
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2012 - 24th Annual Conference Proceedings 

GENE SET TESTING TO CHARACTERIZE MULTIVARIATELY GENE SET TESTING TO CHARACTERIZE MULTIVARIATELY 

DIFFERENTIALLY EXPRESSED GENES DIFFERENTIALLY EXPRESSED GENES 

John R. Stevens 

S. Clay Isom 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Stevens, John R. and Isom, S. Clay (2012). "GENE SET TESTING TO CHARACTERIZE MULTIVARIATELY 
DIFFERENTIALLY EXPRESSED GENES," Conference on Applied Statistics in Agriculture. https://doi.org/
10.4148/2475-7772.1032 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2012
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2012%2Fproceedings%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2012%2Fproceedings%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2012%2Fproceedings%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1032
https://doi.org/10.4148/2475-7772.1032
mailto:cads@k-state.edu


GENE SET TESTING TO CHARACTERIZE
MULTIVARIATELY DIFFERENTIALLY EXPRESSED GENES

John R. Stevens1 and S. Clay Isom2

1 Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill,
Logan, UT 84322-3900 USA; 2 Department of Animal, Dairy, and Veterinary Sciences, Utah
State University, 4815 Old Main Hill, Logan, UT 84322-4815 USA

Abstract

In a gene expression experiment (using oligo array, RNA-Seq, or
other platform), researchers typically seek to characterize differentially
expressed genes based on common gene function or pathway involve-
ment. The field of gene set testing provides numerous characterization
methods, some of which have proven to be more valid and powerful
than others. These existing gene set testing methods focus on
experimental designs where there is a single null hypothesis (usually
involving association with a continuous or categorical phenotype)
for each gene. Increasingly common experimental designs lead to
multiple null hypotheses for each gene, and the characterization of
these multivariately differentially expressed genes is of great interest.
We explore extensions of existing gene set testing methods to achieve
this characterization, with application to a RNA-Seq study in livestock
cloning.

Keywords: gene expression, gene set testing, gene set enrichment

1 Introduction

A now-common tool in agricultural research is gene expression technology – whether oligo
array (Lockhart et al. 1996), next-generation sequencing (Hayden 2009), or some other
platform. These technologies allow simultaneous assessment of the expression of all genes in
an organism. This simultaneity lends the ability to assess the activity of biological processes
(Subramanian et al. 2005). An ongoing collaboration with animal reproduction researchers
uses the RNA-Seq platform (Wang et al. 2009) as part of a long-term goal to understand
the molecular mechanisms governing embryo viability and survival in order to improve the
efficiency of assisted reproductive technologies for livestock.
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cell type C ICM TE

IVV * ** * * * *

IVF * * * * * **

NT * ** * * * *
em

b
ry

o
ty

p
e

T

PA ** ** * ** ** *
gestation days G 10 12 14 10 12 14

Table 1: Summary of design of motivating RNA-Seq experiment. Each asterisk represents a
replicate.

1.1 Motivating RNA-Seq Experiment

The expression of 41,693 genomic regions (referred to hereafter as “genes”) was assessed in
each of 31 pig embryo samples. Three controlled factors were of interest – cell type (C), em-
bryo type (T), and gestation days (G). Cell type (C) had two levels – ICM (inner cell mass,
or embryonic stem cells) and TE (trophectoderm, or cells that will become the placenta).
Embryo type (T) had four levels – IVV (in vivo fertilization), IVF (in vitro fertilization), NT
(somatic cell nuclear transfer, or clone), and PA (parthenogenetic activation, or maternal
cloning). Gestation days (G) had three levels, representing specific developmental struc-
ture stages – 10 (spherical structure), 12 (tubular structure), and 14 (elongated filament
structure). The 31 samples represent partial replication of the 2×4×3 = 24 full factorial
combinations of these three factors’ levels, as summarized in Table 1.

