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MODELING RATIOS WITH POTENTIAL ZERO-INFLATION TO ASSESS 

SOIL NEMATODE COMMUNITY STRUCTURE  

Joanna Zbylut1, Leigh Murray1, S.H. Thomas2, J. Beacham2, J. Schroeder2, C. Fiore2

1Department of Statistics, Kansas State University, Manhattan, KS 66506, 2Department of 

Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 

88003 

Abstract 

The southern root-knot nematode (SRKN) and the weedy perennials, yellow nutsedge (YNS) and 

purple nutsedge (PNS) are simultaneously-occurring pests in the irrigated agricultural soils of 

southern New Mexico. Previous research has characterized SRKN, YNS and PNS as a mutually-

beneficial pest complex and has shown their enhanced population growth and survival when they 

occur together. In addition, it was shown that the density of nutsedge in a field could be used as a 

predictor of SRKN juveniles in the soil. In addition to SRKN, which is the most harmful of the 

plant parasitic nematodes, in southern New Mexico other species or categories of nematodes 

were identified and counted. Some of them are not as damaging to crop plants as SRKN, and 

some of them may be essential for soil health. The nematode species could be grouped into 

categories according to trophic level (what nematodes eat) and herbivore feeding behavior (how 

herbivore nematodes eat). Then three ratios of counts each were calculated for trophic and 

feeding behavior categories to investigate the soil nematode community structure. These 

proportions were modeled as functions of the weed hosts YNS and PNS by generalized linear 

regression models using the logit link function and three distributions: the Binomial, Zero-

Inflated Binomial (ZIB) and Binomial Hurdle (BH). The latter two were used to account for 

potential high proportions of zeroes in the data. Formulas for the probability mass functions and 

moments were developed for the ZIB and BH.  The SAS NLMIXED procedure was used to fit 

models for each of three sampling dates (May, July and September) in the two years of an alfalfa 

field study. General results showed that the Binomial generally provided the best fit, indicating 

lower zero-inflation than expected, but that ZIB and BH are often comparable.  Importance of 

YNS and PNS predictors varied over sample dates and ratios. Specific results for one selected 

ratio illustrate the differences in estimated probabilities between Binomial, ZIB and BH 

distributions as YNS counts increase. 

Keywords:  Nematodes; Nutsedge; Community Ratios; Binomial; Zero-Inflated Binomial; 

Binomial Hurdle. 

1. Introduction

Nematodes are usually microscopic worm-like organisms or roundworms, which can live 

in almost every habitat on earth. There are thousands (if not millions) of nematode species, most 

of them still not described by scientists. Many of them play critical ecological roles as 

decomposers and predators on microorganisms, but some are parasitic species, which affect 

humans directly or indirectly.  
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The most economically-damaging genera of plant-parasitic nematodes on horticultural 

and field crops are the root-knot nematodes, Meloidogyne spp. These species live and feed within 

plant roots most of their lives. The southern root-knot nematode, Meloidogyne incognita (SRKN) 

is one of the most damaging species of plant-parasitic nematode. Southern root-knot nematode is 

widely distributed and without proper management, can result in yield losses that exceed 40% in 

chile and 25% in cotton and many other annual New Mexico crops (Thomas et al. 1997). 

Southern root-knot nematode and the weedy perennials, yellow nutsedge (Cyperus esculentus, 

YNS) and purple nutsedge (Cyperus rotundus, PNS) are simultaneously-occurring pests in the 

irrigated agricultural soils of southern New Mexico. Previous research (Schroeder et al. 1994, 

Thomas et al. 1997, Schroeder et al. 2004, Thomas et al. 2004, Schroeder et al. 2005) has 

characterized SRKN, YNS and PNS as a mutually-beneficial pest complex, showing their 

enhanced population growth and survival when they occur together. Therefore the effectiveness 

of management practices that target the nematodes or nutsedge weeds alone is substantially 

reduced due to these mutually-beneficial interactions.  

Other work (Fiore 2004, Fiore et al. 2009, Ou et al. 2008, Murray et al. 2012, Trojan et 

al. 2009) focused on developing an economic integrated pest-management strategy able to 

manage these three pests. Crop rotation with a non-dormant, SRKN-resistant alfalfa (Medicago 

sativa cultivar ‘Mecca II’), which has aggressive growth and can successfully compete with 

nutsedge for light and other resources, was shown to provide simultaneous suppression of those 

pests (Fiore et al. 2009). It was also shown by monitoring the locations of pest population 

suppression and resurgence of each pest, that the density of nutsedge in a field could be used as a 

predictor of SRKN juveniles in the soil (Ou et al. 2008, Murray et al. 2012).  

In addition to SRKN, other species or categories of nematodes were identified in the 

alfalfa field study (Trojan et al. 2009). Some of them are not as damaging to crop plants as 

SRKN, and some of them may be essential for soil health.  

This paper is a follow-up to the modeling work by Ou et al. (2008) and Murray et al. 

(2012) to use counts of both SRKN and other nematode species or categories to examine the soil 

nematode community structure, especially as it relates to the presence of the plant hosts, YNS 

and PNS.  In this paper, it is the ratios of counts that are of interest, not the absolute counts, 

because the ratios give information on competition and synergism between groups of nematodes. 

