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Statistical Considerations when using Hysteresis to Estimate Internal Heat 
Load in Dairy Cows 

 
S. Maynes and A. M. Parkhurst 

Department of Statistics, University of Nebraska – Lincoln 
 

Abstract 
 
Water is often used to manage heat stress in dairy cattle. Sprinklers are often placed over the feed 

bunk or used while cattle are waiting to be milked, however in this experiment cattle were given 

control over water with a cow-activated shower. Previous studies have focused on how wetting 

can lower body temperature or reduce respiration rates. An alternative way to investigate this 

management practice is to examine internal heat loads. Internal heat load can be quantified by 

fitting a hysteresis loop to daily field data. The hysteresis loop is formed by a phase diagram of 

body temperature versus an environmental input.  Internal heat load is the area inside the loop. 

The area can be estimated using a number of environmental measures. In this paper three 

environmental measures are considered: ambientair temperature, the temperature-humidity index 

and the heat-load index. The two stage harmonic least squares methodis used to estimate internal 

heat load. Then a Bayesian MCMC model is used to predict internal heat load using the 

environmental inputs and test the effectiveness of allowing shower access on internal heat load 

reduction. Voluntary use of a shower reduces internal heat load and the strength of this effect 

increases with the degree of the heat challenge.  

Keywords: Bayesian analysis, Energy dissipation, Farm animals, Heat Stress, Thermo-regulatory 
response.  
 

 
1. Introduction 
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Numerous studies have found that heat stress in dairy cows can lead to problems ranging in 

severity from reduced milk production (Armstrong, D.V., 1994) to death  (Hahn, G.L., 1989; 

Hahn, G.L. and Mader, T.L., 1997; Hubbard, K.G. et al., 1999) or issues with growth and 

reproduction (Forbes, J.M., 2007), (Fuquay, J.W., 1981), (Liu, F. et al., 2009). Most of these 

studies have focused on usingbody temperature (Tb) or panting levels as measures of heat stress. 

Elevated levels of Tb can signal problems for animals whose multitude of bodily functions 

depend on a stable Tb, but Tbis rarely the whole story as it does not capture the work done to 

maintain a stable Tb. As one of a variety of cooling mechanisms that cattle employ, respiration 

rate is often used as a proxy for the energy that an animal is expendingto lower Tb, and it is a 

sensitive measure because it has considerable variability. (Hahn, G.L., A.M. Parkhurst, J.B. 

Gaughan, 1997) Internal heat load, however, is an alternative measure of heat stress that 

effectively reflects both energy use and other characteristics of heat tolerance. 

 

The Tb displays hysteresisduring a heat challenge, sinceTb is dependent on the history of the 

system. Air temperature (Ta) is periodic and sinusoidal in nature and Tb is bivalued at a 

particular value of Ta. The same value of Ta can produce two possible values of Tb depending on 

its first derivative; a higher value of Tb when Ta is decreasing and a lower value of Tb when Ta is 

increasing. This is due to a lag in Tb response to changes in Ta. When the input, Ta, acts as a 

sinusoidal forcing function this system forms an elliptical hysteresis loop, whose area is an 

indication of energy transfer, referred to as internal heat load in the context of this study. 

Calculating the area of a hysteresis loop is an important topic in physics and other scientific 

branches as area is sometimes equal to the work done during a cycle (Brokate, M. and Sprekels, 
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J., 1996). The major benefit of internal heat load as a measure of heat stress is that it represents 

both absolute Tb and the effort put into reducing changes in Tb. The elliptical model also 

provides for the characterization of other dynamics occurring during the heat challenge. The 

modelhas five fundamental parameters and three other derived parameters in addition to internal 

heat load (lag,retention, and coercion) to be discussed below.  