The general objective in this experiment was to identify and characterize genes with
expression differences between embryo types across gestation days. More specifically, the
objective was to determine which biological processes were significantly more active (or less,
or no different) in certain embryo types than others at specific gestation days. Testing
biological processes’ activity levels with gene expression levels is possible using gene set
testing methods.

1.2 Gene Set Testing

The characterization of significantly differentially expressed genes is most commonly done
with respect to Gene Ontology (The Gene Ontology Consortium 2000) or KEGG pathway
(Ogata et al. 1999) annotation in the appropriate organism. Briefly, these resources sum-
marize knowledge about genes’ functions in specific organisms, such as their involvement in
specific biological processes in pig. Rather than focusing on individual genes’ expression dif-
ferences between experimental conditions, it is possible to turn attention to these biological
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processes (for example) to test whether a given biological process (or the set of genes with
annotation to that process) is differentially active between experimental conditions. Thus
gene expression technology can be used to test whether biological processes are “behaving”
much different in two experimental conditions.

The literature on such “gene set” testing is too vast to review in full here, but the
relevant statistical issues and a comparison of existing methods have been reported elsewhere
(Fridley et al. 2010). Briefly, the gene set testing methods found to be most powerful (Fridley
et al. 2010) are Fisher’s p-value combination method (Fisher 1932) and Goeman’s global test
(Goeman et al. 2004). Section 2.3 below addresses the relevance and use of these findings
for the motivating experiment.

2 Methods

2.1 Multivariate Differential Expression

In the motivating experiment (Section 1.1), the questions of greatest interest involve the
identification of biological processes whose activity levels respond (up or down) to the effect of
the in vitro culture (IVV vs. IVF comparison), the effect of cloning (NT vs. IVF comparison),
or the effect of a maternal contribution only (PA vs. IVF comparison), in each cell type
(ICM, TE) separately, and at each gestation day (10, 12, 14) separately. At the same time,
it is of interest to identify biological processes that show no difference in activity between
these embryo types at each gestation day separately. For one hypothetical example, maybe
in the trophectoderm (cell type C = TE) a given biological process is more active in IVV
than IVF at gestation day 10, but has no activity difference at days 12 and 14. For another
hypothetical example, in the inner cell mass (cell type C = ICM) a given biological process
may be less active in IVV than IVF at day 10, then more active in IVV than IVF at day 12,
but has no activity difference at day 14.

Because there are three possible activity conclusions (higher than, lower than, no
different than IVF) at each of three gestation days (10, 12, 14), there are 3 × 3 × 3 = 27
possible relativized profiles (vs. IVF) to which a biological process could be assigned, for each
cell type (ICM/TE) and each comparison of interest (IVV/NT/PA vs. IVF). Some of these
are visualized in Figure 1, including the two hypothetical scenarios posed in the preceding
paragraph. Only three of the twenty-seven possible profiles are represented in Figure 1. The
black solid line represents IVF (the “control” in the comparisons of interest), while the red
dashed line represents either IVV, NT, or PA (the “treatment” groups). The numeric legend
at the left of Figure 1 summarizes the relative differences between the “treatment” group
and IVF at the three gestation days. Red higher than black (numeric value 1 in the legend
at left) indicates that the activity level of the biological process is greater in the “treatment”
group than in IVF at that gestation day. Red lower than black (numeric value -1) indicates a
lower activity level than in IVF. Red at the same level of black (numeric value 0) indicates no
activity difference compared to IVF. Each biological process is to be assigned to one of the 27
such profiles in each cell type (ICM/TE) and each comparison of interest (IVV/NT/PA vs.
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Figure 1: Visualization of select relativized profiles of biological process activity (in “treat-
ment” vs. IVF) across three gestation days.

IVF). This visualization in Figure 1 helps reinforce and reframe the experimental objective
(Section 1.1) – to assign each biological process to one of these 27 profiles, for each cell type
(ICM/TE) and each comparison of interest (IVV/NT/PA vs. IVF).

