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Comparing Functional Data Analysis and Hysteresis Loops when Testing Treatments for 
Reducing Heat Stress in Dairy Cows 

S. Maynes1, A. M. Parkhurst1, J. B. Gaughan2, T. L. Mader3 

1Department of Statistics, University of Nebraska – Lincoln 
2School of Animal Studies, The University of Queensland, Gatton, Australia 

3Department of Animal Science, University of Nebraska – Lincoln 
Abstract 

Various techniques are commonly used to reduce heat stress, including sprayers and misters, shading, and 
changes in feed. Oftentimes studies are performed where researchers do not control the times when 
animals use shading or other means available to reduce heat stress, making it hard to test differences 
between treatments. Two methods are used on data from a study where Holstein cows were given free 
access to weight activated “cow showers.” Functional data analysis can be used to model body 
temperature as a function of time and environmental variables such as the Heat Load Index. Differences 
between treatment groups can be tested using a Functional Bayesian MCMC model.  Alternatively 
hysteresis loops, such as the ellipse, formed by a plot of air temperature or the Heat Load Index against 
body temperature over the course of a day can be estimated and their parameters used to test differences 
between cows with access to showers and cows without. Results from an R package hysteresis, which 
can estimate these loops and their parameters are illustrated. Functional data analysis allows for looser 
assumptions regarding the body temperature curve and the ability to look for differences between groups 
at specific time points, while hysteresis loops give the ability to look at heat stress over the course of a 
day holistically in terms of parameters such as amplitude, lag, internal heat load and central values. 

 
Key words:  Thermo-regulatory response, Heat Stress, Energy dissipation, Farm animals. 
 

1. Introduction 

Average yearly monetary losses due to heat stress in dairy cattle have been estimated at $897 million in 
the US alone (St-Pierre et al., 2003). Academic research on this topic is fairly intensive and includes work 
on the efficacy of using genetics (Howard et al., 2013), diet (Mader et al., 2002), shading (Brown-Brandl 
et al., 2005), air conditioning, fans, sprinklers, misters (Hillman et al., 2005), or even weight activated 
cow showers (Legrand et al., 2011, Maynes and Parkhurst, 2012) along with other techniques for 
reducing heat stress. A Google scholar search for the term “heat stress cattle” gives about 110,000 results. 
Generally, either body temperature (Tb) or panting/breathing rate is used to estimate heat stress (Gaughan 
et al., 2008). Internal Tb offers a more sensitive measure of heat stress, but it is harder to obtain and 
model due to the need for internal Tb loggers and the presence of hysteresis, which is the dependence of 
Tb on both the animal’s past and current environment. Often the methods used to model Tb are 
suboptimal in that they fail to fully account for this hysteresis, or for other equally important parts of the 
model such as the environmental heat load and random variation due to cow. Of the first ten results in 
Google scholar for the term “heat stress cattle body temperature logger” for papers that look at internal Tb 
(Mitlöhner et al., 2001, Mader et al., 2002, Davis et al., 2003, Brown-Brandl et al., 2005, Hillman et al., 
2005, Beatty et al., 2006, Gaughan et al., 2008, Tucker et al., 2008, Dikmen and Hansen, 2009, Schütz et 
al., 2009), only one paper attempts to model Tb as a time dependent process without having to resort to 
using hour as a categorical variable (Gaughan et al., 2008). 

Two possible methods for modeling Tb explored in this paper are to use either functional data analysis or 
a sinusoidal hysteretic model. Functional data analysis (FDA) allows for the use of b-spline or Fourier 
basis functions that can model body temperature more accurately, but the sinusoidal hysteretic model 
provides holistic measures of heat stress over the course of a day that may be more informative. A study 
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that gave Holstein cattle unlimited access to weight activated “cow showers” will be used to illustrate the 
ability of these two techniques to effectively measure the differences between treatment and control cows. 

