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DEVELOPING PREDICTION EQUATIONS FOR CARCASS LEAN MASS IN THE 

PRESCENCE OF PROPORTIONAL MEASUREMENT ERROR 

Zachary J Hass1, Ziqi Zhou2, and Bruce A Craig1

1 Department of Statistics 

Purdue University 

250 N. University Street 

West Lafayette, IN 47907 

2 Department of Statistics 

George Washington University 

801 22nd Street NW 

Washington, DC 20052 

Abstract: Published prediction equations for carcass lean mass are widely used by commercial 

pork producers for carcass valuation. These regression equations have been derived under the 

assumption that the predictors, such as back fat depth, are measured without error. In practice, 

however, it is known that these measurements are imperfect, with a variance that is proportional 

to the mean. In this paper, we consider both a linear and quadratic true relationship and compare 

regression fits among two methods that account for this error versus simply ignoring the 

additional error.  We show that biased estimates of the relationship result if measurement error is 

ignored.  Between our version of regression calibration and a Bayesian model approach, the 

Bayesian inference approach produced the least biased predictions.  The benefits of our Bayesian 

approach also increased with an increase in the measurement error.      
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INTRODUCTION 

Fat free lean content is often used to value pork carcasses in order to incentivize 

production of leaner pigs.1,5,8 Due to the impracticality of measuring fat free lean directly, 

indirect measures such as back fat depth and muscle depth are taken and used in published 

equations to predict fat free lean.2,5,8 These prediction equations, however, are known to be 

biased, such that fat free lean is often under predicted for lean pigs and over predicted for fatter 

pigs.2  

One possible reason for this bias is due to the lack of any adjustment for measurement 

error.  Various methods exist for taking measurements of back fat depth including using a ruler, 

calipers, ultrasound, and optical probe.5 Operator error associated with the use of the optical 

probe can lead to measurement error of the back fat depth value that is proportional to the true 

value.1,4,8 Previous research has shown that the presence of measurement error with variance 

proportional to the mean greatly increases the probability of a false positive quadratic term.8 In 

addition, the residual standard deviation was inflated. This is expected as measurement error 

increases the variability in the data.10  

Because the published prediction equations based on optical probe data have included a 

quadratic relationship between back fat depth and fat free lean content, a logical question is 

whether this quadratic term is truly a false positive.  To help answer this, we use a simulation 

study to compare two different methods to adjust for measurement error, relative to doing 

nothing, under both a true linear and quadratic setting and see how often the true model is 

selected. We also see how well these methods reduce the estimated residual standard error. We 

consider a range of simulation parameters that span the values commonly found in the literature.  

A natural approach to eliminate the effects of measurement error would be to eliminate, 

or at least minimize, the degree of measurement error through replicate measurements of the 

same pig (i.e., using an average back fat depth measurement).  While this would certainly 

remedy the problem, we feel the additional measurements would be overly burdensome and 

costly.  The two adjustment methods we consider do not require any additional measurements.   

The remainder of the paper is organized as follows.  First we give a very brief overview 

of the measurement error problem and common methods used to adjust for it.  We then describe 

our simulation study followed by a detailed description of our two adjustment methods.   This is 

followed by the results of the study, which are summarized in both figures and tables. We 

conclude with a brief discussion.  

MEASUREMENT ERROR 

Measurement error refers to the situation when a predictor X is a quantity measured with 

random error.  If this measurement error is a relatively large component of the total variability of 

X, it can bias regression parameters.   Although adjustment for measurement error in regression 

has been widely studied, the primary focus has been on errors with a constant variance over the 

range of X. Our focus here is on multiplicative measurement error, or error variance that is 

proportional to the mean. 
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For review, consider the most basic measurement error case.  Consider 
2 2

0 1~ ( , ) ~ (0, ). and  where XX N Y X N          Instead of observing X, one observes

* 2~ ( , )X N X  .  If the measurement error is ignored and least squares is performed using the 

observed *X and Y, then 
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Thus the slope is shrunk towards 0 based on the relative amount of variance in X versus the 

variance in *X .  This ratio 
2

2 2
X

X

R


 
  is called the reliability ratio. 