2. Materials and Methods for the Nematode/Nutsedge Field Experiment

2.1 Description of field experiment 
The data used in this paper and in Fiore (2004), Fiore et al. (2009), Ou et al. (2008) and 

Murray et al. (2012) came from a two-year alfalfa field experiment which was initiated in 

September 2004 at the Leyendecker Plant Science Research Center, New Mexico State 

University, near Las Cruces, NM, in soil which was infested with the SRKN/YNS/PNS pest 

complex. For complete information on the management of the field experiment, see Fiore (2004) 

and Fiore et al. (2009).  To obtain data, researchers chose a 55x100 m rectangular section of a 1- 

ha alfalfa field with similar irrigation properties. Further, this section was split into a grid with a 

total of 1,375 plots of size 2 m x 2 m and was sampled six times in 

• 2005: Sample 1 (May 19), Sample 2 (July 8), Sample 3 (September 16)

• 2006: Sample 1 (May 2), Sample 2 (July 25), Sample 3 (September 28).
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Because of logistical constraints on personnel and time, N=80 2 m x 2 m plots were randomly 

chosen out of the 1,375 plots on each sample date. No plots were resampled within each year, but 

a few plots sampled in 2005 were resampled in 2006. Data were obtained from a 0.25 x 1 m 

quadrat put in the middle of a chosen 2 x 2 m plot and included visual counts of YNS and PNS 

shoots and counts of twelve categories or species of nematodes recovered from the soil. To 

obtain counts of nematode populations, ten 50-cm3 soil cores were collected near nutsedge 

plants, if nutsedge plants were present in selected quadrat, or at random within the quadrat, if no 

nutsedge plans were present. Juvenile nematodes were extracted from the 500 cm3 of soil by 

elutriation and processed using centrifugal flotation (Jenkins, 1964).  

2.2 Characterizing the soil nematode community 

The first step in characterizing the nematode community was to identify what nematodes 

are present. In this data, 12 categories or species of nematode were identified (Table 2.1). 

Unfortunately, for May and July of 2005, some species of nematodes were not identified 

separately, but were listed together as “other”, as indicated in Table 2.1.   

Table 2.1 Identified categories and species of nematodes in Nematode data.  

Nematode categories1 May05 & July05 
Sep05, May06, July06 

& Sep06 

1 Meloidogyne incognita √ √ 
2 Trichodorus spp. √ √ 
3 Tylenchorhynchus spp. √ √ 
4 Pratylenchus spp. √ √ 
5 Mesocriconema spp. √ √ 
6 Bacteriovores  √ 
7 Aphelenchoid  √ 
8 Dorylaimoid  √ 
9 Hemicycliophora spp.  √ 

10 Entomopathogenic  √ 
11 Tylenchus spp.  √ 
12 Monochoid  √ 

1Nematode categories not identified separately in May and June 2005 were pooled 

into "Other" category. 
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Second, nematode categories and species were grouped into categories according to 

trophic level (what nematodes eat) and herbivore feeding behavior (how herbivore nematodes 

eat). 

Trophic categories were defined as follows (S. H. Thomas, personal communication): 

• Fungivore: nematode species that feed exclusively on fungi present in the soil. These

nematodes play an important role in soil health by taking nutrients extracted from organic 

matter by soil fungi and excreting them into the water in the soil pore spaces where such  

nutrients are available to plants and other organisms. Aphelenchoid is the unique type of  

esophagus found in most fungivore nematodes.  

• Bacteriovore: nematode species that feed exclusively on bacteria present in the soil.

These are also important in soil health for the same reason as fungivores, except these 

nematodes excrete compounds extracted from organic matter by bacteria. 

• Herbivore: nematode species that feed on higher plants; any plant-parasitic nematode is

a herbivore. Herbivores include the following species: Meloidogyne, Trichodorus, 

Tylenchorhynchus, Pratylenchus, Mesocriconema and Hemicycliophora. 

• Other: this was a general category that was used to lump all nematodes that are not

Herbivores (“other” = fungivore + bacteriovore + omnivore + predator = Bacterial  

Feeders + Aphelenchoid + Dorylaimoid + Entomopathogenic + Tylenchus + Monochoid). 

Feeding behaviors of interest within the herbivore group in nematodes were defined as 

follows (S. H. Thomas, personal communication): 

• Endoparasites: nematodes that live inside of the host plant. They can be:

• Sedentary Endoparasites: nematodes that feed as stationary parasites inside the

plant root. They invade root tissues after hatching and then each set up a permanent 

feeding location. They must transform root tissue of the host plant to support theirs 

sedentary lifestyle, which is the most damaging to the plant. Meloidogyne incognita 

(SRKN) is a typical sedentary endoparasite and is the only such species in this data; 

• Migratory Endoparasites: lesion nematodes that feed while migrating around

inside the root. They do not transform any root tissue, but kill the cells they feed on and 

cause wound channels in the roots. They are considered intermediate in the amount of 

damage a nematode causes on the plant. Pratylenchus is an example of migratory 

endoparasite. 

• Ectoparasites: nematodes that live on the surface of the host plant. They never enter a

root, and only stick their stylet (a type of feeding tube) into the root from outside in the  

soil. Typically they are the least damaging to the host, because only the stylet is inserted 

into the root. In this data, Ectoparasites include the species Trichodorus, Mesocriconem, 

Tylenchorhynchus, and Hemicycliophora. 

Third, Trojan et al. (2009) used the above trophic and herbivore feeding behavior 

categories to define three tropic ratios (Table 2.2) and three feeding behavior ratios (Table 2.3) 

which give definitions of the ratios as well as descriptions of their meaning in the context of the 

soil nematode community structure.  These ratios were calculated for all six dates, except for the 

ratios BH and FB which could not be calculated  for May and July 2005 due to species being 

pooled into “other”, as mentioned previously (Table 1.2).  Therefore, there were 4(dates) x 

6(ratios) +2(dates) x 4 (ratios) = 32 date+ratio combinations to be modeled. 
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Table 2.2 Ratios and Their Interpretation for Trophic Levels (see Table 2.1) 

Ratio 

Label 

Ratio calculation2 

Interpretation Numerator Denominator 

BH = 
𝐵

𝐵+𝐻
B = Bacteriovores B + H = Bacteriovores + Herbivores 

where H = Herbivores = the sum of 

counts for following categories: 
1. Meloidogyne; 2. Trichodorus,

3. Tylenchorhynchus; 4. Pratylenchus,

5. Mesocriconema; 9. Hemicycliophora

proportion of 

bacteriovores to plant-

parasitic nematodes 

FB = 
𝐹

𝐹+𝐵
F = Fungivores = 

count of: 