A traditional test for differential expression looks at a single significance test for each
gene or gene set. However, the experimental objective of the motivating example here leads
to multiple simultaneous tests for each gene (and subsequently, gene set). From this arises
the notion of what we term “multivariate differential expression” – the idea that multiple
comparisons could be of simultaneous interest for a gene or gene set, and a gene or gene set
could be differentially expressed in some comparisons (like less active in IVV than IVF at
day 10, and more active in IVV than IVF at day 12) but not in others (like no difference
between IVV and IVF at day 14; see the bottom profile in Figure 1). A specific approach
for gene set testing in situations allowing multivariate differential expression is presented in
Section 2.3.

2.2 Generalized Linear Model

The individual components of multivariate differential expression (i.e., the tests of IVV, NT,
or PA vs. IVF at each gestation day, in each cell type) can be obtained using contrasts
defined for an appropriate per-gene generalized linear model. The statistical issues related
to such models for RNA-Seq data have been summarized previously (Auer and Doerge 2010).

Here, let Nl be the total count of all mapped fragments in lane (or replicate) l of
the RNA-Seq experiment. Also let Yijkl be the raw (unscaled) fragment count for the gene
in replicate l of gestation day (G) k, for embryo type (T ) j, in cell type (C) i. Then
Yijkl ∼ Poisson(Nlpijkl), where pijkl is the probability that any given fragment’s sequence
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maps to the gene in lane l. The log link in a generalized linear model then yields

log (E[Yijkl]) = log (Nl) + µ+ Tj +Gk + TGjk. (1)

This model was fit for each gene individually, and for the two cell types separately. The
analysis was done using a custom routine in R (R Development Core Team 2012). There
was no evidence of widespread overdispersion (results not shown), so the Poisson model was
deemed appropriate.

Based on the model in Equation 1, eighteen (3 × 3 × 2) contrasts were constructed
to test the multiple comparisons of interest for each gene – three “treatments” (IVV, NT,
PA) vs. IVF at each of three gestation days (10, 12, 14), in two cell types (ICM, TE)
separately. Because the experimental objective here requires a declaration of direction (up
or down) relative to IVF, the p-values from each contrast were converted to one-sided p-values
using the relative expression of the “treatment” (IVV, NT, or PA) and IVF samples at the
appropriate gestation day. This resulted in 18 one-sided p-values for each of 41,693 genes,
where for each of the 18, the null hypothesis was of the form “same expression in treatment
group as in IVF at this gestation day in this cell type” and the alternative hypothesis was
of the form “greater expression in treatment group than in IVF at this gestation day in this
cell type.”

2.3 P-Value Combination Methods for Gene Sets

As mentioned in Section 1.2, the gene set testing methods previously found to be most
powerful (Fridley et al. 2010) are Fisher’s p-value combination method (Fisher 1932) and
Goeman’s global test (Goeman et al. 2004). However, Goeman’s global test does not lend
itself to a multivariate sense of differential expression, as it models how a single “clinical
outcome” (such as treatment group or continuous phenotype) can be modeled (or predicted)
from the expression values of all genes in a given gene set. On the other hand, it is fairly
straightforward to use p-value combination methods to obtain a single p-value for each gene
set (based on the p-values for all of the genes in the set), for each individual component of
multivariate differential expression, such as IVV vs. IVF at day 10 in ICM.