2. Experimental Design 

The study (Legrand A. et al., 2011) used 24 Holstein cows. Twelve cows had unlimited access to weight 
activated “cow showers” that could be used at any time of day, while 12 control cows were not given 
access to showers. Four cows were tested at a time in four separate pens, two of which were outfitted with 
cow showers. Six trials of 5 consecutive days were held over the course of the summer. For each trial, 2 
cows had access to showers; 2 did not. Each of the 4 pens had a shaded area and an unshaded area; water 
troughs for all 4 pens were shaded while showers were unshaded. 

Table 1. Pen Design for a Single Trial. The water trough was inside the barn while showers and the feed bunk were 
located outside. (Legrand et al., 2011, Maynes and Parkhurst 2012) 

South-most Pen 1 Pen 2 Pen 3 North-most Pen 4 
Barn 

 
 
 

Water Trough Shared Water Trough Water Trough 
Outside Area 

  
  
  

Control Shower Control Shower 
Feed Bunk 

  
  
  

 

Internal Tb for each cow was measured every 5 minutes with a temperature logger inserted into the 
vaginal cavity. Environmental measures such as air temperature (Ta), black globe temperature, humidity, 
wind speed and wind direction were measured every 5 to 10 minutes. The environmental data was used to 
compute two separate heat indices; the Temperature-Humidity Index (THI) and the Heat Load Index 
(HLI) reported in Igono, M. et al. (1992),and Gaughan, J.B. et al. (2008) respectively. 

Table 2. Components and Formulas for Heat Indices 

Heat Index Components Formula 

Temperature-Humidity 
Index (THI) 

Ta, Relative 
Humidity(RH) 

(1.8 × Ta + 32) – [(0.55 – 0.0055 × RH) × (1.8 
× Ta – 26)] 

Heat Load Index (HLI) Black Globe Temperature 
(BGT), Wind Speed(WS), 
Relative Humidity(RH) 

IF BGT >25, 8.62 + (0.38 × RH)+ (1.55 × 
BGT) + exp(−WS + 2.4) – 0.5 × WS 

Else, 10.66 + (0.28 × RH) + (1.3 × BGT) 
– WS] 

 

 

3. Models 

The Tb data is sorted by cow(24) and day(5) into 120 separate cow-day curves and standardized for both 
the FDA and elliptical hysteresis models. The FDA model is then fit using b-splines of order 6 with 14 
knots in the R package FDA (Ramsay et al., 2013). A roughness penalty of 0.5 is placed on the second 
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derivative to avoid overfitting.  A functional Bayesian MCMC model, as described by Crainiceanu and 
Goldsmith (2010), is then used to model these b-spline curves in a way that accounts for random effects 
due to cow and day. Before a functional Bayesian MCMC model can be fit however, the b-spline curves 
must first be split into their functional principal components, which are conceptually similar to traditional 
principal components. The eigenfunctions, similar to eigenvectors, are the series of orthogonal curves that 
explain the largest portion of the variation among Tb curves. Once these are obtained, the functional 
Bayesian MCMC model fits the curve 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + ∑ 𝐿𝐿𝑘𝑘(𝑡𝑡)𝑓𝑓𝑖𝑖,𝑘𝑘𝐾𝐾
𝑘𝑘=1 +𝑒𝑒𝑖𝑖(𝑡𝑡)   

where 𝑦𝑦𝑖𝑖(𝑡𝑡) is Tb for cow*day i at time t, 𝜇𝜇(𝑡𝑡) is the mean Tb curve, 𝑒𝑒𝑖𝑖(𝑡𝑡) is a normally distributed 
residual variation term. The 𝐿𝐿𝑘𝑘(𝑡𝑡) are eigenfunctions, where k marks the eigenfunction in question, 
obtained from separating the Tb b-spline curves into their functional principal components, and the 𝑓𝑓𝑖𝑖,𝑘𝑘  
are random coefficients on the eigenfunctions given a T distribution of the form 