 

Yang and Parkhurst(2011)compared three parametric ellipse fitting methods, linear least squares, 

non-linear ellipse-specific least squares, and two stage simple harmonic least squares 

(harmonic2). They found that bootstrapped estimates reduced bias for all three methods and that 

the harmonic2 area estimates had the best coverage probability and least bias. However, their 

study focused on climate controlled experimental data while this study focuses on data collected 

in conditions with natural variation in weather. In an uncontrolled thermal challenge, the 

influence of the forcing function and the harmonics of the input are tempered by competing 

environmental effects, hence, robustness to deviations from the ellipse model is an important 

issue. 

 

The major focus of this paper is on usinginternal heat load estimates to testthe effectiveness of 

management strategies designed to reduce heat stress. Using water on cows is a commonly used 

technique to manage heat stress. Of U.S. dairies with over 500 cows, 62% use sprinklers or 

misters for heat abatement (USDA, 2010). Sprinklers are often placed over the feed bunk or used 

while cattle are waiting to be milked, giving them little choice over when to use this resource. In 

this experiment, cattle were given control over water with a cow-activated shower in order to 
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better understand how they would voluntarily use this resource. The specific objectives of this 

study are to: evaluate the usefulness of the elliptical model in fitting environmental data, assess 

the effect of the availability of showering on internal heat load, and determine whether the effect 

of the cow shower is dependent on the level of the heat challenge. If the shower treatment effect 

is significantly lower, there will be positive evidence for both the voluntary water use to reduce 

internal heat load and the ability of internal heat load estimates to test for treatment differences in 

future experiments where the environment is recorded but not regulated. 

 

 

2. Materials and Methods 
 
2.1. Experimental Design and Data 

 
Data for this study comes from an experiment conducted by Legrand,A. et al. (2008) at UC-

Davis to describe how and when dairy cattle voluntarily used an overhead water source and how 

use of this water affected behavioral and physiological indicators of heat stress. During the 

experiment, 12 cows had unlimited access to a weight activated shower while another control 

group of 12 cows were not given access to showers.Each trial was conducted for 5 days and a 

total of 6 trials were run during the summer months. For each trial, 4of the 24 cows were placed 

in separate pens.Half of the pens had showers which remained fixed-in-placeforming a split plot 

in time for each trial - without an error term for the whole plot (shower) error within trials. After 

5 days all 4 cows were replaced with a new trial group of 4 cows that were given several days to 

become adjusted to their environment before the experiment recommenced. Internal Tb was 

measured every 5 minutes using a temperature logger inserted into the vaginal cavity. TheTawas 
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measured every 5 to 10 minutes, and other environmental variables such as black globe 

temperature, humidity, wind speed, and wind direction were measured at the same time. Only 

half of each pen was covered from the elements. The showers were located in the uncovered 

portion 6m from the feed bunk. Cows could access the shower from all 4 sides. 

 
Table 1.Pen Design for aSingle Trial.The water trough was inside the barn while showers and the 
feed bunk were located outside. 
South-most Pen 1 Pen 2 Pen 3 North-most Pen 4 

Barn 

 

 

 

Water Trough Shared Water Trough Water Trough 
Outside Area 

  

  

  

Control Shower Control Shower 
Feed Bunk 

  

  

  

 

Two heat indices were calclulated from the environmental data: the thermal heat index (THI) and 

the Heat Load Index (HLI) reported in Igono, M. et al. (1992),and Gaughan, J.B. et al. 

(2008)respectively. These indices are alternative ways to quantify the size of the heat challenge 

in addition  to Ta. 