The techniques to remedy such ill effects require some knowledge of the amount of 

measurement error present. For example, methods such as SIMEX or regression calibration, 

require an estimate of the measurement error variance.10  

For regression calibration, one adjusts *X  prior to performing the least squares fit.  It is 

common to use the 
*( | )E X X  as the predictor.  Because both 

* |X X   and X are normally 

distributed in the case above, we can show that 

* *( | ) ( )x XE X X R X      

Thus, if the reliability ratio is high, the new predicted value is close to the observed *X .  If 

the reliability ratio is low, the new predicted value is shrunk towards the mean.  One can use the 

estimate of measurement error variance and the observed *X  to obtain estimates of X  and
2

X .   

When there is measurement error proportional to the mean of the explanatory variable, 

 𝑉𝑎𝑟(𝑋∗|𝑋 = 𝐾𝑋2),  this calibration method is not directly applicable.  While one might

anticipate knowing the proportionality constant K, the reliability ratio R is still unknown because 

one does not know the true X.     

Throughout this paper we will assume that K, the proportionality constant, is known. 

Knowledge of K could reasonably come from prior studies with multiple measurements on pigs 

with different values of actual back fat depth (ABFD). We utilize knowledge of K to augment 

the regression calibration and also consider a Bayesian approach to this problem. We investigate 

both methods via a simulation study and compare results to those obtained using a least squares 

fit ignoring the measurement error. 
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METHODS 

One thousand data sets were simulated for each of 18 (2 x 3 x 3) scenarios given in Table 

1. Previous studies have used between 50-627 pigs for single studies and have used as many as

1024 pigs when estimating prediction equations across multiple studies. The 250 pigs represents 

a medium single study, 500 a large single study, and 1000 pigs represents combining data from 

multiple studies.  

Table 1: Simulation Scenarios 

Factor Levels 

Relationship of FFL and ABFD Linear, Quadratic 

Constant of Proportionality (K) 0.01, 0.03, 0.06 

Number of Pigs 250, 500, 1000 

ABFD values were sampled from a Normal distribution, 𝜇 = 28, 𝜎 = 8, left truncated at 

zero to avoid unrealistic values.8  Measurement error was simulated by drawing a BFD for each 

ABFD from a Gamma distribution with 𝛼 =
1

𝐾
 and 𝛽 = 𝐾 ∗ 𝐴𝐵𝐹𝐷 so that values would be 

unbiased for ABFD, non-negative, with variance proportional to ABFD.  Proportionality 

constants K = 0.01, 0.03, and 0.06 result in correlations of approximately 0.94, 0.85, and 0.75 

respectively.  These correlations are contained within the range of those found in previous 

research and can be thought of as very well-tuned, moderately well-tuned, and poorly-tuned 

measurement processes.8  

FFL was generated using either: 

𝐹𝐹𝐿 = 56.2 − 0.4 ∗ 𝐴𝐵𝐹𝐷 + 𝜖;    𝜖 ~ 𝑁(0, 2.8467) (1) 

𝐹𝐹𝐿 = 54.46 − 0.543 ∗ 𝐴𝐵𝐹𝐷 + 0.006 ∗ 𝐴𝐵𝐹𝐷2 + 𝜖 (2) 

 These coefficients were derived from previous research.8 For the quadratic model, coefficients 

were derived by substituting the average values for other model variables and collapsing their 

effects into the intercept.2  

Each data set was analyzed using each of our three approaches.  For the ordinary least 

squares estimation (i.e., ignoring the measurement error), a t-test was performed for the quadratic 

term. This was done to determine the percent of simulations that correctly rejected the quadratic 

when the true relationship was linear and what percent of simulations correctly kept the quadratic 

term when the true relationship was quadratic. Additionally, the ratio of the mean squared error 

to the true regression variance (𝜎𝜖
2) was calculated as a measure of variance inflation due to the

measurement error. In order to investigate coefficient bias and variability, we calculated the 

model residual for each estimated equation at the 2.5th, 5th, 10th, 50th, 90th, 95th, and 97.5th 
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percentiles of the prior distribution on ABFD. This was done across all 18 scenarios and 

summarized using side-by-side box plots. 

As noted previously, regression calibration refers to a collection of techniques that 

replaces the predictor value measured with error by an estimate of the true value of the predictor. 

