 

L3 1025.38 16.6614 176 61.54 <.0001 0.05 992.50 1058.27 

AR13 -0.5727 0.1849 176 -3.10 0.0023 0.05 -0.9376 -0.2079 

int_M3 0.5659 0.08340 176 6.79 <.0001 0.05 0.4014 0.7305 

B4 0.008436 0.000878 176 9.61 <.0001 0.05 0.006703 0.01017 

L4 1333.14 14.0142 176 95.13 <.0001 0.05 1305.49 1360.80 

AR14 -0.1855 0.2319 176 -0.80 0.4248 0.05 -0.6431 0.2721 

int_M4 0.1943 0.06765 176 2.87 0.0046 0.05 0.06078 0.3278 

 5 0.006430 0.000487 176 13.20 <.0001 0.05 0.005469 0.007391 

L5 1243.38 15.0181 176 82.79 <.0001 0.05 1213.74 1273.02 

AR15 -0.3982 0.1350 176 -2.95 0.0036 0.05 -0.6646 -0.1317 

int_M5 0.3383 0.04839 176 6.99 <.0001 0.05 0.2428 0.4338 

 

Within each full model, contrasts were conducted using likelihood ratio tests to compare 

various characteristics of the aphid accumulation process among environments.  The motivation 

of the following contrasts arose from the natural geographic separation of environments provided 

by the cluster analysis.  Environments 1 and 2 occupy the Northwestern part of Idaho, while 

environments 3, 4, and 5 occupy the Southeastern part of Idaho (refer to Figure 8).  Therefore 

contrasts were conducted comparing characteristics of the aphid accumulation process for the 
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Northwestern environments to that of the Southeastern environments.  Table 10 shows the 

contrasts of the onset parameter ( ), the relative maximum parameters (AR1 and int_M), as well 

as the regression lines (                   ,  , AR1, and int_M), between the two 

Northwestern environments (1 and 2) and the three Southeastern environments (3,4, and 5) for 

species R. padi. 

 

Table 10. Contrasts of parameter estimates for environments 1 and 2 versus environments 3, 4, 

and 5.  Row 1 for each species shows the contrast of all four key parameters ( ,  , AR1, and 

int_M) between the two groups of environments. Row 2 for each species shows the contrast of 

the onset parameter (L) between the two groups of environments.  Row 3 for each species shows 

the contrast of the relative maximum parameters (AR1 and int_M) between the two groups of 

environments. 

In table 10, Row 1 for each species shows that the average of at least one of the 4 primary 

parameters of the Northwestern environments is significantly different from the average of at 

least one of the 4 primary parameters of the Southeastern environments for both species.  Row 2 

for each species shows that the average of the onset parameter for the Northwestern 

environments was significantly different from the average of the onset parameter for 

Southeastern environments at significance level        .  Row 3 of the table for each species 

shows the average of both the relative maximum parameters for Northwestern environments was 

not significantly different from the average of both the relative maximum parameters for the 

Southeastern environments.  The actual difference in the onset parameter between groups of 

 Contrasts 

Species Label 

Num 

DF 

Den 

DF F Value Pr > F 

D. noxia Coincidence of Regression line: All Parameters NW vs SE 4 134 127.35 <.0001 

D. noxia Onset of Northwest Regions vs Southeast Regions 1 134 503.80 <.0001 

D. noxia Max Parms of Northwest Regions vs. Southeast Regions 2 134 0.87 0.4217 

M. dirhodum Coincidence of Regression line: All Parameters NW vs SE 4 161 123.56 <.0001 

M. dirhodum Onset of Northwest Regions vs Southeast Regions 1 161 474.26 <.0001 

M. dirhodum Max Parms of Northwest Regions vs. Southeast Regions 2 161 2.52 0.0836 

R. padi Coincidence of Regression line: All Parameters NW vs SE 4 176 50.58 <.0001 

R. padi Onset of Northwest Regions vs Southeast Regions 1 176 182.59 <.0001 

R. padi Max Parms of Northwest Regions vs. Southeast Regions 2 176 2.72 0.0690 

S.avenae Coincidence of Regression line: All Parameters NW vs SE 4 125 358.59 <.0001 

S. avenae Onset of Northwest Regions vs Southeast Regions 1 125 1380.84 <.0001 

S.avenae Max Parms of Northwest Regions vs. Southeast Regions 2 125 2.67 0.0734 
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environments was also estimated to be 180, 228, 191, and 292 growing degree days for D. noxia, 

M. dirhodum, R. padi, S. avenae respectively.  

The estimated difference in onset is positive, therefore it can be concluded the average 

onset is greater in terms of cumulative degree days for the Northwestern environments than the 

Southeastern environments.  During the middle of the wheat growing season 200 growing degree 

days would be approximately 14 calendar days. This difference is relatively large and could 

indicate that aphid populations in Idaho have become relatively localized and are driven by local 

climatic factors.  The implications of these contrasts are consistent with the inferences made by 

Halbert et al. in 1990 who indicated that suction trap collections reflect emigration of aphids 

from local colonies (20-50 miles from trap sites) rather than long distance migration.  