 
Table 2: Components and Formulas for Heat Indices 
Heat Index Components Formula 
Thermal Heat Index 
(THI) 

Ta, Relative 
Humidity(RH) 

(1.8 × T + 32) – [(0.55 – 0.0055 × RH) × 
(1.8 × T – 26)] 

Heat Load Index (HLI) Black Globe 
Temperature (BGT), 
Wind Speed(WS), 
Relative Humidity(RH) 

IFBGT >25, 8.62 + (0.38 × RH)+ (1.55 × 
BGT) + exp(−WS + 2.4) – 0.5 × WS 

Else, 10.66 + (0.28 × RH) + (1.3 × BGT) 
– WS] 

 

2.2.Models 

2.2.a. Two-Stage Simple Harmonic Least Squares 
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C sin( )ab lag=

The two-stage simple harmonic least squares method based on the work of Lapshin (1995) is 

used to model elliptical hysteresis. The input Ta and output Tb are estimatedconsecutively. 

( ) cos(2 )
( ) cos(2 ) sin(2 )

a a a a a

b b a a b b

T t b t c
T t b t a t c

πω φ ε
πω φ πω φ ε

+ + +   
=   + − + + +   

 (eq1) 

In the two-stage simple harmonic least squares method (eq1), five fundamental parameters, the 

center coordinates (ca, cb), saturation points (ba, bb), and retention (a) along with three derived 

parameters area, lag, and coercion(C) can be estimated, Figure 1.The phase angle of the input is 

ϕa, time is t, and the frequency, ω, is the reciprocal of the  period. (Yang F.,Parkhurst A.M., 

2011).The saturation point occurs where Ta reaches its highest value. Retentiona, is perhaps the 

most clinically important ellipse parameter with the exception of internal heat load.Retention is 

defined as the amount of heat left in the body after a heat challenge has receded to its mean. It 

isthe length of the Tb axis from the centroid to the point where it intersects with the perimeter of 

the ellipse. If there is no hysteresis, retention equals 0. The derived parameter, area can then be 

calculated as 

aarea abπ=                                                                  (eq2) 

In addition, two other derived parameter, lag and coercion C, are calculatedas 

(eq3) 

(eq4) 

 
 
 
 
 
 
 
 

arctan( / )blag a b=
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Figure 1.Ellipse Parameters. Coercion is the distance from the center to point 1, the saturation 
point is at 2, and retention is the distance from the center to point 3. Internal heat load is the area 
within the ellipse and lag is the time it takes to get from point 2 to the maximum value of Tb.Ta 
and Tb are ambient temperature and body temperature. 

 

After the initial parameter estimates  are made,Ta and Tb residuals are collected and used to 

bootstrap the harmonic2 ellipse estimates. Harmonic2 ellipses with bootstrapping were used in 

this study since the bootstrapped parameter estimates with a bias adjustment are more accurate 

than the orginal estimates and bootstrapping leads to an estimate of the standard error for 

area(Yang F., Parkhurst A.M., 2011).A total of 120 ellipses were fit for each combination of the 4 

pens, 5 days and 6 trials. 
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(eq5b) 

2.2.b. Linear Mixed Effects Models 

Linear mixed effect models are fit separately tothe 4thtrial and the full data set.First 4 models for 

trial 4 are considered. As later tests showed that trial 4 results are somewhat extraordinary among 

the 6 trials these single trial models should not be considered representative. The first model, 

(eq5a), considers day a random effect with a treatment interaction. 

 

Areaijk=µ+b1*treatmenti+random(day)+b3*treatmenti*random(day)+random(cow)j+eijk 

 

Where µ is the overall mean, treatmenti is the ith treatment level of the dummy variable 

representing shower access and both day andcow are normally distributed random effects.Theεijk 

are i.i.d.N(0,σ2).The next modification, (eq5b), checks for the interaction between treatment and 

day.  In this model, day is considered to have both a fixed and random component, 

 

Areaijk=µ+b1*treatmenti+b2*treatmenti*dayj+random(day)+random(cow)j+eij 

 

The next modification, (eq5c), further reduces the model by focusing on the multiplicative 

effects of treatment and day by removing the fixed effect for treatment and the random 

component for day. 

Areaijk=µ+b1*treatmenti*dayj+random(cow)j+eijk 

 

The final modification, (eq5d) checks for additive effects of treatment and day. 