Once the substitution is made, analysis proceeds on the new data set as it would on data without 

measurement error.10 The goal here is to remove some of the variability caused by measurement 

error by replacing each value of BFD with the conditional expectation of ABFD|BFD. Given the 

way the data were generated, the conditional distribution of ABFD|BFD is proportional to the 

product of a Gamma and a Normal distribution. We use method of moment estimators (3) and 

(4) for the variance and mean of ABFD respectively. Numerical integration was then used to 

determine the estimated mean for the conditional distribution given in (5). 

𝜎̂𝐴𝐵𝐹𝐷
2 = √𝜎𝐵𝐹𝐷

2 −𝐾𝜇𝐵𝐹𝐷
2

𝐾+1
(3) 

𝜇̂𝐴𝐵𝐹𝐷 = 𝐵𝐹𝐷̅̅ ̅̅ ̅̅  (4) 

𝜋(𝐴𝐵𝐹𝐷|𝐵𝐹𝐷) ∝ 𝐺𝑎𝑚𝑚𝑎 (
1

𝐾
, 𝐵𝐹𝐷 ∗ 𝐾) 𝑁(𝜇̂𝐴𝐵𝐹𝐷, 𝜎̂𝐴𝐵𝐹𝐷

2 ) (5) 

Since least-squares regression was used to fit these calibrated data, the same statistics (i.e., t-test 

for the quadratic term, the measure of variance inflation, and prediction box plots) were recorded 

for each data set. 

Lastly, we considered a Bayesian inference approach assuming the distributions used in the data 

generation.  A Gibbs Sampler with a Metropolis-Hastings step was used to sample from the 

posterior distribution given in (6). We placed an improper prior on the regression parameters 

𝜋(𝛽, 𝜎) ∝
1

𝜎
 in order to “mimic” least squares regression.12 Placing a Normal prior on ABFD 

yields the conditional distributions for the three random quantities given in (7), (8), and (9). 

𝜋(𝐴𝐵𝐹𝐷, 𝛽, 𝜎2|𝐵𝐹𝐷, 𝐹𝐹𝐿, 𝐾) (6) 

𝜋(𝛽|𝐴𝐵𝐹𝐷𝑡 , 𝜎2, 𝐹𝐹𝐿)~𝑀𝑉𝑁𝑝( (𝑋𝑇𝑋)−1𝑋𝑇𝑌,  𝜎 (𝑋𝑇𝑋)−1) (7) 

𝜋(𝜎2|𝐴𝐵𝐹𝐷𝑡 , 𝛽, 𝐹𝐹𝐿)~𝑅𝑆𝑆 ∗
1

𝜒2(𝑁𝑃𝑖𝑔)
(8) 

𝜋(𝐴𝐵𝐹𝐷𝑡+1|𝛽, 𝜎2, BFD, 𝐹𝐹𝐿) ∝  𝑁(𝜇𝐴𝐵𝐹𝐷 , 𝜎𝐴𝐵𝐹𝐷)

∗ 𝑁(𝛽0 + 𝛽1𝐴𝐵𝐹𝐷𝑡, 𝜎𝜖) ∗ 𝐺𝑎𝑚𝑚𝑎(
1

𝐾
,  𝐾 ∗ A𝐵𝐹𝐷𝑡) (9) 

Here X is the design matrix containing the current estimate of ABFD, Y is a vector containing 

FFL, RSS is the residual sum of squares, and NPig is the number of pigs in the data set. The first 
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two full conditional distributions, the multivariate normal and the scaled inverse chi-square can 

be sampled from directly making a Gibbs update possible. The last distribution is not 

straightforward and so it is updated using a Metropolis-Hastings update using a Normal random 

walk proposal. For all datasets 80,000 iterations of the Markov Chain were run with a 30,000 

iteration burn-in. In both relationship settings, a quadratic model was considered. The posterior 

means of the regression coefficients and regression variance were considered the parameter 

estimates.  

The ratio of the estimated variance to the true regression variance was used to measure 

variance inflation as before. In order to assess model selection, we calculated the 95% credible 

interval for the coefficient on the quadratic term and determined whether 0 fell in the interval. 

