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Abstract 

Adequate sleep restores vital processes required for health and well-being; but the function and 

regulation of sleep is not well understood.  Unfortunately, a definition of adequate sleep is 

unclear.  On an hours-long timescale, consolidated and cycling sleep results in better health and 

performance outcomes.  At shorter timescales, older studies report conflicting results regarding 

the relationship between sleep and wake bout durations.  One approach to this problem has been 

to simply analyze the distribution of bout durations.  While informative, this method eliminates 

the time relationship between bouts, which may be important.  Here, we develop a model that 

describes the relationship between sleep and wake bout durations using the model organism, 

Drosophila melanogaster, which exhibits behavioral and molecular homology to human sleep.  

We present an exploratory analysis of the data to gain a better understanding of the sleep bout 

duration distribution by considering a broader range of potential distributions than considered in 

previous studies.  We use the results of the distribution analysis to develop a model for sleep 

bout durations in the fly based upon their past sleep and wake history and find that this 

relationship should not be ignored. 

Keywords: Sleep, Drosophila melanogaster, sleep-wake transitions, Weibull distribution,  

Modeling  

1. Introduction 

Sleep is an essential part of life that is conserved across animal species.  Lack of adequate sleep 

can result in many health consequences and increased mortality (Kripke et al., 2002).  While the 

effects vary amongst species, sleep deprivation in humans has been shown to have numerous 

impacts including decreased cognitive performance (Van Dongen et al., 2004), increased Body 

Mass Index (BMI) (Taheri et al., 2004) and negative cardiovascular effects (Dettoni et al., 2012).  

Such negative effects are seen across species: prolonged sleep deprivation can lead to death in 

rats (Rechtschaffen et al., 1983), flies (Shaw et al., 2002), and even humans (Schenkein and 
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Montagna, 2006). Although these findings highlight the importance of sleep, its function and 

how it is regulated are topics of ongoing research, as they are not fully understood. 

In mammals, sleep has been modeled to be governed by two primary interacting processes.  The 

first describes the approximately 24 hour cycling that occurs in most organisms, known as 

circadian rhythms or Process C.  Process C gates the timing of sleep over a 24 hour period.  The 

second is Process S, the homeostatic process that involves the build-up of sleep pressure with 

increased wakefulness.  These two systems interact to direct the timing and amount of sleep 

(Borbely, 1982).  While many advances have been made to understand Process C, little is known 

about Process S.  At the molecular level, sleep-wake cycles are also influenced by the integration 

of hundreds to thousands of interacting genetic and environmental inputs.  To reduce some of 

this complexity, the fruit fly, Drosophila melanogaster, can be used as a model organism to 

understand the mechanisms that underlie sleep and translate these findings to sleep in mammals 

(Hendricks et al., 2000; Shaw et al., 2000; Sehgal and Mignot, 2011).   

Drosophila research has played an important role in understanding circadian rhythms  (Hardin, 

2011) and Drosophila have been shown to display many molecular, behavioral, and genetic 

similarities to mammalian sleep (Shaw et al., 2000; Hendricks et al., 2000).  There are many 

benefits to using Drosophila as a model organism. One prominent benefit is that molecular 

components of the circadian clock can be targeted and disrupted to eliminate Process C, thereby 

focusing on the investigation of Process S (Konopka and Benzer, 1971; Sehgal et al., 1994; 

Allada et al., 1998; Rutila et al., 1998).  Also, experimental conditions can be easily designed to 

study the influence of light-dark conditions or food availability, for example, on sleep behavior 

Thimgan et al., 2010).  Moreover, Drosophila can also be monitored over long periods of time, 

yet have a short enough life span to allow the assessment of sleep patterns on longevity.    