7. Aphelenchoid

F + B = Fungivores + Bacteriovores 

(as previously defined for BH) 

proportion of the 

nematodes that are 

important in nutrient 

cycling are feeding on 

fungi 

HT = 
𝐻

𝑇𝑜𝑡𝑎𝑙
H = Herbivores 

(as previously defined 

for BH) 

Total =  total count of 12 categories 

or species of nematodes 

proportion of the total 

soil nematode 

community that are 

plant-parasitic or 

herbivores 

Table 2.3 Ratios and Their Interpretation for Herbivore Feeding Behaviors (see Table 2.1) 

Ratio 

Label 

Ratio calculation3 

Interpretation Numerator Denominator 

SM = 
𝑆

𝑆+𝑀
S = Sedentary 

Endoparasites = the 

count of: 
1. Meloidogyne

S + M = Sedentary 

Endoparasites+ Migratory 

Endoparastites 

where M = Migratory 

Endoparasites = the count of: 
4. Pratylenchus

the proportion of 

sedentary endoparasites 

(most damaging 

nematodes) among all 

the endoparasites in a 

sample 

SE = 
𝑆

𝑆+𝐸
S = Sedentary 

Endoparasites 

(as previously defined for 

SM) 

S + E = Sedentary endoparasites 

+ Ectoparasites  

where E = Ectoparasites = the 

sum of counts for following 

categories/species: 
2. Trichodorus; 3. Tylenchorhynchus,

5. Mesocriconema;

9. Hemicycliophora

proportion of sedentary 

endoparasites to 

ectoparasites (least 

damaging) in a sample 

ME =
𝑀

𝑀+𝐸
M = Migratory 

Endoparasites 
(as previously defined for 

SM) 

M + E = Migratory 

Endoparastites + Ectoparasites 

(as previously defined for SM & SE) 

proportion of migratory 

endoparasites to 

ectoparasites in a sample 
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3. Statistical Analysis

Previous analyses (Ou et al. 2008, Murray et al. 2012) focused on modeling SRKN 

juvenile counts as predicted by YNS and PNS plant counts. Nematode counts are discrete non-

negative integers, which often have a skewed frequency distribution and higher than expected 

zero-counts, under the assumption of a Poisson distribution. Therefore, these data were analyzed 

using the Poisson and additionally the Poisson with scale parameter (Ou et al., 2008) and 

additionally the Generalized Poisson, the Zero-Inflated Poisson and the Poisson Hurdle 

distributions (Murray et al., 2012). 

This current work is a continuation of that research to assess the overall soil nematode 

community structure as measured by the three trophic-level proportions and three feeding 

behavior proportions. For these ratios, large number of zero counts in the ratio numerator may 

occur, meaning that the Binomial distribution may not fit well.  

Therefore the objective of this work was to perform statistical modeling for the 32 

date+ratio combinations using YNS and PNS counts as predictors and three probability 

distributions (with the logit link function): 

• Binomial distribution

• Zero-Inflated Binomial distribution (ZIB)

• Binomial Hurdle distribution (BH).

3.1 Probability distributions for dealing with “too many” zeroes 
Stroup (2012) provides general discussion for Zero-Inflated and Hurdle distributions to 

deal with excessive zero counts. Generally, both types of distributions use a mixture of a binary, 

on-off process and a discrete counting distribution. Both are two-component distributions with a 

zero counts component (the "off" phase) and a discrete counting distribution component, denoted 

f(y) for the "on" phase. The difference between the two is that in Zero-Inflated distributions there 

are two sources of zeroes because zeroes can occur in both the “off” phase and “on” phase, 

whereas in Hurdle distributions, there is only one source of zeroes, because zeroes occur only in 

the “off” part of the process. The parameter 𝜋0 is called the inflation probability because, when 

the system is “off”, zero counts are “inflated” or more frequent in comparison to the distribution 

that consists of only the discrete counting distribution (the “on” part).  

The generic Zero-Inflated probability mass function (PMF) can therefore be defined as 

(Stroup, 2012): 

Pr(Y=y) = {
 𝜋0 + (1 − 𝜋0) f(0) 𝑓𝑜𝑟 𝑦 = 0

(1 − 𝜋0) f(y) 𝑓𝑜𝑟 𝑦 = 1,2, … , 𝑛
(Eq. 3.1) 

The generic Hurdle PMF can be defined as (Stroup, 2012): 

Pr(Y=y) = {
 𝜋0                      𝑓𝑜𝑟 𝑦 = 0

(1 − 𝜋0) 
f(y)

1−f(0)
         𝑓𝑜𝑟 𝑦 = 1,2, … , 𝑛

(Eq. 3.2) 

In this work, f(y), the discrete PMF for the "on" part of the process, was the Binomial 

PMF because we were modeling ratios of discrete counts. We used Stroup's generic PMFs to 

obtain formulas for PMFs, means and variances of the ZIB and BH.  Table 3.1 gives the PMFs, 

means and variances for the Binomial (with random variable Y), ZIB (with random variable Z 

and BH (with random variable H) distributions for Y=Z=H=0, 1, 2, …, n, where 𝜋𝑝 is used to 

denote the Binomial probability and 𝜋0 the zero-inflation probability. 
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Table 3.1 Comparison of the Probability Mass Functions and Moments for the Binomial, ZIB and BH Distributions 

Binomial ZIB BH 

PMF and 
Parameter 
Space 

Pr (Y=y) 

= (
𝑛
𝑦) (𝜋𝑝)

𝑦
(1 − 𝜋𝑝)

𝑛−𝑦
,

y = 0, 1, 2, …, n 

Pr(Z=z) 

= 𝜋0+(1 − 𝜋0)Pr(Y=0) 