Internal Validation 

 Internal validation was implemented through a bootstrap simulation of the residuals from 

each of the 20 species-environment models as described above.  Once 1000 bootstrapped 

samples of residuals were obtained for each of the 20 models, summary statistics were 

calculated.  Histograms and box-plots were also created to show the distribution of the residuals 

from each of the 20 models.  Figure 14 gives an example of the residual distribution histogram 

for B=1000 bootstrapped residual samples obtained from the environment 4, species R. padi. 

 
 

Figure 14. Histogram of the distribution of bootstrapped residuals for species R. padi, 

environment 4. 
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Figure 14 shows that the bootstrapped residuals from species R. padi in environment 4 

were tightly distributed about zero.  The mean and standard deviation for these residuals were 

0.001092 and 0.02845 respectively.  The first and third quartiles of the same residuals were         

-0.00451 and 0.00572 respectively.  The remaining 19 environment-species combinations 

yielded similar results with residuals tightly distributed about zero.  The results indicate that the 

model was stable and adequately fitted the simulated data sets.  Residual distributions for the 

remaining 19 species-environment combinations can be viewed at the REACCH website. 

 External Validation 

 To validate each of the 4 full models, the Idaho suction trap sites that were not used in the 

analyses previously were classified into the environments created by the cluster analysis.  The 

sites used included: Bonners Ferry, Caldwell, Conda, Craigmont, Holbrook, Mountain Home, 

Neely, and Preston.  Only those sites with the most years of consecutive data were considered for 

inclusion in the external validation process. Even under this criterion, however, there were 

considerably fewer years available from the validation sites than in the primary sites. 

 Linear Discriminant Analysis 

 Before validation could proceed, the validation sites needed to be classified into the 

environments previously defined by the cluster analysis. A linear discriminant analysis (LDA) 

was therefore carried out to accomplish this task.  LDA was performed under the assumption that 

the independent variables used to classify the sites (climate data) were approximately normally 

distributed with a common covariance structure.  Because of the small number of observations, 

the assumption of normality was likely violated, and other non-parametric methods (k-nearest 

neighbor) were explored but yielded identical results, and therefore are not presented here.  The 

LDA analysis was considered suitable to use with proportional prior probabilities (i.e. each site 

has an initial probability of .2 to be classified into each of the 5 environments). 

The discriminant function was developed by using all climate data spanning 1986 to 2003 

for each site (same variables as cluster analysis) and the corresponding environment 

memberships of each site as defined from the cluster analysis.  The discriminant function was 

then used to classify the validation sites into the most appropriate environments.  Table 11 shows 

the results of the LDA performed on the validation sites. 
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Table 11. Posterior probabilities of membership in corresponding environments 

resulting from linear discriminant analysis on validation data. 

 

Posterior Probability of Membership in Environment 

Site 

Classified 

into 

Environment 1 2 3 4 5 

Bonners Ferry 2  0.0446 0.9554 0.0000 0.0000 0.0000 

Caldwell 1  1.0000 0.0000 0.0000 0.0000 0.0000 

Conda 3  0.0000 0.0000 1.0000 0.0000 0.0000 

Craigmont 1  1.0000 0.0000 0.0000 0.0000 0.0000 

Holbrook 5  0.0000 0.0000 0.0000 0.0000 1.0000 

Mountain Home 1  1.0000 0.0000 0.0000 0.0000 0.0000 

Neeley 4  0.0000 0.0000 0.0000 0.8483 0.1517 

Preston 5  0.0000 0.0000 0.0000 0.0000 1.0000 

  

The 5 rightmost columns of Table 11 show the posterior probabilities of membership in 

the corresponding 5 environments.  For example, Neeley was determined to have an 85% 

probability of membership in environment 4 while also having a 15% probability of membership 

in environment 5.  Table 11 shows Caldwell, Craigmont, and Mountain Home were classified 

into environment 1, Bonners Ferry into environment 2, Conda into environment 3, Neeley into 

environment 4, and Holbrook and Preston into environment 5.  Because environments 1 and 5 

both had multiple sites classified into them, the sites with the most data were selected for 

validation; Caldwell was selected for environment 1, and Preston was selected for environment 

5.  Typically the true membership of observations (sites) is known when performing a 

discriminant analysis, and therefore error rates can be calculated to assess the performance of the 

discriminant function.  In this case, the true membership of the sites was unknown and 

consequently error rates were not calculable.  Figure 15 shows the fit of the model for species R. 

padi in environment 4 to the data for Neeley. 
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Figure 15. Fit plot of model fit to validation data for environment 4 (Neeley) species R. padi. 
 