To begin to understand the relationship between sleep and wake cycles, it is important to record 

the timing of sleep and wake bouts over extended periods of time to understand  how the patterns 

comprise adequate sleep.  In mammals, several studies have employed mathematical and 

statistical methods to investigate the distribution of sleep and wake bout durations obtained from 

electroencephalography (EEG) and electromyography (EMG) readings (Lo et al., 2002; Lo et al., 

2004; Blumberg et al., 2005).  These studies fit both exponential and power law distributions to 

sleep and wake bout durations separately.  Their findings indicate that sleep bout durations 

follow an exponential distribution across several species such as mice, cats, and humans with the 

scale parameter increasing with body size (Lo et al., 2004).  Some deviations from the 

exponential distribution are evident in the tail.  Wake bout durations were initially reported to 

follow a power-law distribution (Lo et al., 2002).  However, a later study showed the distribution 
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to be exponential in newborn rats, changing to power-law with maturity (Blumberg et al., 2005).  

Chu-Shore et al. (2010) pointed out that the power-law can easily be mistaken for other 

distributions using the methods employed in the initial studies.  One limitation of the studies in 

mammals is the short recording duration and thus the limited number of transitions available for 

statistical analysis. 

A second drawback of studying bout distributions is that they do not account for the potential 

temporal relationship of wake and sleep bouts.   Investigating the short-term dependency of past 

sleep and wake behavior on the current sleep bout could provide additional insights into the 

nature of the sleep-wake cycle.  Some studies have investigated the relationship between the 

previous wake and current sleep bout durations, but report conflicting results about the strength 

and direction of the relationship (Aschoff et al., 1969; Webb & Friedman, 1969; Mistlberger et 

al. 1983; Wever, 1984).   These studies do not consider dependencies beyond the previous bout, 

which may be important as both the amount of sleep and wake just prior to sleep could influence 

the length of the current bout.   

In this study, we focus on modeling sleep bout durations in wild-type (Canton S) fruit flies.  We 

examine sleep bout distributions as well as develop a model for the short-term temporal 

relationship between wake and sleep bout durations.  Using Drosophila enables monitoring over 

a longer period (4 days) than in the mammalian studies (<1 day) and it is instructive to 

understand the sleep architecture of a wild type fly for comparative purposes to other organisms 

and potentially to mutant flies.  We extend upon the previous statistical methods by exploring a 

broader range of distributions commonly used for modeling life-spans to see if they provide a 

better fit than the exponential distribution.  Results from the distributional analysis are employed 

to develop a statistical model that describes the relationship between the previous two bout (one 

wake and one sleep) durations with current sleep bout duration.   This modeling can shed light on 

the short-term temporal dynamics of sleep.  Furthermore, the results from this model could 

potentially be used in future studies to cluster flies by their parameter estimates and investigate 

consequences of deviations from normal estimates on health and performance of the organism. 

2.  Data Collection 

Sleep is commonly monitored in flies through the Drosophila Activity Monitoring system, since 

it is technologically impossible to obtain EEG readings in freely behaving flies (Andretic and 

Shaw, 2005).  In this system, individual flies are placed in separate glass vials with food at one 

end and a cotton plug at the other end.  All flies are fed the same diet consisting of yeast, corn 

syrup, molasses, sucrose, and agar.  An infrared beam passing through each vile is used to detect 
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movement.  Empirically it has been determined that if a fly is inactive (does not break beam) for 

at least a five minute period it meets the behavioral criteria for sleep (Shaw et al., 2000).   

Otherwise the fly is deemed awake.  There is censoring in the sense that true sleep bouts less 

than five minutes are not detected as sleep.  Either male or Virgin female wild type (Canton S) 

flies aged 2-5 days old were placed in the individual vials and placed in constant dark (24 hrs) 

conditions.   After two days of acclimation to the constant dark conditions, sleep and wake status 

was then recorded each minute over a four-day period (5760 minutes) on 29 female and 24 male 

flies.  Sleep behavior of male and female flies is known to be different and the two sexes are 

analyzed separately.  Sleep (and wake) bouts durations are found by calculating the length of 

time the fly stays in the sleep (or wake) status across consecutive minutes.  Figure 1 shows how 

the data are first converted to sleep (=0) and wake (=1) status each minute based on beam 

crossings and then bout durations are calculated.  Female flies have an average sleep bout 

duration of 20 minutes (SD=37.4) and male flies have an average sleep bout duration of 24 

minutes (SD=39.0). 