𝑓𝑓𝑖𝑖,𝑘𝑘~T(𝑓𝑓�̅�𝑖,𝑘𝑘 ,𝜎𝜎𝑘𝑘 ,𝑑𝑑𝑓𝑓𝑘𝑘)  

where 𝑓𝑓�̅�𝑖,𝑘𝑘  is the expected value of 𝑓𝑓𝑖𝑖,𝑘𝑘 , 𝜎𝜎𝑘𝑘  is the standard deviation for eigenfunction k, and 𝑑𝑑𝑓𝑓𝑘𝑘 is the 
degree of freedom parameter for eigenfunction k. The T distribution is used instead of the normal 
distribution as certain curves are clear outliers which would not be accounted for by the normal 
distribution. The 𝑓𝑓�̅�𝑖,𝑘𝑘  are calculated as 

  𝑓𝑓�̅�𝑖,𝑘𝑘 = 𝜏𝜏𝑘𝑘 + 𝜏𝜏𝐻𝐻,𝑘𝑘 ∗ 𝐻𝐻(1)𝑖𝑖 + ∑ �𝐻𝐻(𝑗𝑗)𝑖𝑖 ∗ 𝑏𝑏𝑗𝑗 ,𝑘𝑘�3
𝑗𝑗=1 + 𝑐𝑐𝑖𝑖,𝑘𝑘 + 𝑑𝑑𝑖𝑖 ,𝑘𝑘    

where 𝜏𝜏𝑘𝑘  is the shower access effect, the 𝐻𝐻(𝑗𝑗)𝑖𝑖  are functional principal component scores on the Heat 
Load Index (HLI), 𝜏𝜏𝐻𝐻,𝑘𝑘  is the interaction effect between the first HLI principal component and shower 
access, the 𝑏𝑏𝑗𝑗 ,𝑘𝑘  are coefficients on the HLI functional principal components, 𝑐𝑐𝑖𝑖,𝑘𝑘  is the normally 
distributed random effect on cow and 𝑑𝑑𝑖𝑖 ,𝑘𝑘  is the normally distributed random effect on day. This model is 
fit with the R package rstan (Stan: A C++ Library for Probability and Sampling, Version 1.3, 2013). The 
following priors are used 

Table 3. Priors for FDA Bayesian MCMC Model  (Eq 1- 3).  

Parameter Prior 
𝑒𝑒𝑖𝑖(𝑡𝑡) standard deviation Γ(1,2) 
𝑐𝑐𝑖𝑖 ,𝑘𝑘  standard deviation Γ(1,2) 
𝑑𝑑𝑖𝑖 ,𝑘𝑘  standard deviation Γ(1,2) 
𝜎𝜎𝑘𝑘  Γ(1,2) 
𝜏𝜏𝑘𝑘  N(0,1) 
𝜏𝜏𝐻𝐻,𝑘𝑘  N(0,1) 
𝑏𝑏𝑗𝑗 ,𝑘𝑘  N(0,1) 
𝑑𝑑𝑓𝑓𝑘𝑘  Unif(1,100) 
 

The sinusoidal hysteretic model is fit using the R package hysteresis, developed by (Maynes et al., 2013). 
The input variable Ta and the output variable Tb together form an ellipse from which three parameters 
calculated by the hysteresis package, cy, ampy, and lag, are calculated.  These parameters represent the 
mean value of Tb, the amplitude of Tb and the delay between Ta and Tb. The ellipses are estimated using 
the ‘harmonic2’ method and circular block bootstrapping is used to account for residual autocorrelation 
(Politis and Romano, 1991) and to obtain standard errors for derived parameters such as ampy and lag 
(Politis and Romano, 1991, Yang and Parkhurst, 2011). A multivariate Bayesian MCMC model is then 

Eq. 1 

Eq. 2 

Eq. 3 

Eq  4 
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used to measure the effect of allowing shower access on these parameters, and their responsiveness to the 
HLI. The Bayesian MCMC model is used instead of a traditional multivariate linear model as it is better 
able to handle the information about measurement error obtained when estimating the ellipse. This model 
is 

𝑌𝑌𝑖𝑖𝑗𝑗 = 𝑁𝑁(𝑌𝑌�𝑖𝑖 ,𝑗𝑗 ,𝛴𝛴𝑖𝑖,𝑗𝑗 )  