 Figure 15 shows that the model for environment 4, species R. padi covers the data for 

Neeley containing smaller relative maximums, but does not cover the data from the year with the 

highest relative maximum.  Because there are so few years of data from the validation sites, the 

maximum aphid count observed over the span of these data is likely not representative of the true 

maximum aphid count.  Therefore when we scale the validation data, the data do not show the 

same patterns as the model building data which having between 13 and 17 years of data.  It is 

also desirable to have a longer time series of data similar to that of the 12 sites selected for model 

building, because the relative maximum parameter is dependent on an autoregressive structure.
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IV. Conclusions 

Species-specific nonlinear regression models were developed to predict cumulative aphid 

abundances based on growing degree days and the relative maximum aphid abundance of the 

previous year.  Models were developed for each combination of the 4 aphid species and 5 

environments, resulting in a total of 20 predictive models.  Internal validation was carried out 

using a bootstrap of the residuals for each of the 20 species-environment models and yielded 

tight residual distributions centered about zero.  The results from the internal validation indicate 

that the modeling process implemented in this study provides unbiased estimates of predicted 

aphid abundances and can be applied to other datasets.   

As of 1998, about 80 percent of wheat growers in Idaho implemented their pest 

management strategies based on field scouting thresholds of aphid abundances (Bechinski, 

1998).  The regression models developed in this study suggest the potential for modeling and 

generating forecasts that could decrease time and effort allocated to scouting prior to prediction 

of aphid movement.  If these forecasts prove reliable, wheat producers could potentially time 

pesticide applications more accurately, alter planting effectively, and therefore, save money and 

time in the process.  

 In addition to the predictive capabilities of these nonlinear regression models, some 

ecological inferences could be made based on the parameter estimates.  For example, it has been 

documented that host-alternating (holocyclic) cereal aphids can travel great distances between 

their winter and summer host plants (Bommarco et al., 2007), but it is not clear exactly how far 

for specific aphids and systems.  This study detected significant regional differences in the onset 

parameter for each of the aphid species.  The significant difference in onset suggests that aphid 

populations respond to temperature differently depending on the region, and therefore may be 

relatively local.  Although it is difficult to statistically test these implications, it provides a 

motivation for future investigations.  Furthermore, as a follow up to this study, one may consider 

modeling the cumulative aphid abundances based on Julian days, and conduct the same 

parameter estimate contrasts as reported in this study.  Such an investigation would potentially 

provide insight into the magnitude of the migration of host-altering cereal aphids.  It may also 

further our understanding of how the climates of the overwintering locations drive the aphid 

accumulation process compared to local climates of suction trap sites. 

 Although the modeling process described in this study was effective, there were 

limitations that should be considered when replicating this process on similar data.  In this study, 

the suction traps were not operated consistently over the entire time period for all sites.  For 

example, in 1986 the traps were not operated until August, because they were being assembled 

that year.  There were also numerous sites that had years in which the traps were not operated at 

all.  Because the data were scaled to proportions of the observed maximum aphid count for all 

years of data for each site, the gaps in the data could result in miscalculating these proportions.   

For subsequent analyses, it is recommended to use data consisting of consecutive years of data 

for as many years as possible.  Also, suction traps do not capture the entire population of cereal 

aphids, but only those moving in the air column at the height of the traps. In general the numbers 

of aphids collected at suction traps are considered to be highly associated with the true total 
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number of aphids on a given crop (Bommarco et al., 2007).  For future research, it is advised to 

incorporate other aphid collecting methods such as sweep netting and pan trapping in addition to 

the suction traps to obtain a sample that better represents the aphid population.  Sampling via 

sweep netting targets established populations of aphids (rather than migrating aphids). Thus, 

integrating sweep netting with suction trapping could provide for a more complete understanding 

on the aphid accumulation process. 

 Proper assessment of the research limitations of this study and subsequent procedural 

adjustments could potentially enhance future research in this area. Because there were only 

individual suction traps set up at each sampling site, there were no replications within sampling 

events.  In future studies, it is recommended to include multiple suction traps per sampling site, 

if programmatically feasible, to allow for a more appropriate likelihood form to be constructed 

for the data.  Given proper replications (more than one suction trap per site), a negative binomial 

likelihood form may allow for a more sophisticated analysis of the site-year-species differences.  

Finally, when conducting the discriminant analysis to classify the validation sites into the 

environments determined by the cluster analysis, the accuracy of the classifications could not be 

assessed because the true memberships of the validation sites were unknown.  For this reason, it 

is advised to interpret the results of classification methods, such as LDA, cautiously as the 

effectiveness of the method is relatively difficult to determine in this case. 
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