= 𝜋0+(1 − 𝜋0)(1 − 𝜋𝑝)
𝑛

for z=y = 0 

or 
= (1 − 𝜋0) Pr(Y=y) 

= (1 − 𝜋0) (
𝑛
𝑦) (𝜋𝑝)

𝑦
(1 − 𝜋𝑝)

𝑛−𝑦

for z= y =1, 2, … , n 

Pr(H=h) 

= 𝜋0 
for h= y = 0 

or 

= (1 − 𝜋0) 
Pr(Y=y)

1−Pr(Y=0)

= (1 − 𝜋0)
 (
𝑛
𝑦)(𝜋𝑝)

𝑦
(1−𝜋𝑝)

𝑛−𝑦

1−(1−𝜋𝑝)
𝑛

for h = y =1, 2, … , n 

Mean E(Y) = n𝜋𝑝 E(Z) = E(Y) (1 − 𝜋0) 
= n𝜋𝑝(1 − 𝜋0) 

E(H) =E(Y) 
(1−𝜋0)

1−(1−𝜋𝑝)
𝑛

= ( n𝜋𝑝)  
(1−𝜋0)

1−(1−𝜋𝑝)
𝑛

Variance 
V(Y) = n𝜋𝑝(1 − 𝜋𝑝) V(Z) = E(𝑍2) – [𝐸(𝑍)]2 

={(1 − 𝜋0)[V(Y)+ (𝐸(𝑌))2]} - [𝐸(𝑍)]2

={(1 − 𝜋0)[n𝜋𝑝(1 − 𝜋𝑝)+(n𝜋𝑝)
2
]}

− [n𝜋𝑝(1 − 𝜋0)]
2

V(H) = E(𝐻2) – [𝐸(𝐻)]2 

={
(1−𝜋0)

1−(1−𝜋𝑝)
𝑛[V(Y)+ (𝐸(𝑌))2]}- [𝐸(𝐻)]2 

={
(1−𝜋0)

1−(1−𝜋𝑝)
𝑛 [n𝜋𝑝(1 − 𝜋𝑝)+(n𝜋𝑝)

2
]}

    − [(n𝜋𝑝)
(1−𝜋0)

1−(1−𝜋𝑝)
𝑛]2 

Reduce to 
Binomial 

 when 𝜋0 = 0 when 𝜋0 = 0 
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[Note that "n" refers to the denominator count of a ratio, not the sample size N=80 of the number 

of quadrats being measured in each sample date.] 

To compare the mean formulas, define the following multipliers 

A = (1-𝜋0) 

and 

B = (
1

1−(1−𝜋𝑝)
𝑛) . 

Note that A = (1-𝜋0) is always smaller than 1 but that B = (
1

1−(1−𝜋𝑝)
𝑛) is smaller or greater than 

1, depending on n and 𝜋𝑝.  

It is easily seen that the Binomial mean E(Y), is always greater than the ZIB mean E(Z), 

since E(Z) = A * E(Y).  However, the Binomial mean E(Y) is generally greater than the BH mean 

E(H), but not always. Note that  

E(H) = A * B  * E(Y) = B * E(Z). 

This says that the Binomial mean is greater than the BH mean when the multiplier B is big  

enough to compensate for a small multiplier A. Only in the case of small n (n=1 or n ≤ 3 in some 

cases) or when 𝜋0 = 𝜋𝑝 = 0.50 for n=1, is the BH mean E(H) greater than or equal to the 

Binomial mean E(Y).  These patterns can be seen in Table 3.2 which shows calculated means for 

the Binomial, ZIB and BH distributions for combinations of (𝜋0 =0.25, 0.50) and (𝜋𝑝 =0.33, 

0.50) and for sample sizes of n=1, 3, 5, 10 and 100.   

With respect to variances, we note that the variance of the Binomial V(Y) is smaller than 

variance of ZIB V(Z) or BH V(H) for large n but not necessarily for small n.  Zbylut (2014) 

gives a table (not included here due to space limitations) showing the calculated variances for the 

same combinations as in Table 3.2.  

Graphs of the PMFs for Binomial, ZIB and BH PMFs for the same four combinations of 

(𝜋𝑝, 𝜋0 ) are given in Figure 3.1 for n=5.  In every case, the probability of zero counts is much 

greater for ZIB and BH than for the Binomial. For the Binomial, P(Y=0) will only the highest 

probability if 𝜋𝑝 is much smaller than the examples given here, whereas the ZIB P(Z=0) and the 

BH P(H=0) is generally the highest probability (except for BH with  𝜋0 = 0.25 and 𝜋𝑝 = 0.33).  

Also, in general, probabilities are lower for the highest number of successes and higher for zero 

successes when comparing the ZIB and BH to the Binomial. 

4. Results of Model Fitting

4.1 Fitting the models 

Because the ZIB and BH PMFs are not available in the SAS GENMOD and GLIMMIX 

procedures, the SAS (ver. 9.3) NLMIXED procedure was used to fit models based on maximum 

likelihood.  SAS NLMIXED code for fitting all models is given in Zbylut (2014) Appendix A, 

while Appendix A of this paper gives NLMIXED code for one ratio and on regression model. 