𝑌𝑌�𝑖𝑖 ,𝑗𝑗 = 𝜇𝜇 + 𝜏𝜏𝑖𝑖 + ℎ𝐻𝐻𝑗𝑗 + 𝜏𝜏ℎ𝑖𝑖𝐻𝐻𝑗𝑗 + 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑗𝑗   

𝛴𝛴𝑖𝑖 ,𝑗𝑗 =diag(𝐵𝐵 ∗ 𝜎𝜎�𝑖𝑖,𝑗𝑗 + 𝐴𝐴) 𝛤𝛤 diag(𝐵𝐵 ∗ 𝜎𝜎�𝑖𝑖,𝑗𝑗 + 𝐴𝐴)  

where 𝑌𝑌𝑖𝑖𝑗𝑗  is the vector of cy, ampy, and lag for every cow i and day j, 𝑌𝑌�𝑖𝑖,𝑗𝑗  is the expected value of 𝑌𝑌𝑖𝑖𝑗𝑗  and 
𝛴𝛴𝑖𝑖 ,𝑗𝑗  is the variance matrix. The vector 𝑌𝑌�𝑖𝑖,𝑗𝑗  is based on the vector of means 𝜇𝜇, the treatment effects 𝜏𝜏𝑖𝑖 , the 
HLI coefficients ℎ, the mean HLI over the course of the day 𝐻𝐻𝑗𝑗 , the treatment HLI interactions 𝜏𝜏ℎ𝑖𝑖 , and 
the multivariate normal distributed cow and day random effects 𝑐𝑐𝑖𝑖  and 𝑑𝑑𝑗𝑗 . The variance matrix 𝛴𝛴𝑖𝑖 ,𝑗𝑗  is 
based on the vector of parameter measurement standard deviations based on bootstrapping 𝜎𝜎�𝑖𝑖,𝑗𝑗 , its 
coefficient vector 𝐵𝐵, and the vector of model based standard deviations 𝐴𝐴. Priors are given in Table 4. 

Table 4. Priors for Elliptical Hysteresis Model, (Eq 4-6) 

Parameter Prior 
𝜇𝜇 N(0,100) 
𝜏𝜏𝑖𝑖  N(0,10) 
ℎ N(0,10) 
𝜏𝜏ℎ𝑖𝑖  N(0,10) 
𝑐𝑐𝑖𝑖  MVN(0,σc,ρc) 
𝑑𝑑𝑗𝑗  MVN(0,σd,ρd) 
σc Unif(0,100) 
σd Unif(0,100) 
ρc A 3x3 matrix of β(2,2)*2-1 correlation coefficients and a diagonal of ones. 
ρd A 3x3 matrix of β(2,2)*2-1 correlation coefficients and a diagonal of ones. 
𝐵𝐵 Inverse Γ(3,3) 
𝐴𝐴 Unif(0,100) 
𝛤𝛤 A 3x3 matrix of β(2,2)*2-1 correlation coefficients and a diagonal of ones. 
 

This data has been studied before using elliptical hysteresis in Maynes and Parkhurst (2012). The major 
improvements in this paper are in the use of circular block bootstrapping and the substitution of a 
multivariate model regressing on ampy, cy, and lag instead of one regressing only on the area of the 
interior of the ellipse. This multivariate model explains more about how cows experience heat stress over 
the course of a day. 

4. Results 

The Tb data was standardized using the mean Tb for all 120 cows (38.9o C ) with a standard deviation of 
0.40o C among all observations. Figure 1 shows the b-spline curves fit to Tb for all 120 day by cow 
combinations with mean curves for cows with and without shower access superimposed. Control cows are 
distinguished by having a higher maximum around 8 p.m. and lower minimum around 8 a.m., and below 
we will show that both of these differences are statistically significant. A number of curves appear to be 

Eq. 5 

Eq. 6 
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outliers, necessitating the use of the T distribution to describe variation between curves. The two red 
outliers belong to the control group while the two purple outliers belong to the shower group. 