 

(eq5a) 

(eq5c) 

(eq5d) 
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Areaijk=µ++b1*treatmenti+ b2*dayj+random(cow)j+eijk 

 

The model for the full dataset includes environmental covariates and an additional treatment 

effect for pens sharing a water trough. 

areaijk=µ+b1* treatmentk + b2* HLIi + b3* treatmentk*HLI i+b4*sharewater+b5*HLI2 

+b6*temp.range +b7*temp.range*treatment +random(cow)j + 

random(day)i+treatmentk*random(day)i + eijk 

In all cases,reduced models are chosen on the basis of smaller AIC. The R-package, lmer, (R 

Development Core Team, 2011) is used to obtain parameter estimates. 

 

2.2.c. Weighted Residuals 

A weighting scheme is introduced to account for the uncertainty of the harmonic2 area estimates. 

The absolute values of the model residualsarefit using 

|residual|ijk=µ+b1*boot.errorijk+b2*treatmentk*HLIi+b3*treatmentk +b4*HLIi + eijk 

and the reciprocal of the squaredpredicted absolute residual is then used as a system of weights 

within the original model. 

 

2.2.d. Bayesian Model 

Weighted linear models assume that the weight matrix is known exactly, which is not true when 

variance is estimated using a regression model as in the case above. Using a Bayesian Markov 

Chain Monte Carlo model (MCMC) eliminates this problem by modeling variance along with 

area. Bayesian models also allow for more intuitive interpretation of results using posterior 

(eq7) 

(eq6) 
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probability distributions and work well with hierarchical data.  

 

The final model was obtained as the one with the lowest deviance information criterion (DIC). 

The final Bayesian internalheat load model given below does not contain variables for wind 

speed or whether cows shared water troughs. 

 

Areaijk=µ+b1*trtk+b2*HLIi+b3*Ta.rangei+b4*trtk*HLIi+b5*trtk*Ta.rangei+ 

cowj+dayi+trtk*dayi+eijk 

The log of the variance of eijk is in turn modeled via (9), denoted as Bayesian Residual Model 
 

log(var(eijk))=intercept+bootstrap.errorcd 

 

In the area model (eq. 8) each of the independent effects (such as treatment) receives a non-

informative normal prior centered at zero with a variance of 10,000. The group effects for cow 

and day come from a normal distribution with mean 0 and variance σ2, where σ2 itself has a 

uniform prior distribution from 0 to 10000. Using data from Yang F. et.al.(2010),the intercept is 

given a normal prior with a mean of 15.99 and a variance of 100. This is the only informative 

prior used, and it is given a large variance because it comes from a study of Hereford steers in an 

environmentally controlled setting. Mean HLI and Ta range are both centered to facilitate 

comparisons and improve convergence of the MCMC procedure. The mean of HLI is 69 and the 

mean of Ta range is 20. 

 

For the variance model (eq. 9) the intercept receives a normal prior with mean 3.2 and variance 

(eq.9) 

(eq.8) 
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20. Since e3.2=24.5 the expected value of the area variance is 24.5. The prior on bootstrap error is 

also normal with a mean of 0 and a variance of 1,000. The program is run in Winbugs (Lunn D.J. 

et. al., 2000)using 3 chains and 11000 iterations, of which only the last 15,000 are retained after 

a burn in period and thinning. 

 

3. Results and Discussion 

3.a. Bootstrapped Two-Stage Simple Harmonic Model 

Figure 2 shows bootstrapped harmonic2 ellipses for every day from trial 4. These ellipse areas 

are those used in the single trial models.Some ellipses, such as cow 2098 day 5 fit quite well, 

whereas others exhibit serious deviations from the ellipse, e.g. cow 2103 day 2. The bootstrap 

standard error for area can be used to provide an estimate for the size of these deviations. 
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3.b.Linear Models 

3.b.1.Single Trial Linear Mixed Effects Model Results 

To illustrate the fitting of single trial models (eq 5.a-d) to internal heat loads,trial 4 is used as an 

illustration. Table 3 shows that the multiplicative model with random cow effects (eq.5c) has the 

best fit. The treatment*day interaction is statistically significant with a p-value of 0.002. This 

means that the effect of treatment is not constant across days, within the small sample of trial 4 

alone. 