2.3.1 Fisher’s and Stouffer’s Methods

While Fisher’s p-value combination method was found previously to be most powerful (Fri-
dley et al. 2010), it seems that it may be most powerful for a less meaningful alternative
hypothesis. In this method as applied to gene set testing (and only considering a single
component or test for differential expression, such as IVV vs. IVF at day 10 in ICM), there
is a single one-sided p-value (resulting from the appropriate contrast) for each gene anno-
tated to a particular biological process. The null hypothesis is the same for all genes in
the gene set (such as IV V = IV F at day 10 in ICM), and so is the alternative hypothesis
(such as IV V > IV F at day 10 in ICM). The need for one-sided p-values with common
alternatives in p-value combination methods was originally emphasized by Fisher (Fisher
1948), to preserve interpretation of the combined result. The p-values (pv’s) for the genes
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in the gene set are combined to obtain a single p-value (being the tail probability of the
test statistic

∑−2 log pv, following a chi-square distribution (Fisher 1932)) for the gene set.
The global null hypothesis for this combined p-value is the same as the common null for
the individual genes’ p-values (such as IV V = IV F at day 10 in ICM), and the global
alternative hypothesis for this combined p-value is that the common alternative hypothesis
(such as IV V > IV F at day 10 in ICM) is true for at least one gene in the gene set.

In order to understand why this alternative is not necessarily the most meaningful,
it is necessary to note what is actually meant by gene set membership annotation. A gene
is annotated to a biological process only when the gene’s product “contributes to” the bio-
logical process (Hill et al. 2008). (Consequently, there is no annotation if a gene’s product
impedes or inhibits the biological process.) Then for a biological process to proceed, it is not
necessarily sufficient for “at least one” of the contributing genes to be active. In fact, lower
activity by any of the genes annotated to a biological process will “disturb” the biological
process (Hill et al. 2008). Thus a more meaningful alternative in gene set testing would be
that there is a consensus of activity among gene set members – for example, that there is
“collective support” (Rice 1990) that the genes annotated to the biological process are more
active in IVV than in IVF at day 10 in ICM.

The unsuitability of Fisher’s method in cases where consensus is the desired alterna-
tive has been shown previously (Rice 1990), as has been the superiority of Stouffer’s method
(Stouffer et al. 1949) in such cases (Whitlock 2005). Briefly, Stouffer’s method converts
one-sided p-values to standard normal variates, the weighted sum of which is the test statis-
tic following a standard normal distribution, and whose tail probability is the combined
p-value. The global null hypothesis for this combined p-value is the same as the common
null for the individual genes’ p-values (such as IV V = IV F at day 10 in ICM), and the
global alternative hypothesis for this combined p-value is that there is collective support for
the alternative hypothesis (such as IV V > IV F at day 10 in ICM) among the genes in the
gene set.

2.3.2 Sidedness and Interpretability

Among the biological processes (gene sets) considered in the motivating example, approxi-
mately half exhibited a bimodal distribution of p-values. This is summarized for the ICM
cell type comparisons in Figure 2. For each gene set, the p-values for each of the 9 con-
trasts (3 embryo types vs. IVF, at each of 3 gestation days) were treated as following a
Beta(α, β) distribution, and method-of-moments estimates of α and β were obtained. Fig-
ure 2 provides a scatterplot of the resulting estimates, with points colored according to local
density (Gentleman and Biocore 2012). Reference lines are added to summarize (based on α
and β parameter values) the basic shapes of distributions possible, along with hand-written
percentages reporting how many of the plotted points (gene sets) fell to each shape. For
example, if α and β are less than 1, and α > β, the distribution of p-values is essentially
bimodal, with the potential for the right mode (near 1) to be higher than the left mode (near
0); approximately 36 percent of the gene sets considered had p-value distributions that fell in
this shape category. Note that with the alternative hypothesis that IV V > IV F at day 10,
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Figure 2: Summary of shapes of distributions of p-values for genes in 5,077 biological pro-
cesses, based on tests of 9 contrasts in ICM. Approximately half of the biological processes
exhibited at least roughly bimodal-shaped distributions.

a gene set with such bimodality (and tall peak near one) could, due to the use of one-sided
p-values here, actually be considered as providing evidence of consensus that IV V < IV F
at day 10, particularly if the peak near one were much higher than the peak near zero.