Prediction bias and variability was assessed with box plots as with both regression fits.  

RESULTS 

Tables 2, 3, and 4 summarize the least squares fit, regression calibration, and Bayesian 

approach, respectively, for the linear data. Tables 5, 6, and 7summarize these approaches for the 

quadratic data. The first two columns of these tables give the constant of proportionality and the 

number of pigs in the simulated data set.  

For the approaches that used least squares, columns 3-5 give the average coefficients 

across all simulations where the quadratic term was found to be significant and columns 7-8 give 

the same information for models where it was not significant. The percent of simulations where 

the quadratic term was retained in the model is given in column 6. The ratio of the selected 

model’s mean squared error to the true variance is averaged across datasets and is given in 

column 9. 

For the Bayesian approach, only the quadratic model was fit so columns 3-5 give the 

average of estimated coefficients over all data sets. Column 6 gives the number of simulations 

failing to reject the quadratic term. The last column gives the ratio of the posterior mean of the 

model variance and the true variance.  

The least squares results agree with previous research, higher acceptance of the spurious 

quadratic term and variance inflation (running from approximately 14-52%).8 When the 

relationship is truly quadratic and correlation between BFD and ABFD is high (~94%), the 

correct model is chosen most of the time and variance inflation is only roughly 3%. This is the 

best case for ignoring measurement error, but we still see bias in the estimated coefficients.  

For the regression calibration approach, the number of simulations finding a spurious 

quadratic drops much closer to the desired Type I error of 5%, but the same level of variance 

inflation is still present. In the quadratic case, the regression calibration adjusted data performs 

worse in correctly identifying the true relationship, particularly in the smaller sample size of 250 
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pigs. For both relationships, when the correct model is chosen, the coefficients are very nearly 

unbiased.  

The Bayesian approach resulted in estimates that are very nearly unbiased for the true 

coefficients even though a quadratic model was fit to the linear data sets. The method also 

chooses the correct model when the relationship is linear in approximately 95% of simulations 

regardless of the amount of correlation between BFD and ABFD or the number of pigs. 

Additionally, the variance inflation has been removed. In the quadratic case, we still see 

unbiased coefficients and removal of variance inflation, but the ability to correctly infer about 

the quadratic term is not quite as strong as the least squares fit when the number of pigs is small 

(250).   

Figure 1 graphically displays the comparison between least squares fit, regression 

calibration fit, and the Bayesian fit in terms of ability to reject the spurious quadratic term. 

Figure 2 compares the three methods for removing the variance inflation for the linear 

relationship.  

Prediction bias and variability across the simulations were evaluated visually using box 

plots at each of seven percentiles from the Normal distribution assumption on ABFD. Three of 

these are given in Figure 3, one for each of the model estimation methods when K is 0.01, 

number of pigs is 250, and the data is linear. The least squares fit shows what is expected when a 

quadratic relationship is fit to linear data, the under prediction of FFL for lean pigs and over 

prediction for fat pigs. The regression calibration adjusted least squares fit shows a slight bias for 

under prediction which grows worse as K increases (correlation between ABFD and BFD 

declines). The estimates from the Bayesian approach were very similar to those obtained from 

the regression calibration, but bias did not increase as K increased. Across scenarios, the 

Bayesian approach gave the least biased predictions, but at the cost of higher variability, 

particularly at lower number of pigs (250).  

In summary, ignoring measurement error and simply using least squares regression will 

result in biased coefficients and predictions as well as being more likely to select a quadratic 

model whether the true relationship supports it or not. Applying a regression calibration 

adjustment first will discover the true linear model as often as type I error dictates, but requires 

larger sample sizes to find a true quadratic. When the right relationship is found, coefficient 

estimates are very nearly unbiased. Bayesian inference produces nearly unbiased coefficients 

even when fitting the quadratic relationship to linear data. Estimates are slightly less biased than 

those from regression calibration, Figure 4 gives a graphical representation of the typical 

behavior of the three fits on linear data. Notably, Bayesian inference is the only method of the 

three to recover the true model variance. 