Four regression models were fitted for the Binomial probability 𝜋𝑝 using YNS and PNS 

as predictors:  

• Intercept-only model (with parameter denoted 𝛽0),

• YNS-only model (with YNS count as predictor and parameters denoted 𝛽0, 𝛽1),

• PNS-only model (with PNS count as predictor and parameters denoted 𝛽0, 𝛽2),

• Full model (with YNS, PNS, YNS2, PNS2 and YNS*PNS as predictors and parameters

denoted  𝛽0, 𝛽1, 𝛽2, 𝛽11, 𝛽22, 𝛽12). 
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Table 3.2 Comparison of means for Binomial E(Y) versus the ZIB E(Z) and BH E(H) distributions 

π0 0.25 π0 0.25

πp 0.33 E(Y) x multipA  = E(Z) E(Y) πp 0.33 E(Y) x multipA x multipB  = E(H) E(Y)

n 1 0.330 0.75 0.2475 < 0.330 n 1 0.330 0.75 3.03 0.7500 > 0.330

n 3 0.990 0.75 0.7425 < 0.990 n 3 0.990 0.75 1.43 1.0619 > 0.990

n 5 1.650 0.75 1.2375 < 1.650 n 5 1.650 0.75 1.16 1.4307 < 1.650

n 10 3.300 0.75 2.4750 < 3.300 n 10 3.300 0.75 1.02 2.5210 < 3.300

n 100 33.000 0.75 24.7500 < 33.000 n 100 33.000 0.75 1.00 24.7500 < 33.000

π0 0.50 π0 0.50

πp 0.33 E(Y) x multipA  = E(Z) E(Y) πp 0.33 E(Y) x multipA x multipB  = E(H) E(Y)

n 1 0.330 0.50 0.1650 < 0.330 n 1 0.330 0.50 3.03 0.5000 > 0.330

n 3 0.990 0.50 0.4950 < 0.990 n 3 0.990 0.50 1.43 0.7079 < 0.990

n 5 1.650 0.50 0.8250 < 1.650 n 5 1.650 0.50 1.16 0.9538 < 1.650

n 10 3.300 0.50 1.6500 < 3.300 n 10 3.300 0.50 1.02 1.6806 < 3.300

n 100 33.000 0.50 16.5000 < 33.000 n 100 33.000 0.50 1.00 16.5000 < 33.000

π0 0.50 π0 0.50

πp 0.50 E(Y) x multipA  = E(Z) E(Y) πp 0.50 E(Y) x multipA x multipB  = E(H) E(Y)

n 1 0.500 0.50 0.2500 < 0.500 n 1 0.500 0.50 2.00 0.5000 = 0.5000

n 3 1.500 0.50 0.7500 < 1.500 n 3 1.500 0.50 1.14 0.8571 < 1.5000

n 5 2.500 0.50 1.2500 < 2.500 n 5 2.500 0.50 1.03 1.2903 < 2.5000

n 10 5.000 0.50 2.5000 < 5.000 n 10 5.000 0.50 1.00 2.5024 < 5.0000

n 100 50.000 0.50 25.0000 < 50.000 n 100 50.000 0.50 1.00 25.0000 < 50.0000

π0 0.25 π0 0.25

πp 0.50 E(Y) x multipA  = E(Z) E(Y) πp 0.50 E(Y) x multipA x multipB  = E(H) E(Y)

n 1 0.500 0.75 0.3750 < 0.500 n 1 0.500 0.75 2.00 0.7500 > 0.5000

n 3 1.500 0.75 1.1250 < 1.500 n 3 1.500 0.75 1.14 1.2857 < 1.5000

n 5 2.500 0.75 1.8750 < 2.500 n 5 2.500 0.75 1.03 1.9355 < 2.5000

n 10 5.000 0.75 3.7500 < 5.000 n 10 5.000 0.75 1.00 3.7537 < 5.0000

n 100 50.000 0.75 37.5000 < 50.000 n 100 50.000 0.75 1.00 37.5000 < 50.0000

ZIB BH

π0 = 0.25 & πp = 0.50 π0 = 0.25 & πp = 0.50

π0 = 0.50 & πp = 0.33 π0 = 0.50 & πp = 0.33

ZIB BH

π0 = 0.50 & πp = 0.50 π0 = 0.50 & πp = 0.50

ZIB BH

π0 = 0.25 & πp = 0.33 π0 = 0.25 & πp = 0.33

ZIB BH
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Figure 3.1 Graphs of Binomial, ZIB and BH PMFs for 4 combinations of 𝝅𝒑 and 𝝅𝟎 & n=5
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The zero inflation probability 𝜋0 was modeled as an intercept-only model with parameter 

denoted 𝛼0. 

Note that for the fitted regression models, the formulas in Table 3.1 are modified by 

substituting the appropriate formula for π0 and πp.  For example, for the regression model fitting 

the intercept and YNS,  

π0 = exp(α0)/[1+ exp(α0)] 

and 

πp = exp(β0 + β1YNS)/[1+ exp(β0 + β1YNS)]. 

In total, there were 32 (date+ratio) x 4 (regression models) x 3 (distributions) = 384 

models. Summary Tables for all 384 models are given in Appendix B of Zbylut (2014).   

In the following sections, we discuss results based only on statistical model-fitting and 

comparing the estimated probabilities for the three distributions.  Interpretation of the biological 

and ecological implications of these results will be addressed in a future paper targeted at the 

disciplines of nematology and weed science. 

4.2 Overall results 

For each date+ratio combination, Akaike’s Information Criterion (AIC) was used to 

determine the "best” model with minimum AIC. Table 4.1 lists the combination of (regression 

model + PMF ) with the smallest value of AIC for each date+ratio combination.  From Table 4.1, 

it is seen that the Binomial provided the best fit for 20 date+ratios out of 32, ZIB was the best for 

10, with BH being best for only 2. The dominant position of Binomial model may indicate lower 

zero-inflation than was expected, based on previous work modeling only SRKN counts using 

members of the Poisson family of distributions (Ou et al. 2008, Murray et al. 2012).  The 

importance of YNS and PNS predictors varied over date+ratio combination, since the YNS-only 

model was the best predictor for 11 date+ratio combinations, the Full model was best for 9, the 

Intercept-only model was the best for 8, and the PNS-only model was the best for 4.   

4.3 Best regression + PMF models for all ratios in September 2005 and 2006 
In this section, we examine results more closely for the two September sample dates, 

which were of specific interest to the nematologist and weed scientist co-authors because both 

the nutsedges and nematodes will then be at maximum levels, having experienced a full growing 

season.   