 

Figure 1.  Illustration of data collection and conversion process.  Panel A shows that the number 

of beam breaks are recorded each minute.  For any period with 5 or more consecutive minutes of 

no beam crossings, the fly is given the sleep status (0) for those minutes. Otherwise, the fly is 

assigned the wake status (1).  Panel B shows a graph of sleep/wake status over time, illustrating 

how sleep and wake bouts are defined by consecutive minutes of being in the same state. Panel C 

shows the results of bout duration calculations. 
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3. Statistical Analysis 

 

3.1. Distribution of sleep bouts 

Methods.  The first goal of our analysis is to investigate the distribution of sleep bout durations.  

Although previous studies have found that sleep bout durations follow an exponential 

distribution in mammals, there was deviation in the tail that indicates another distribution may be 

more appropriate.  We examine a broader range of common life distributions that may provide a 

more suitable fit.  We consider seven distributions:   (1) exponential, (2) log-logistic, (3) 

lognormal, (4) Weibull, (5) threshold log-logistic, (6) threshold lognormal, and (7) threshold 

Weibull.   The threshold distributions are considered due to the nature of the censored sleep bout 

durations that must by definition be at least 5 minutes long.   

 

Let ijY be the  th bout duration for fly   and 
0

ijY  be the subset of the bouts that correspond to the 

sleep status.  Within each sex, we assume the sleep bout distribution is the same for all flies (i.e., 
0 ~ ( )ijY F θ  for all  ), as was assumed and tested in the mammalian studies.  For each of the seven 

distributions considered, maximum likelihood estimates were obtained for the parameters of each 

distribution using all 
0

ijY  within each sex.  To compare fit of the distributions, the Akaike 

information criterion (AIC) was calculated as 2 2ln( )AIC p L  , where p is the number of 

parameters of the distribution and  L is the maximized value of the likelihood function (Akaike, 

1974).   Smaller AIC values are indicative of a better fit and thus the distribution with the 

minimum AIC value was selected.  The fit of the chosen distribution was further evaluated via a 

probability plot.  All analysis was conducted using the Reliability Procedure in SAS v.9.3 

software and JMP Pro 10 software. 

 

Results.  For both males and female Canton S flies, the threshold Weibull distribution provided 

the best fit among the seven distributions that were tested using the AIC criterion (Figure 2, top 

panel).  The exponential distribution yielded the worst fit.  Probability plots of the cumulative 

distribution function (CDF) of the fitted threshold Weibull verses the sleep bout durations can be 

used to assess the fit of the threshold Weibull (Figure 2, middle panel).  We see that the points 

approximately follow the theoretical solid line for both sexes, indicating the distribution is a 

good fit.  The probability density function for the threshold Weibull is given below: 

 

where α is the scale parameter, β is the shape parameter, and γ is the threshold parameter.  The 

shape parameter allows flexibility in modeling the failure rate.  When β=1, the distribution is 

1( ; , , ) ( ) exp( ( ) ),
x

f x x x 



 
    

 

 
   
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exponential with a constant failure rate, but when β<1 or β>1 this is indicative of a decreasing or 

increasing failure rate, respectively.  The threshold parameter indicates a shift of the Weibull 

distribution away from zero.  The legends in the probability plots give the estimates for these 

three parameters for both sexes (Figure 2, middle panel).  We see  ̂=4.999≈5, which is 

reasonable for these data since the sleep bout duration cannot be less than 5 and this supports the 

use of the threshold distribution to account for this feature in the data.  The shape parameter 

estimate is less than one for both sexes ( ̂        =0.439,  ̂      =0.585) indicating a decreasing 

failure rate.  This means that the longer the fly sleeps the less likely the fly is to wake up.  This 

may be explained by a high frequency of brief sleep periods (i.e., high “infant mortality”), but 

once the fly goes into an extended sleep period it stays asleep for a relatively long time.  The 

scale parameter differs between the two sexes ( ̂        =6.491,  ̂      =15.423).  The improved 

fit of the threshold Weibull over the exponential suggests that it is important to allow for a non-

constant failure rate, as well as account for the five minute minimum sleep bout.  