 

 

Figure 2 shows the first 4 functional principal components. They explain 94% of the variation in these 
curves. The first principal component, which explains 59% of the variation in the curves, can be described 
as the magnitude of Tb experienced by a cow, while the second principal component can be characterized 
as lag since the positive harmonic follows behind the mean curve, and the third as amplitude because the 
positive harmonic has a higher maximum and lower minimum than the mean curve. It is difficult to 
produce a description for the quadratic functional principal component. 

 

 

 

 

FIgure 1. Single Day B-splines for Tb (n=120), with Control and Shower means superimposed. Tb is 
standardized to have a mean of 0 and a standard deviation of 1. Non standardized mean is 38.9o C, 
standard deviation is 0.4o C. 
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Additionaly the HLI curves are also split into their principal components, and the first 3  which explain 
92% of the variation in HLI are used in the FDA model. The first HLI functional principal component, 
which is shown in figure 3 and used in the HLI treatment interaction, (eq. 3) is quite similar to the first Tb 
functional principal component and explains 69% of the variation in the HLI. 

Figure 3. First HLI principal component. Center line is mean Tb curve, the darker dotted line is one harmonic above 
the mean and the lighter dotted line is one harmonic below the mean. 

 

The effect of this first HLI principal component on Tb (see Eq. 1,2,3) is shown in Figure 4 below with a 
95% credible interval at each time point. Higher HLI leads to greater Tb between the hours of 2 p.m. and 
10 p.m. (0 time on the plot is 10 a.m.) but does not lead to increased Tb elsewhere. The maximum at this 
time is approximately 0.2 Tb standard deviations. As one standard deviation in Tb is 0.4o C, this is a 0.08o 
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Figure 2. First 4 Principal Components for Tb. Center line is mean Tb curve, the darker dotted line is one 
harmonic above the mean and the lighter dotted line is one harmonic below the mean. Principal components 
cross the mean line k-1 times, where k is the number of the principal component. 
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C increase. However, HLI varied little from day to day over the course of this experiment, so this small 
effect size is more a reflection of the size of the HLI principal component standard deviation than of the 
strength of the HLI/Tb relationship. Average daily HLI had a standard deviation of 5.5 over the course of 
the experiment, which is small in comparison to the within day mean standard deviation of 19.5.  

Figure 4. Effect of 1 Standard Deviation Increase in HLI PC1 on Tb Over the Course of a Day with 95% Credible 
Interval 

 

Expected control and shower curves (Eq. 1,2,3) at the mean level of the first HLI functional principal 
component are shown in Figure 5. These look similar to the original mean curves in Figure 1. Cows with 
access to a shower exhibit lower Tb between the hours of 4-9 p.m. and higher Tb from 5-10 a.m.  The 
decrease in Tb when it is at its highest level is about 0.5 s.d. or 0.2o C while the increase when it is at its 
lowest level is about 0.25 s.d. or 0.1o C. Overall the mean curve for cows with access to a shower appears 
to be less symmetric than that for control cows, as cows with access to a shower are slower reaching their 
maximum. 

Figure 5. Expected Tb Curves for Control and Shower Cows at Mean HLI. 

 

The effect of allowing shower access on Tb over the course of the day, which is the difference between 
the two lines in Figure 5, is shown in Figure 6 along with a 95% credible interval at each point in time. 
Allowing access to a shower leads to lower Tb around 8 p.m. and higher Tb around 6 a.m., with 
probability higher than 97.5% at both times as given by the 95% credible intervals in Figure 6. 
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Figure 6. Effect of Showering on Tb with 95% Credible Intervals. 

 

The shower access HLI interaction effect shown in Figure 7 is negative between the hours of 4-9 p.m. and 
positive between the hours of 2-7 a.m. The maximum decrease in Tb is approximately 0.08o C and the 
maximum increase is approximately 0.04o C. 

Figure 7. Interaction of Shower Access and HLI on Tb with 95% Credible Intervals. 