In addition to yielding a more meaningful alternative for gene set testing (Section
2.3.1), Stouffer’s method is also less sensitive to extreme individual p-values than Fisher’s
method and has the benefit of symmetry (Whitlock 2005). That is, switching the direction
of the alternative (such as IV V < IV F rather than IV V > IV F ) of the individual genes’
tests will result in the complement for Stouffer’s p-value (yielding one minus the combined p-
value with the original alternative), which will usually not be the case using Fisher’s method.
(Note that symmetry here refers not to the distribution of p-values, but to the behavior of the
combination method when reversing the direction specified by the alternative hypothesis.)

The value of symmetry and consensus in p-value combination methods, particularly
for sets of genes with bimodal p-value distributions, can be visualized with a small simulation.
1000 sets of p-values were simulated, each of size 100, from Beta(α, β) distributions, at each
of various values of α and β. For purposes of discussion, assume that the null hypothesis for
each p-value is IV V = IV F at day 10, and the alternative is IV V > IV F at day 10. To
emphasize the notion of consensus here, only α and β values less than 1 were used, producing
bimodal distributions of p-values. At each ordered parameter pair (α, β), each simulated
set of 100 p-values was combined using both Fisher’s and Stouffer’s methods, and these
combined p-values were averaged across the 1000 simulations for each method separately.
These are summarized by the contour plots in Figure 3. Fisher’s method yields smaller
combined p-values than Stouffer’s method does for these bimodal distributions. This could
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Figure 3: Contour plots of average combined p-values under Fisher’s and Stouffer’s methods,
under various Beta(α, β) distribution shapes, in a small simulation study.

result in a nonsense conclusion by Fisher’s method, as in the bimodal distribution sketched
at the bottom middle of Figure 2 – Stouffer’s method would report a high p-value (near 1),
indicating evidence that IV V < IV F , while Fisher’s method could report either a middle-
ground p-value (closer to 0.5) or (with a small-enough p-value from a single gene in the
set) a low p-value (near 0), indicating evidence that IV V > IV F . This (Fisher’s method
conclusion) would be nonsense when the shape of the distribution of p-values clearly indicates
collective support that IV V < IV F (as Stouffer’s method would conclude, reflecting the
consensus peak of p-values near 1).

In summary, while Fisher’s method may be more powerful (Fridley et al. 2010) for a
broad alternative (Rice 1990), Stouffer’s method is more powerful for a more interpretable
(Whitlock 2005) alternative with one-sided p-values.

2.4 Implementation

There are three domains in the Gene Ontology annotation system (The Gene Ontology Con-
sortium 2000) – biological process (BP), molecular function (MF), and cellular component
(CC). Based on the objectives of the motivating experiment, attention here is restricted to
biological processes. To focus attention on the most meaningful biological processes (that
are neither too general nor too specific to be useful), a filter is applied (Song and Black
2008). Specifically, only the 49 percent of biological processes with between 5 and 1000
genes annotated thereto were considered.

For each of the resulting 5,077 biological processes considered, p-values of their anno-
tated genes were combined using Stouffer’s method, for each of the 18 contrasts constructed
previously (Section 2.2). Thus each of the 5,077 biological processes has 18 Stouffer-combined
p-values, one for each of the 3 × 3 × 2 = 18 contrasts constructed previously, corresponding
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Figure 4: Sample visualization of 8 hypothetical gene sets (biological process terms) in a
directed acyclic graph. The arrows indicate nesting or subsetting. For example, set S1 is a
subset (or special case of biological process) of both S2 and S3. It is possible that non-subsets
(such as S2 and S4 here) are not disjoint. This potential for nesting and non-disjointness
results in possible dependencies among the [combined] p-values for each set.

to tests of three “treatments” (IVV, NT, PA) vs. IVF at each of three gestation days (10, 12,
14), in two cell types (ICM, TE) separately. Using these combined p-values, each biological
process can be assigned to one of the 27 relativized profiles (vs. IVF) discussed previously
in Figure 1, for each “treatment” (IVV, NT, PA) and each cell type.