 

We also investigate variation in fit of the threshold Weibull distribution among individual flies 

within each sex.  That is, we fit a threshold Weibull to each individual fly (i.e., 
0 ~ ( )ij jY F θ for all 

i).  Probability plots indicate that the threshold Weibull with a threshold parameter equal to five 

fits well for the individual flies, but there is more deviation in the male than female flies (Figure 

2, bottom panel).  These results indicate that the threshold Weibull distribution provides a good 

fit for both individual and pooled data, but that parameters for individual flies may differ.    

 

3.2.  Relationship between current and past bouts 

Methods.  Using the results of the distributional analysis of sleep bouts, we propose a model 

relating the current sleep bout lengths to the previous two bout lengths (one sleep and one wake).    

The current sleep bout duration is assumed to follow a threshold Weibull distribution with the 

threshold parameter equal to 5.  The log of the scale parameter is modeled as a linear function of 

the previous wake and sleep bout durations, while assuming a constant shape parameter.  This 

model can be summarized as follows: 

 

Let     
                  (         )  where    (  )      +          

 +          
 . 
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Figure 2.  Results from distribution fitting.  The left column gives results for female flies and the 

right column gives results for male flies.  The top panel gives the AIC values for each of the 

seven different distributions, sorted in ascending order.  The middle panel gives the probability 

plots from the threshold Weibull distribution by pooling all flies within each sex.  The bottom 

panel gives the probability plots from the threshold Weibull distribution for individual flies.  

Female 

Distribution AIC 

Threshold Weibull 20015.578 

Threshold Loglogistic 24843.094 

Loglogistic 41281.661 

Lognormal 41511.032 

Weibull 44274.775 

Exponential 44338.833 

Threshold Lognormal No Convergence 

 

 

Male 

Distribution AIC 

Threshold Weibull 24652.131 

Threshold Lognormal 29750.686 

Lognormal 30405.361 

Loglogistic 30528.196 

Weibull 31581.429 

Exponential 31583.606 

Threshold Loglogistic No Convergence 
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Recall that ijY is the  th bout duration for fly  , 0

ijY  is the subset of the bouts that correspond to the 

sleep status, and 
1

ijY is the subset of the bouts that correspond to the wake status.  Note that the 

mean and median of the threshold Weibull are increasing functions of the scale parameter when 

the shape and threshold parameters are fixed.  We assume that any dependencies in the current 

bout durations are accounted for by including the previous sleep and wake bouts in model.  The 

regression parameters                    are jointly estimated via maximum likelihood 

estimation.   We fit a separate model for each fly and investigate the variation in the parameter 

estimates among flies of each sex.  Three different hypotheses tests are conducted for each fly: 

1.  
0 : 1 . : 1j j Aj jH vs H    (test for constant failure rate) 

2.  
0 1 1: 0 . : 0j j Aj jH vs H    (test for significance of past wake bout) 

3. 
0 2 2: 0 . : 0j j Aj jH vs H    (test for significance of past sleep bout). 

Approximate 95% confidence intervals are employed to conduct these tests.  Plots of the 

standardized residuals are used to check model fit.   

 

Results. 

The above three hypothesis tests were significant (null was rejected) for most of the 29 female 

flies.  The shape parameter was significantly different from one for 24 of the female flies and all 

of these estimates were less than one, indicating a decreasing failure rate (Figure 4, top left).  The 

slope parameter for past wake was significantly different from zero for 23 of the female flies and 

all of these estimates were negative, indicating that past wake has a negative relationship with 

current sleep (Figure 4, bottom left).  The slope parameter for past sleep was significantly 

different from zero for 20 of the female flies and all of these estimates were positive, indicating 

that past sleep has a positive relationship with current sleep (Figure 4, bottom right).  