 

The table below provides mean posterior estimates on random effect parameters. Some important things 
to note are that while the second and third Tb functional principal components appear to be normally 
distributed with high values for the degrees of freedom parameter, the first and fourth principal 
components seem to have an almost Cauchy distribution, which shows the importance of using the T 
distribution to represent the observational variation in these principal components. Additionally most of 
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the variation in the first and second principal components is between cows while most of the variation in 
the third and fourth principal components is between days. The posterior mean for the standard deviation 
of the residual is 0.25. 

Table 5. Posterior Estimates on Tb Functional Principal Components, k=1-4. See Eq. 1,2,3. 

Parameter 1st FPC  Estimate 2nd FPC Estimate 3rd FPC Estimate 4th FPC  Estimate 
𝑑𝑑𝑓𝑓𝑘𝑘  3.5 28 48 1.6 
𝜎𝜎𝑘𝑘  0.61 0.45 0.30 0.09 

𝑐𝑐𝑖𝑖 ,𝑘𝑘  standard 
deviation 

1.1 0.80 0.37 0.26 

𝑑𝑑𝑖𝑖 ,𝑘𝑘  standard 
deviation 

0.50 0.50 0.50 0.50 

 

In addition two additional models were tried by replacing HLI in the model with either Ta or THI. The 
first 3 functional principal components explain 96-97% of the variation for the Ta and THI indices, so by 
replacing HLI in the model with THI or Ta a comparison can be made between the effectiveness of these 
indices in predicting heat stress. Both THI and Ta are far less effective in predicting Tb than is HLI. Table 
6 below shows a measure of fit, -2*log(probability) for all of these models, which is equivalent to the AIC 
or BIC without a degrees of freedom adjustment, as all three models have the same number of parameters. 
The model using HLI performs far better than the others, and this difference is not only statistically 
significant when looking at numerical measures of overall fit but can also be seen in Figure 8 with the 
credible interval for the effect of the first HLI functional principal component smaller in comparison to 
those for Ta and THI. 

Table 6. Fit for FDA Models with Various Heat Indices. 

Heat Index Measure of Fit = -2*log(Probability) 
Air Temperature -3411 
Temperature-Humidity Index (THI) -3415 

Heat Load Index (HLI) -5240 
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Figure 9 shows the 20 fitted ellipses from the 4th trial. Some days are clearly fit better than others, 
necessitating the use of bootstrap standard deviations in the Bayesian MCMC model. Despite the fact that 
the previous analysis showed the superiority of HLI in comparison to Ta for the prediction of Tb, Ta is 
still used as the input for fitting these ellipses as it is more easily described as sinusoidal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Effect of 1 Standard Deviation Increase in Heat Indices with 95% Credible Intervals. The HLI 
offers far more predictive power. 
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Figure 9. Fitted and Bootstrapped Ellipses for the Ta/Tb Relationship from Trial 4. The first number is day while 
the second is cow. 

 

The model described in equations 4-6 is then fit. Figure 10 below shows posterior means and 90% 
credible intervals for the effects of the HLI, allowing shower access, and the shower HLI interaction on 
the ellipse parameters cy, ampy, and lag. 
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Figure 10. Posterior Distributions with 90% Credible Intervals for the effects of HLI, allowing access to a shower, 
and the shower HLI interaction on Tb mean (cy), Tb amplitude (ampy) and lag. 

 

One standard deviation increase in HLI increases the amplitude of the sinusoidal Tb curve while also 
increasing the central value of Tb, and decreasing the lag between Ta and Tb. Allowing access to a 
shower at the mean level of HLI decreases amplitude while increasing lag, and has no apparent effect on 
cy. As HLI increases the showering effect becomes stronger, as amplitude continues to decrease while the 
lag continues to increase.  Table 7 provides posterior means, standard errors, and the probability that an 
effect is greater than zero for the model parameters shown in Figure 10. 
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Table 7. The effects of HLI, allowing access to a shower, and the shower HLI interaction on cy, ampy and lag. Also 
includes standard errors and the probability that an effect is greater than zero. 