Table 4.2 shows the smallest values of AIC in bold for the best combination of regression 

model + PMF for September.  However, instead of just noting the PMF with the lowest AIC, we 

now look at how comparable the other two PMFs are to the best PMF, based on AIC. Burnham 

and Anderson (2010) suggest comparing AIC by calculating the difference between AIC values 

for the best model (i.e. with minimum AIC) and another model, denoted model i. This AIC 

difference is defined as Δi= AICi – AICmin. Further, if Δi ≤ 2, Burnham and Anderson suggest 

that the level of empirical support of model i is substantial in comparison to the best model, 

meaning the two models have comparable support. When 2<Δi <10, model i is considerably 

worse than the best model in explaining some substantial variation in the data. Models with Δi ≥ 

10 have no support and might be omitted from further consideration.  

It can be seen in Table 4.2, that although the Binomial is the best with smallest AIC value 

in most cases, the ZIB and/or BH are often comparable.  For the BH and HT ratios in both 2005 

and 2006, the ZIB and BH are both comparable to the Binomial (Δi ≤ 2). For the 2006 FB ratio, 

ZIB is comparable to the best Binomial (Δi = 1.6), while BH is much worse (Δi = 17.6). For the 
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2005 SM ratio, ZIB is also comparable to the best Binomial (Δi = 2), while BH could be 

excluded (Δi = 76.8). For the 2006 SE ratio, BH is comparable to the best ZIB (Δi = 0.5), while 

Binomial is much worse (Δi = 20.7). For the 2005 ME ratio, ZIB is comparable to the best 

Binomial (Δi = 0.6), while BH could be omitted (Δi = 14.1).  For the 2005 FB ratio, the ZIB was 

the best, with Δi = 3.1 and 5.2 for Binomial and BH, respectively, meaning that they are worse 

than ZIB, but should not be excluded from consideration. For the 2006 SM ratio, BH and 

Binomial models very poorly approximate the data compared to the best ZIB, with their 

respective Δi both being greater than 10.  

To summarize the statistical aspects of model fitting for September 2005 and 2006, in 

most cases, the Binomial typically gave the best fit, but in many cases ZIB and BH were 

comparable models. This suggests that there was some zero-inflation, but that the zero-inflation 

was not as strong as was seen in the previous analyses of SRKN counts (Ou et al, 2008, Murray 

et al. 2012).   

4.4 Illustrating differences in estimated probabilities resulting from the fitted regression 

models and the Binomial, ZIB and BH distributions for the SM ratio in September 2005 

and 2006 

To illustrate specific differences in the estimated probabilities between the three 

distributions and how the probabilities change as the predictor value changes, we present two 

examples, the SM ratio for September 2005 and 2006, using the regression model with YNS as 

the predictor (Figures 4.1 and 4.2). We note that the regression model with YNS was the best for 

SM in September 2006.  In comparison, the best regression model for the September 2005 SM 

ratio was the intercept-only model with AIC=64.9, but the second best was YNS model with 

AIC=65 (Zbylut, 2014, Appendix B).  Therefore the two PMFs have comparable support.   

Estimated probabilities were calculated using the PMF formulas in Table 3.1, with the 

fitted regression models substituted for π0 and πp (Zbylut 2014, Appendix B).  Note that 

distributions graphed in Figure 3.1 are equivalent to the case where the best model is an 

intercept-only model for both the Binomial 𝜋𝑝 and the zero-inflation π0.  In contrast, the 

regression model with YNS as the predictor for 𝜋𝑝 model is given in Figures 4.1 and 4.2 to show 

how the estimated probabilities of the numerator counts change as YNS increases from 0 to 8.  

The ratio denominator count n is set to 5, so that the numerator count y is from 0 to 5. In reality, 

the denominator can obviously be different from 5, but multiple figures would need to be shown 

for varying values of n.   

The September 2005 SM ratio (Figure 4.1) is a case where the modeled zero-inflation is 

either essentially non-existent (ZIB) or moderate (BH), and all three distributions have a negative 

estimated slope for YNS for the regression model for 𝜋𝑝.  The zero-inflation parameter estimate 

is 𝛼0̂ = -19.31, which makes the estimated zero-inflation probability 𝜋0̂ = 4.0966E-9. Therefore 

for the September 2005 SM ratio, the ZIB probabilities are almost exactly equal to the Binomial 

probabilities, as are the estimates for β0 and β1.  For BH,  𝛼0̂ = .3023, resulting in 𝜋0̂ = .5750, 

which doesn't depend on the value of YNS and hence P(H=0) is constant as YNS increases. 

In all three PMFs, the negative 𝛽1̂ means that the probability of a high (low) numerator 

count decreases (increases), as YNS increases. Thus for the Binomial and ZIB, for YNS=0, the 

estimated P(Y=5)=P(Z=5) are both 0.3558 and P(Y=1)=P(Z=1) are 0.0049 with the mode 

occurring at Y=Z=4, whereas for YNS=8, the estimated P(Y=5)=P(Z=5) is 0.0020 and 

P(Y=1) = P(Z=1) is 0.3700 with the mode occurring at Y=Z=1.  The BH shows the same pattern 

although at a different scale due to the large estimated probability at H=0 (.5750) leaving only 
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Table 4.1 Combination of regression + PMF models with the smallest AIC (the best models) across all sample dates 

B=Binomial, Z=ZIB & H=Hurdle Model, 1=Sample 1 (May), 2=Sample 2 (July), 3=Sample 3 (September) 

BH ratio FB ratio HT ratio SM ratio SE ratio ME ratio 

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 

3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Intercept B B B B Z B Z B 

YNS B Z B H Z Z H Z B Z Z 

PNS B B B B 

Full B B B B B B B Z Z 

Table 4.2 Models with AIC (the best models) for September Samples (Sample 3). Bolded AIC values are smallest (best). 