 
 
Table 3: Results from fitting Single Trial Models (eq5.a-e) to Heat Load Areas from Trial 4.(n= 

Figure 2: Example of Bootstrapped Harmonic2 Ellipsesfor 4 Cows 
over 5 Days in Trial 4. 
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20: 4 Cows and 5 Days) 
eq Model Cows.d. Days.d. Residuals.d. AIC BIC logLik 
5.a Crossed re 

C,day 
3.51 2.39 1.72 118 124 -51.8 

5.b Trt 
Crossed re 
C, day 

3.51 1.41 1.72 108 121 -41.1 

5.c Trt*Day re 
Cow 

3.51 - 1.72 101 113 -38.5 

5.d Trt + Day 
re Cow 

3.44 - 2.37 110 118 -47.0 

 

This significant interaction is further revealedin the Treatment by Day interaction plot,Figure 

3.On days 2 and 5 cows with access to a shower do not seem to have lower heat loads, although 

it is unlikely that this is due to more than random variation. On day 2 heat load is relatively small 

for all cows suggesting that there was little reason to engage in showering. Day 5, however, is a 

drastically different situation as heat load increases with showering. 

 

The four ellipses formed on day 5 are enlarged in Figure 4.Both showered cows(bottom row) 

have areas larger than those of thetwo control cows (top row) and all four cows appear to have 

ellipses with a mean Tb around 39o C. In addition, body temperatures for cow 2168 do not seem 

Figure3: Trial 4 Treatment by Day Interaction 
Plot using average area for two cows. 
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to follow a sinusoidal pattern. It may be that this lack of fit is at least partially responsible for the 

positive effect of showering, and it will be necessary to account for unequal variances in the full 

model. 

 

It is also possible to measure the area of hysteresis loops that use HLI as an input. As Tb is more 

dependent on HLI than Ta there is a theoretical basis for switching inputs in this way. The THI is 

less interesting as a possible input because it will be shown later that it is not a very good 

predictor of heat load. Figure 5 shows how HLI levels at night are radically different from those 

during the day. The plot appears to be vertically disconnected between day and night. This is 

likely due to solar radiation. In contrast a plot of Ta over time,Figure 6,indicates no such 

discrepancy. This makes it difficult to use HLI instead of Ta as the input for internal heat load 

estimation. 

 
 

Figure 4: Bootstrapped Harmonic2 Ellipses for Trial 4 day 5. Upper row is control cows, 
lower row is showered cows. Notice how 2168 day 5 does not look like an ellipse. A future 

study may look at whether this deformation is due to shower use. 
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Figure 5: HLI Time Series Separated by Trial appears to be constructed of two separate 
sinusoids 

 

Figure 6: Ta Time Series Separated by Trial appears to be a single sinusoid. 
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3.c. Full Model 

In theless important no weights case (eq. 6),the 2 interaction terms treatment*HLI and 

treatment*Ta.range are jointly statistically insignificant with a p-value of 0.17. These two 

variables are tested together as they suffer from multicollinearity. HLI and treatment by 

themselves are also statistically insignificant at the α=0.05 level with p-values of 0.23 and 0.075 

respectively, although the difference between 0.075 and 0.05 is small. Ta.range on the other hand 

is statistically significant with a p-value of less than 0.001. The use of weights is then 

considered.The residual model(eq. 7) is fit using residuals from the model that includes the 

interaction terms, andthe bootstrap error coefficient has a p-value of less than 0.001. Neither HLI 

nor treatment is a statistically significant predictor of the residuals absolute value with p-values 
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greater than 0.25 in both cases. The treatment*day interaction term is removed from the 

weighted and unweighted models as it increases AIC by 4 points. 