cy 

Parameter Posterior Mean Standard Error P(x > 0) 
HLI 0.20 0.09 0.98 
Interaction -0.03 0.05 0.28 
Shower Access -0.07 0.14 0.30 
ampy 

Parameter Posterior Mean Standard Error P(x > 0) 
HLI 0.24 0.07 0.9998 
Interaction -0.10 0.04 0.007 
Shower Access -0.29 0.13 0.012 
lag 

Parameter Posterior Mean Standard Error P(x > 0) 
HLI -0.74 0.21 0.0003 
Interaction 0.32 0.11 0.998 
Shower Access 0.78 0.42 0.97 
 

Distributions for the standard deviations of random effects on cow, day, and observation can be 
seen in Figure 11. Most of the variation in ellipse parameters appears to be due to cow, not day 
or observation. This is not surprising as some of the variation between days was already taken 
into account with the HLI variable. 

Figure 11. Posterior Distributions with 90% Credible Errors for the Standard Deviations on the Cow, Day, and 
Observational normally distributed error terms. 

 

Figure 12 below shows the posterior distributions for the coefficients on bootstrap standard error 
parameters. These distributions are centered at 1, which provides weak evidence that the 
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bootstrap standard errors correctly account for the ellipse parameter measurement error in the 
model. 

Figure 12. Posterior Distributions with 90% Credible Intervals for the Coefficient on the Bootstrap Standard Error 
in the Residual Standard Error Model. 

 

The residual correlation plots in Figure 13 suggest that ampy and cy are positively correlated 
while ampy and lag are negatively correlated. This holds for the random effects on day, the 
random effects on cow, and the residuals on individual observations. 

Figure 13. Residual Correlations Between mean Tb (cy), amplitude (ampy) and lag. The correlations between these 
parameters are similar for the cow and day random effects along with the observational residuals. 

 

5. Conclusion 

Functional data analysis can be used to measure heat stress in animals at specific times of day while 
hysteresis loop analysis provides estimates of heat stress that summarize changes in body temperature 
over the course of one day. When applied to the data from Legrand A. et al., 2011, functional data 
analysis shows that allowing free access to a weight activated cow shower decreases body temperature 
during the afternoon between 4 and 9 p.m. while increasing body temperature mid-morning between 5 
and 8 a.m. at the mean level of the HLI in this study. As the HLI increases, the difference between cows 
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with and without access to showers also increases in a statistically significant manner in the afternoon and 
midmorning. In this study, the HLI shows a far greater ability to predict changes in body temperature due 
to the environmental heat load than alternative measures such as Ta or the THI. The higher body 
temperature experienced by cows with access to showers, or on days with lower mean HLI, in the early 
morning is similar to results found in other studies such as Lefcourt, 1996. These results indicate it is 
important to measure heat stress over the course of a full day, and not just during those hours when the 
heat challenge is strongest, as effects on body temperature many hours later can be significant and 
counterintuitive. 

Hysteresis loops formed by plotting air temperature against body temperature over the course of one day 
can be used to determine whether the differences between control and shower cows are due to changes in 
mean body temperature, the amplitude of body temperature or an increase in the time lag between air and 
body temperatures. There is strong evidence that allowing access to a shower increases the lag between 
Ta and Tb, and that it decreases the amplitude or range of the Tb curve. However it is difficult to detect a 
decrease in mean Tb due to allowing access to a shower. A higher mean value of the HLI over the course 
of a day leads to an increase in mean body temperature (cy) along with a decreased lag between Ta and 
Tb and an increase in the amplitude Tb. Both the increase in lag and the decrease in amplitude are greater 
with shower access at higher levels of HLI. Allowing access to a shower appears to be an effective 
method for reducing heat stress. 

Both the FDA model and the elliptical hysteresis model are able to find statistically significant effects of 
allowing shower use on Tb in this study. Whereas FDA can be used to find differences in Tb between 
groups at specific times of day, elliptical hysteresis provides parameter estimates that act as daily 
summaries. Both methods provide measures that provide important information for studying heat stress. 
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