BH ratio FB ratio HT ratio SM ratio SE ratio ME ratio 

2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 

Intercept 

B 64.9 143.6 

ZIB 66.9 122.9 

BH 141.7 123.4 

YNS 

B 290.3 131 83.1 671.4 

ZIB 287.2 99.4 83.7 523.9 

BH 292.4 120.3 97.2 531.2 

PNS 

B 236.6 

ZIB 238.2 

BH 254.2 

Full 

B 367 668.1 371.7 691.3 182.7 

ZIB 369 670.1 373.7 693.3 172.2 

BH 369 670 372.7 693.3 175.6 
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Figure 4.1 Estimated probabilities for SM ratio, September, 2005, YNS as predictor and 

denominator count=5, calculated using following estimated regression coefficients: 
Binomial (AIC=65) ZIB (AIC=67) BH (AIC=143) 

𝛽0̂ = 1.4714* 

 𝛽1̂ = -0.297 

𝛼0̂ = -19.3131

 𝛽0̂=1.4714** 

𝛽1̂=-0.297 

𝛼0̂ =0.3023

𝛽0̂=1.4126** 

𝛽1̂=-0.1536 

for YNS = 8

for YNS = 0

SM ratio    Sample 3, 2005

for YNS = 2

for YNS = 4

0.0002
0.0049 0.0431

0.1876

0.4084

0.3558

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Zero Inflated Binomial

 0̂ = 4.097E-9

𝑝̂ = 0.8133

0.5750

0.0025
0.0206

0.0848

0.1741 0.1430

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Hurdle Binomial

0.0022
0.0263

0.1264

0.3039

0.3654

0.1758

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Zero Inflated Binomial

0.5750

0.0136
0.0606

0.1347 0.1496

0.0665

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Hurdle Binomial

0.1828

0.3700
0.2995

0.1212

0.0245
0.0020

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Zero Inflated Binomial
0.5750

0.0503

0.1210
0.1454

0.0874

0.0210

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Hurdle Binomial

0.0146

0.0972

0.2580

0.3425

0.2274

0.0604

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Zero Inflated Binomial

0.5750

0.0061

0.0370
0.1116

0.1685

0.1018

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Hurdle Binomial

0.0002 0.0049
0.0431

0.1876

0.4084

0.3558

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Regular Binomial

 𝑝̂ = 0.8133

0.0022

0.0263

0.1264

0.3039
0.3654

0.1758

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Regular Binomial 

0.0146

0.0972

0.2580

0.3425

0.2274

0.0604

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Regular Binomial 

0.1828

0.3700
0.2995

0.1212

0.0245
0.0020

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 1 2 3 4 5

Regular Binomial 

 𝑝̂ = 0.7063

 𝑝̂ = 0.5704

 𝑝̂ = 0.2881

 0̂ = 4.097E-9
 𝑝̂ = 0.7063

 0̂ = 4.097E-9
 𝑝̂ = 0.5704

 0̂ = 4.097E-9
 𝑝̂ = 0.2881

 0̂ = 0.5750
 𝑝̂ = 0.8042

 0̂ = 0.5750
 𝑝̂ = 0.7513

 0̂ = 0.5750
 𝑝̂ = 0.6896

 0̂ = 0.5750
 𝑝̂ = 0.5458

143

 
26th Annual Conference on Applied Statistics in Agriculture

New Prairie Press 
http://newprairiepress.org/agstatconference/2014/

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2014/proceedings/5



Figure 4.2 Estimated probabilities for SM ratio September 2006, YNS as predictor and 

denominator count=5, calculated using following estimated regression coefficients: 
Binomial (AIC=131) ZIB (AIC=99) BH (AIC=120) 
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0.4250 total probability on H=1, 2, 3, 4, and 5. 

The increase seen for the estimated P(Z=0) for the ZIB as YNS increases is due solely to 

the negative YNS slope and not 𝜋0̂ . This suggests that zero-inflation will be difficult to detect in 

the ZIB if the regression coefficient is negative, unless the zero-inflation probability π0 is "large".  

This happens because the negative slope will naturally shift probability from high counts to low 

counts of the numerator as the predictor increases, effectively disguising any zero-inflation.  

Because zero-inflation in the BH does not depend on the predictor, it may be better at picking up 

zero-inflation than the ZIB in such cases.  In this specific case, however, the BH AIC is much 

larger than that for the Binomial and ZIB, indicating that it is likely that there is no zero-inflation 

for the SM ratio in September 2005. 

The September 2006 SM ratio (Figure 4.2) is a case where the modeled zero-inflation is 

either low (ZIB) or high (BH), and all three distributions have a positive estimated YNS slope 

for the regression model for 𝜋𝑝.  For the ZIB, the zero-inflation parameter estimate is 𝛼0̂ =  

-0.1452, giving 𝜋0̂ =0.4638, while for the BH, 𝛼0̂ = 1.2205, giving 𝜋0̂ =0.7722 =P(H=0), which 

again does not depend on YNS.   

In all three PMFs, the positive  𝛽1̂ produces a picture opposite to that seen in Figure 4.1, 

that is, probability increases (decreases) for higher (lower) numerator counts as the YNS 

predictor increases.  Therefore for the ZIB, the estimated P(Z=0) decreases from 0.5822 when 

YNS=0 to 0.4638 when YNS=8. In comparison, the estimated P(Z=5) is 0.0007 when YNS=0 

and increases to 0.4998 when YNS=8.   

In the case where the estimated slope of the predictor is positive, it should be easy to 

detect moderate to strong zero-inflation when the value of the predictor takes on large values in 

the data in both the ZIB and BH. 

Obviously the ability to detect and interpret zero-inflation will be much more 

complicated when there is more than one predictor variable and when the estimated coefficients 

differ in sign. 

5. Summary

This paper presented formulas for PMFs and moments for the Zero-inflated Binomial 

(ZIB) and Binomial Hurdle (BH) and compared them to the Binomial when no regression model 

is fitted for the Binomial parameter πp.   