Interestingly, for the 24 male flies there were fewer significant and more varied results.  The 

shape parameter was significantly different from one for 16 of the male flies.  Six of these 

estimates were greater than one and 10 were less than one, indicating more variation in the type 

of failure rate among the male flies (Figure 4, top left).  The slope parameter for past wake was 

significantly different from zero for six of the male flies, with five these estimates being negative 

as they were in females (Figure 4, bottom left).  The slope parameter for past sleep was 

significantly different from zero for 10 of the male flies, with nine of these estimates being 

positive as they were for female flies (Figure 4, bottom right).  Standardized residuals plots (not 

shown) indicated the threshold Weibull distribution provided a good fit.    
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Figure 4.  Boxplots of estimates for the shape parameter (top left), intercept (top right), and 

slope parameters for the past wake bout duration (bottom left) and the past sleep bout duration 

(bottom right).  Points are the individual estimates.  Red asterisks highlight flies with shape 

parameter values significantly different from one (top left) or slope parameters significantly 

different from zero (bottom panel).  Separate boxplots are given for females and males.   
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In summary, among the female flies we have evidence for a significant negative relationship 

between the past wake bout duration and current sleep bout duration, a positive relationship 

between the past sleep bout duration and current sleep bout duration, and a decreasing failure 

rate.  Some male flies displayed these same characteristics, but some did not.  Most notably, 

some male flies had an increasing failure rate, indicating a different type of sleep-wake behavior, 

and several did not show any significant relationship between the past wake and sleep bouts with 

the current sleep bout.     

 

4. Discussion and Summary 

In this work, we investigated the sleep-wake behavior of wild-type fruit flies.  Specifically, we 

examined the distribution of sleep bout durations, as well as modeled the relationship between 

current sleep bouts and the previous sleep and wake bouts.  Our work extends the approach from 

similar studies of bout distributions in mammals to the fruit fly.  Our data has identified 

differences in the bout distribution between flies and previous work in mammals.  These 

differences could indicate a difference in how bouts are distributed in the fly or indicate that the 

distributions considered in the mammalian studies may not be sufficient to adequately model the 

distribution of sleep bouts.  In the wild type flies, the threshold Weibull model provided the best 

fit among seven different life-span distributions.  Parameter estimates from this model, indicate 

that incorporating a threshold parameter to account for the 5 minute minimum sleep bout and 

allowing for a non-constant failure rate are important to consider.  Future experiments involving 

fruit flies with mutations that disable the circadian rhythm will allow us to directly study Process 

S.  Comparing distributions of the mutant flies to the wild-type flies can shed light on the 

differences in sleep with and without circadian rhythms. 

Many previous studies did not address short-term dependencies in the sleep and wake bouts.   

Those that did found varied results, but many did indicate a negative relationship between past 

wake and current sleep bouts.  The previous sleep bout was not considered in previous studies.  

Using the threshold Weibull model, we also found a negative relationship between past wake and 

current sleep bouts as well as a positive relationship between past sleep and current sleep bouts.  

These results were most consistent with the female flies, with male flies exhibiting more varied 

results.  In the females, we found that the direction of the relationship (positive for past sleep and 

negative for past wake) held for up to 10 previous bouts.  Although it may be ideal to include all 

flies in one model that accounts for correlation between bouts belonging to the same fly, it is 

computationally challenging to estimate the variance-covariance matrix of such a model.  In 

addition, by obtaining individual parameter estimates for each fly we can investigate how these 
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differences in these values relate to physical outcomes such as longevity and learning ability in 

future experiments.   

Although our proposed model provides important information about short-term dependencies, 

long term dependencies should also be considered to better understand the sleep history.  

Specifically, although the nature of the relationships we observe indicate that the shorter the past 

wake bout and longer the past sleep bout the longer the current sleep bout, the direction of these 

relationships is unlikely to continue in the long term.  These results along with other preliminary 

data we have analyzed are indicative of longer periods of wake and sleep that are briefly 

interrupted by the other state.  We are investigating  alternative models such as time series or 

regime switching models to study the long term behavior of the sleep-wake cycles. 
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