 

Table 4 showsthe results ofthe weighted modelusing HLIand Ta.range as covariates. The 

treatment*HLIand treatment*Ta.rangeinteractions have a joint p-value of 0.015although due to 

multicollinearity they are both statistically insignificant when tested separately with p-values 

above 0.1. Additionalmodels found the effects of shared trough andHLI2to be statistically non-

significant. 

 
 
 
 
 
 
 
 
Table 4: Results of Weighted Linear Mixed Effects Model. (n=120, : 24 Cows, 30 Days) 
Random Effects Standard Deviation 

Day 0.98 

Cow 2.80 

Residual 1.51 

 

Fixed Effects Estimate Standard Error 

Intercept -9.97 4.64 

Showering Effect 8.54 4.89 

HLI 0.11 0.08 

Showering*HLI -0.10 0.08 

Ta.range 0.78 0.12 

Showering*Ta.range -0.20 0.13 
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As the estimates here are similar to those for the Bayesian model we will hold off on interpreting 

them for now. 

3.d. Bayesian Results 

The final Bayesianheat loadmodel (eq. 8), selected to have the lowest DICdoes not contain 

variables for wind speed or shared troughs. The treatment by day effect is also eliminated as the 

DICwith this effect included is 495.2, which is higher than the DIC of 494.0 with it removed. A 

model which includes period has an almost identical DIC of 493.9, and although the decision 

was made to report the model without period for reasons of simplicity, it should be noted that 

including period does not change the estimates and standard errors for the treatment effect or its 

interactions.Posterior distributions for the parameters of interest were then obtained, as can be 

seen in Figures7 and 8. 

Figure 7: Markov Chains Showing Convergence of Posterior Distribution for Treatment. 
trt chains 1:3

iteration

5501 6000 8000 10000

   -7.5

   -5.0

   -2.5

    0.0

    2.5

 

 

Figure 8: Posterior Distribution for Treatment Effect on Internal Heat Load at Mean Value of 
HLI. 
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Tables 5 and 6 show summary statistics for these parameter estimates: the mean, standard 

deviation, and the probability that the parameter is less than zero.The probability that allowing 

access to a shower negatively affects heat load at the mean values of HLI and Ta range is 

approximately 97%. This showering effect has a mean of -2.4 and increases in absolute size with 

HLI and Ta range. Thus,the interactions of treatment with both HLI and Ta range are significant. 

 

 

Table 5: Statistics from Bayesian Area Model Posterior Distributions. P(x<0) is the posterior 
probability that the variable of interest is less than 0. 

Parameter mean s.d. P(x<0) 

Intercept 13.1 0.9 0.00 

treatment*HLI -0.1 0.1 0.90 

Treatment -2.4 1.3 0.97 
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Table 6: Statistics from Bayesian Variance Model. P(x<0) is the posterior probability that the 
variable of interest is less than 0. 

Parameter mean s.d. P(x<0) 

Intercept 0.9 0.2 0.00 

bootstrap standard error 1.5 0.4 0.00 

 

Figure 9shows how well trend lines based on HLI, Ta range and treatment group fit the data. It 

reveals how the control (solid line) and shower (dashed line) internal heat loads vary depending 

onHLI and Ta range.  Figure 10 focuses on thereduction in head load for the shower cows by 

showing the size of the predicted reduction in head load associated with showering at the 30 

combinations of HLI and Ta range present in the data. These results are consistent with Legrand 

et al.(2011) that use of showers increases with Ta and this seems to be the most likely 

explanation for the treatment by day interaction found in trial 4. 