DISCUSSION 

Although the results are very encouraging in terms of the possibility of correcting the 

prediction bias caused by measurement error, the methods employed here represent an 
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oversimplification of reality. While correlation level between BFD and ABFD may be a 

realistically obtainable quantity, how well the methods hold up if K is only roughly known was 

not studied. Future work will verify how robust these adjustment approaches are to an unknown 

K.   

Additionally, the majority of prediction equations for FFL contain other predictors 

besides BFD, such as muscle depth and carcass weight. Since muscle depth is also measured 

with an optical probe, it too is likely to have measurement error. Future work will extend our 

approaches to including additional covariates as well as handling two predictors measured with 

error.  We also think further work should be done to determine exactly how many pigs are 

needed for the method to perform well.   

Although it appears the Bayesian approach is the better of the two adjustment methods, it 

did well in part because the data were generated using the model considered for inference.  In 

practice, this will rarely be the case.  As a result, we need to investigate its robustness to data 

generated under alternative models.  Similarly the calculation of the E(ABFD | BFD) in 

regression calibration also depends on the correctness of the distributional assumptions.  

In this simplified version of the problem, using MCMC sampling techniques produced 

prediction equations that gave very nearly unbiased predictions whose variability was 

comparable to the least squares fit, especially as sample size increased. The posterior mean for 

the regression model residual variance was also unbiased for the true variance. These positive 

results are not unexpected, but do indicate that the extension of these ideas to the more realistic 

scenario is a worthwhile venture in order to produce unbiased prediction equations for FFL in the 

presence of measurement error.  
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TABLES AND FIGURES 

Table 2: Least Squares Fit on Linear Data: 𝑭𝑭𝑳𝑴 = 𝟓𝟔. 𝟐 − 𝟎. 𝟒 ∗ 𝑨𝑩𝑭𝑻 

Simulation 
Parameters 

Average Coefficients across all 
simulations where Quadratic 
model was chosen. 

Percent of 
Sims 
Accepting 
Quadratic 

Average Coefficients 
across all simulations 
were Linear model was 
chosen. 

Average ratio of 
model MSE 
over true model 
variance 

K NPig 𝜷𝟎 𝜷𝟏 𝜷𝟐 % 𝜷𝟐 ≠ 𝟎 𝜷𝟎 𝜷𝟏 𝑴𝑺𝑬

𝝈𝝐
𝟐

0.01 250 58.46 -0.6241 0.0047 24.4% 54.93 -0.3546 1.139 

0.01 500 57.58 -0.5592 0.0036 44.5% 54.92 -0.3547 1.141 

0.01 1000 56.95 -0.5107 0.0027 72.6% 54.90 -0.3537 1.140 

0.03 250 56.68 -0.5594 0.0046 61.5% 53.06 -0.2885 1.326 

0.03 500 56.15 -0.5183 0.0039 87.0% 53.06 -0.2878 1.337 

0.03 1000 55.91 -0.5010 0.0036 99.6% 53.02 -0.2854 1.331 

0.06 250 54.67 -0.4729 0.0040 70.5% 51.27 -0.2237 1.515 

0.06 500 54.24 -0.4402 0.0034 95.1% 51.26 -0.2231 1.517 

0.06 1000 54.10 -0.4304 0.0033 99.7% 51.09 -0.2175 1.516 

Table 3: Regression Calibration Adjusted Least Squares Fit on Linear Data: 𝑭𝑭𝑳𝑴 = 𝟓𝟔. 𝟐 − 𝟎. 𝟒 ∗ 𝑨𝑩𝑭𝑻 

Simulation 
Parameters 

Average Coefficients across all 
simulations where Quadratic 
model was chosen. 

Percent of 
Sims 
Accepting 
Quadratic 

Average Coefficients 
across all simulations 
were Linear model was 
chosen. 