A real example was given using six nematode community ratios based on soil nematode 

counts.  For these ratios, the Binomial PMF provided the best fit for 20 sample dates out of 32 

(Table 4.1), but in several cases the ZIB and BH were comparable to the Binomial, based on very 

small differences in AIC values. The dominant position of Binomial model may indicate lower 

zero-inflation than was anticipated based on previous research that modeled SRKN counts using 

the Poisson family of distributions (Ou et al. 2008, Murray et al. 2012).  Having many ratios 

based on small denominator counts (as there were for several dates and ratios) would likely make 

it difficult to detect the zero-inflation unless it was extreme.  (In particular, if the denominator 

count is 1, the ZIB and BH reduce to the Binomial, albeit with different πp.)  This result also 

points up the difference in detectability of zero-inflation when dealing with counts versus ratios. 

The importance of YNS and PNS predictors varied over sample dates and ratios, a 

finding similar to that Ou et al. (2008) and Murray et al. (2012), where the best Poisson 

regression models varied over dates.  In addition, regression models from Ou et al. (2008) and 

Murray et al. (2012) found positive relationships between nutsedge density and SRKN counts, 
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while is this work some negative relationships were seen.  This difference may be attributable to 

using information from more nematode species (with different feeding and reproductive 

strategies) rather than just SRKN and/or, again, the difference between modeling ratios versus 

counts.  This is an issue of biology or ecology.  

Finally, this discussion about modeling results leaves open the question about what 

model(s) the nematologists and weed scientists think are appropriate from a biological or 

ecological standpoint.  See Murray et al. (2012) for a discussion of when particular Poisson-

family distributions might be logically appropriate versus statistically "best". 

As mentioned earlier in this work, we discuss results based only on statistical model-

fitting.  Interpretation of the biological and ecological implications of these results to issues of 

soil health and nematode community structure will be addressed in a future paper targeted at the 

disciplines of nematology and weed science  
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Appendix A – SAS Code: HT ratio, full quadratic model 

SAS NLMIXED code is shown for the Binomial, ZIB and BH, the HT ratio, and the full 

quadratic regression model with predictors YNS, PNS, YNS2, PNS2 and YNS*PNS and their 

respective parameters denoted  𝛽0, 𝛽1, 𝛽2, 𝛽11, 𝛽22, 𝛽12 transliterated to b's and with the zero 

inflation probability 𝜋0 modeled as an intercept-only model with parameter denoted  𝛼0 

(transliterated to a0). 

***********************************************************; 

*HT ratio ; 

*NLMIXED: ; 

* Binomial distribution ; 

* LOG link ; 

* Full model: YNS & PNS (b0, b1, b11, b2, b22, b12) ;   

***********************************************************; 

title 'Binomial - Full Model - HT ratio'; 

proc nlmixed data=all; 

by Year Sample;   

*Set FULL MODEL;

parms b0=0   b1=0   b11=0 

  b2=0   b22=0  b12=0; 

* Ratio HT;

num=HTnum; 

den=HTdenom; 

* Binomial;

LinpredBin=b0+b1*yns+b2*pns+b11*yns2+b22*pns2+b12*ynspns; 

Pi_p = 1 / (1+ exp(-linpredBin)); 

if num = 0 then 

ll = den*log(1-Pi_p); 

else ll =  num*log(Pi_P) + (den-num)*log(1-Pi_P) + lgamma(den+1) 

- lgamma(num+1) - lgamma(den-num+1); 

model num ~ general(ll); 

run; 

***********************************************************; 

*HT ratio ; 

* NLMIXED: ; 

* ZIB distribution ; 

* LOG link ; 

* Full model: YNS & PNS (a0, b0, b1, b11, b2, b22, b12)  ;   

***********************************************************; 

title 'ZIB - Full Model - HT ratio'; 

proc nlmixed data=all; 

by Year Sample;   

parms a0=0 

  b0=0   b1=0   b11=0 

  b2=0   b22=0  b12=0; 

* Ratio HT;
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num=HTnum; 

den=HTdenom; 

* ZIB model: linear predictor for the inflation prob;

LinpredZero=a0; 

Pi_0=1/(1+exp(-linpredZero)); 

* Binomial;

LinpredBin=b0+b1*yns+b2*pns+b11*yns2+b22*pns2+b12*ynspns; 

Pi_p = 1 / (1+ exp(-linpredBin)); 

* Log-likelihood for ZIB;

if num = 0 then 

ll = log(Pi_0 + (1-Pi_0)*((1-Pi_p)**den)); 

else ll = log(1-Pi_0) + num*log(Pi_P) + (den-num)*log(1-Pi_P) + 

lgamma(den+1) - lgamma(num+1) - lgamma(den-num+1); 

model num ~ general(ll); 

run; 

***********************************************************; 

*HT ratio ; 

*NLMIXED: ; 

* BH distribution ; 

* LOG link ; 

* Full model: YNS & PNS (a0, b0, b1, b11, b2, b22, b12)  ;   

************************************************************; 

title 'BH - Full Model - HT ratio'; 

proc nlmixed data=all; 

by Year Sample;

parms a0=0 

  b0=0   b1=0   b11=0 

  b2=0   b22=0  b12=0; 

* Ratio HT;

num=HTnum; 

den=HTdenom; 

* BH model: linear predictor for the inflation prob;

LinpredZero=a0; 

Pi_0=1/(1+exp(-linpredZero)); 

* Binomial;

LinpredBin=b0+b1*yns+b2*pns+b11*yns2+b22*pns2+b12*ynspns; 

Pi_p = 1 / (1+ exp(-linpredBin)); 

* Log-likelihood for Binomial Hurdle;

if num = 0 then 

ll = log(Pi_0); 

else ll = log(1-Pi_0) + num*log(Pi_p) + (den-num)*log(1-Pi_p) + 

lgamma(den+1) - lgamma(num+1) - lgamma(den-num+1) - log(1-((1-Pi_p)**den)); 

model num ~ general(ll);run;
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