HLI 0.1 0.1 0.09 

Ta range 0.8 0.1 0.00 

Ta.range*treatment -0.2 0.1 0.96 

sigma.cow 9.8 3.5  

sigma.day 1.6 0.8  
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Figure 9: HLI vs. Observed (symbols/color)and Predicted Area (lines).Treatments are Control 
(dot with solid line) and Shower (triangle with dashed line). The size of the symbol indicates the 
Size of theTa Range. Predicted internal heat load increases with air temperature and HLI for both 

treatment groups. 
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Figure 10: The predicted reduction in heat load due to showering is greater at higher levels of 
mean HLI and Ta range. The size of the bubbles reflects size of Ta 

range.Reduction=2.5+0.1*HLI+0.8*Ta.range 
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TheHLIdaily mean together withTa range are statistically significant predictors of the heat load 

experienced by a dairy cow over the course of a day. The Ta range may only be statistically 

significant for heat load because it is circularly related to the amplitude of Ta which plays a 

direct part in the ellipse estimation, and whether it has a practical effect on heat stress or is just a 

statistical artifact of the way heat load is estimated is an open question. Initial results of a 

regression on retention, a measure of heat stress that is orthogonal to the ellipses x axis, suggest 

that it does not. It is important to note that after the inclusion of mean HLI in the model, neither 

HLI range nor mean Ta leadto a reduction in the DIC. If the range of the heat challenge during 

the day truly has an effect on heat stress this effect should be more visible from HLI range than 

Ta range, as HLI itself has a stronger relationship with internal heat load than Ta. 

 

Other models that replace the HLI terms with mean THI or mean Ta result in a DICthat is 

actually greater than that from simply omitting the HLI terms as can be seen inTable 7. 

Table 7: Deviance Information Criterions(DIC) for models using various environmental inputs 
Model DIC 
HLI 494.0 
THI 497.4 
Ta 497.5 

No environmental input outside of Ta range 494.4 
 

3.e. Comparison to PreviousResults 

The introduction of the heat load model provides evidence for a difference in heat stress between 

the two treatment groups, control and shower, that enhances results based on summary statistics. 

Legrand et al.(2011) reporteda mean Tb for the 2 groups that was roughly identical at 38.9ο C 

(p=0.568). Moreover they reported that t-tests on the daily minimum, maximum, and amplitude 
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of Tb were also statistically non-significant with p-values greater than 0.3. Howeverwhen Tb was 

at its peak (18:00 to 21:00), threehourly mean Tbdifferences were detected (p< 0.05).  

 

4. Conclusion 

Internal heat load provides a quantifiable measure of heat stress over the course of a day that has 

the potential to provide more information than either raw Tb or daily statistical summaries. 

Harmonic2 ellipses fit to data from dairy cows housed outdoors wereused to detecta statistically 

significant reduction in internal heatload associated with access to a cow-controlled shower. This 

reduction increases with the size of the heat challenge as measured by the Ta range and HLI, 

suggesting that dairy cows increase their shower usage on hotter days (as shown by LegrandA. et 

al., 2011) and that this extra shower use is effective in reducing heat load.Information on shower 

use by day would be needed to test the causal reason for this interaction effect. The HLI is more 

closely related to heat load, than either Taor THI, possibly because it contains information about 

wind speed and solar radiation. 

 

Bootstrapped two-stage harmonic least squares area estimates come bundled with a bootstrap 

standard error. This standard error can be used to place greater importance on area estimates that 

have greater precision using either 1) weighted least squares or 2) a Bayesian analysis that 

models variance along with area. Future users of bootstrapped internalheat load estimates should 

use one of these methods to correctly specify variance matrices of area prediction models when 

the assumption of controlled sinusoidal input is tenuous. 
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Internal heat load reduces a day’s worth of information into a single number, and internal heat 

load provides a measure of heat stress that is compelling theoretically and useful clinically. In the 

case illustrated here Bayesian analysis of heat load in conjunction with HLI and Ta range shows 

that shower use reduces heat load and that this treatment effect increases with the size of the heat 

challenge. 
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