Average ratio of 
model MSE 
over true model 
variance 

K NPig 𝜷𝟎 𝜷𝟏 𝜷𝟐 % 𝜷𝟐 ≠ 𝟎 𝜷𝟎 𝜷𝟏 𝑴𝑺𝑬

𝝈𝝐
𝟐

0.01 250 56.59 -0.4344 0.0007 5.2% 56.25 -0.4014 1.137 

0.01 500 57.05 -0.4654 0.0012 5.5% 56.21 -0.4004 1.139 

0.01 1000 56.30 -0.4085 0.0002 4.5% 56.20 -0.4001 1.139 

0.03 250 57.66 -0.5160 0.0020 3.5% 56.26 -0.4020 1.322 

0.03 500 55.99 -0.3816 -0.0004 5.9% 56.25 -0.4015 1.334 

0.03 1000 56.29 -0.4116 0.0003 4.2% 56.22 -0.4010 1.329 

0.06 250 54.57 -0.2576 -0.0029 5.0% 56.33 -0.4046 1.506 

0.06 500 56.44 -0.4151 0.0002 4.5% 56.29 -0.4030 1.510 

0.06 1000 55.60 -0.3554 -0.0008 3.9% 56.23 -0.4010 1.509 
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Table 4: Reg Calibration Adjusted Least Squares Fit on Quadratic Data: 𝑭𝑭𝑳𝑴 = 𝟓𝟒. 𝟒𝟔 − 𝟎. 𝟓𝟒𝟑 ∗ 𝑨𝑩𝑭𝑻 + 𝟎. 𝟎𝟎𝟔 ∗ 𝑨𝑩𝑭𝑻𝟐 

Simulation 
Parameters 

Average Coefficients across all 
simulations where Quadratic 
model was chosen. 

Percent of 
Sims 
Accepting 
Quadratic 

Average Coefficients 
across all simulations 
were Linear model was 
chosen. 

Average ratio of 
model MSE over 
true model 
variance 

K NPig 𝜷𝟎 𝜷𝟏 𝜷𝟐 % 𝜷𝟐 ≠ 𝟎 𝜷𝟎 𝜷𝟏 𝑴𝑺𝑬

𝝈𝝐
𝟐

0.01 250 55.17 -0.5975 0.0070 70.9% 50.32 -0.2131 1.026 

0.01 500 54.59 -0.5523 0.0062 94.2% 50.31 -0.2141 1.031 

0.01 1000 54.44 -0.5402 0.0060 100.0% 0 0 1.031 

0.03 250 55.78 -0.6437 0.0079 54.9% 50.46 -0.2186 1.073 

0.03 500 54.80 -0.5641 0.0064 86.0% 50.40 -0.2177 1.075 

0.03 1000 54.43 -0.5365 0.0059 98.7% 50.23 -0.2113 1.076 

0.06 250 56.55 -0.7008 0.0090 38.6% 50.54 -0.2222 1.130 

0.06 500 55.32 -0.6024 0.0072 66.8% 50.47 -0.2186 1.127 

0.06 1000 54.64 -0.5459 0.0061 92.4% 50.46 -0.2186 1.130 

Table 5: Least Squares Fit on Quadratic Data: 𝑭𝑭𝑳𝑴 = 𝟓𝟒. 𝟒𝟔 − 𝟎. 𝟓𝟒𝟑 ∗ 𝑨𝑩𝑭𝑻 + 𝟎. 𝟎𝟎𝟔 ∗ 𝑨𝑩𝑭𝑻𝟐 

Simulation 
Parameters 

Average Coefficients across all 
simulations where Quadratic 
model was chosen. 

Percent of 
Sims 
Accepting 
Quadratic 

Average Coefficients 
across all simulations 
were Linear model was 
chosen. 

Average ratio of 
model MSE over 
true model 
variance 

K NPig 𝜷𝟎 𝜷𝟏 𝜷𝟐 % 𝜷𝟐 ≠ 𝟎 𝜷𝟎 𝜷𝟏 𝑴𝑺𝑬

𝝈𝝐
𝟐

0.01 250 54.06 -0.5322 0.0061 89.2% 49.43 -0.1824 1.026 

0.01 500 53.78 -0.5120 0.0057 99.6% 49.02 -0.1679 1.032 

0.01 1000 53.75 -0.5102 0.0057 100.0% 0 0 1.031 

0.03 250 52.58 -0.4527 0.0051 89.9% 48.40 -0.1449 1.077 

0.03 500 52.34 -0.4335 0.0047 99.8% 48.79 -0.1569 1.079 

0.03 1000 52.26 -0.4286 0.0047 100.0% 0 0 1.081 

0.06 250 50.81 -0.3526 0.0038 83.7% 47.42 -0.1111 1.139 

0.06 500 50.52 -0.3303 0.0034 98.8% 47.46 -0.1099 1.137 

0.06 1000 50.49 -0.3275 0.0034 100.0% 0 0 1.142 

Annual Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
http://newprairiepress.org/agstatconference/2014/proceedings/6

124

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2014/proceedings/9



Table 6: MCMC Quadratic Fit on Linear Data:  𝑭𝑭𝑳𝑴 = 𝟓𝟔. 𝟒 − 𝟎. 𝟒 ∗ 𝑨𝑩𝑭𝑻 

Simulation 

Parameters 

Average Coefficients: 

Posterior means averaged 

across all simulations.  

Average 
Posterior 
Probability 

Percentage of 
Simulations 
Accepting 𝜷𝟐      

Average ratio of 

model MSE over 

true model variance 

K NPig 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝑷( 𝜷𝟐 = 𝟎) Accepting 𝜷𝟐 𝝈̂𝟐

𝝈𝝐
𝟐

0.01 250 56.21 -0.40 -0.0001 24.9% 4.9% 1.007 

0.01 500 56.28 -0.41 0.0001 24.7% 5.8% 1.005 

0.01 1000 56.19 -0.40 0.0000 25.8% 4.8% 1.002 

0.03 250 56.27 -0.40 0.0000 25.0% 4.4% 0.997 

0.03 500 56.22 -0.40 -0.0001 24.8% 6.6% 1.005 

0.03 1000 56.16 -0.40 -0.0001 25.1% 5.2% 0.999 

0.06 250 56.37 -0.40 -0.0001 24.7% 6.3% 0.989 

0.06 500 56.30 -0.40 0.0000 25.0% 4.7% 0.994 

0.06 1000 56.24 -0.40 0.0000 25.2% 4.8% 0.998 

Table 7: MCMC Quadratic Fit on Quadratic Data:  𝑭𝑭𝑳𝑴 = 𝟓𝟒. 𝟒𝟔 − 𝟎. 𝟓𝟒𝟑 ∗ 𝑨𝑩𝑭𝑻 + 𝟎. 𝟎𝟎𝟔 ∗ 𝑨𝑩𝑭𝑻𝟐 

Simulation 

Parameters 

Average Coefficients: 

Posterior means averaged 

across all simulations.  

Average 
Posterior 
Probability 

Percentage of 
Simulations 
Accepting 𝜷𝟐      

Average ratio of 

model MSE over 

true model variance 

K NPig 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝑷( 𝜷𝟐 = 𝟎) Accepting 𝜷𝟐 𝝈̂𝟐

𝝈𝝐
𝟐

0.01 250 54.46 -0.54 0.0059 3.6% 71.7% 1.002 

0.01 500 54.48 -0.54 0.0060 0.5% 94.9% 1.004 

0.01 1000 54.45 -0.54 0.0060 0.0% 100.0% 1.002 

0.03 250 54.59 -0.55 0.0061 6.2% 57.6% 0.994 

0.03 500 54.55 -0.55 0.0061 1.3% 87.7% 0.995 

0.03 1000 54.45 -0.54 0.0060 0.1% 98.7% 0.998 

0.06 250 54.65 -0.56 0.0062 8.6% 47.5% 0.989 

0.06 500 54.56 -0.55 0.0061 2.8% 77.2% 0.992 

0.06 1000 54.52 -0.55 0.0060 0.3% 97.3% 0.996 
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Figure 1: Correctly Removing Spurious Quadratic Terms (MCMC vs Reg Cal vs LSE) 

Figure 2: Removing Variance Inflation for Linear Data (MCMC vs Reg Cal vs LSE) 

Annual Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
http://newprairiepress.org/agstatconference/2014/proceedings/6

126

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2014/proceedings/9



Figure 3: Boxplots of FFL Prediction Bias (K = 0.01, Number of Pigs = 250) 

Figure 3 A-Least Squares Fit 

Figure 3 B – Regression Calibration Adjusted Least Squares Fit 
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Figure 3 C – MCMC Posterior Fit 

Figure 4 – Comparison of Fit Relationship for Linear Data, NPigs=250, K=0.03 
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