Until this point in the analysis, there has been no need for adjustment for multiple
comparisons because the p-value combination methods require “raw” (unadjusted) p-values.
But in order to assign each biological process to a relativized profile, a statistical deci-
sion must be made at each gestation day, based on the appropriate p-value. The strategy
employed here was to adjust the 5,077 biological process’s p-values within each of the 18
contrasts, to control the false discovery rate (Benjamini and Hochberg 1995). However, the
simple Benjamini-Hochberg adjustment (Benjamini and Hochberg 1995) assumes indepen-
dence of p-values and so would be inappropriate here, as the biological process gene sets are
nested and not disjoint (Song and Black 2008), as visualized (Gentry et al. 2011) in Figure
4. Instead, the Benjamini-Yekutieli adjustment (Benjamini and Yekutieli 2001) was applied,
as it provides control of the false discovery rate under dependency. The filter mentioned
above helped reduce the severity of this adjustment. Because this adjustment is designed
for two-sided p-values, the (Stouffer-combined) one-sided p-values for each gene set here
were first converted to two-sided p-values, and then converted back to one-sided p-values
following adjustment. The false discovery rate was controlled at 0.05 within each of the 18
combinations of embryo type “treatment” (IVV, NT, PA), gestation day (10, 12, 14), and
cell type (ICM, TE).
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Profile at Day ICM TE
10 12 14 IVV NT PA IVV NT PA
0 0 0 4,512 2,969 4,196 2,467 3,037 3,246
0 0 -1 14 1 2,020 1,973 439
0 -1 0 1 2,055 1 566
0 1 0 1 32 881 62 9 3
0 -1 -1 3 1 578
0 1 -1 505 20
0 0 1 397 14 15 33 13
1 -1 -1 170

-1 0 1 125
1 -1 0 35

-1 0 0 26 1
1 0 0 3 22
0 -1 1 1 3 5
1 0 -1 4
0 1 1 2

-1 0 -1 1

Table 2: Counts by relativized profile, in “treatment” comparisons vs. IVF, with FDR
controlled at 0.05 within each of the 18 combinations of embryo type “treatment” (IVV,
NT, PA), gestation day (10, 12, 14), and cell type (ICM, TE). The largest counts for each
“treatment” group (column) are highlighted.

3 Results

Each of the 5,077 biological processes was assigned to one of 27 relativized profiles (vs. IVF;
see Figure 1) for each “treatment” (IVV, NT, PA) and each cell type, based on its Benjamini-
Yekutieli-adjusted Stouffer-combined p-value at each of the three gestation days. Table 3
summarizes the results. The relativized profiles are summarized by a numeric legend at the
left of Table 3, indicating whether biological process activity in the “treatment” (IVV, NT,
PA) was significantly higher (numeric value 1), significantly lower (numeric value -1), or not
significantly different (numeric value 0) than in IVF at each gestation day (10, 12, 14). All
relativized profiles with at least one biological process thus assigned are reported in Table 3.

The largest counts for each column in Table 3 are highlighted, and can be used to
make some general biological conclusions. For example, in the ICM cell type, there are
2,055 biological processes that are significantly less active in NT than IVF embryo types at
gestation day 12, but that show no significant activity differences at days 10 and 14; this
is the (0,-1,0) profile. No other profile is so well represented in this column, other than
the (0,0,0) profile (showing no significant differences at any gestation day). This suggests
that biological process differences in the ICM between NT and IVF embryos occur almost
exclusively at gestation day 12, when many biological processes are less active in NT.
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As another example, consider the far right column of Table 3. The largest profile
counts there show that in the TE cell type, many biological processes are less active in PA
than IVF at gestation days 12 (566 processes), 14 (439 processes), or both (578 processes).
These are the predominant differences in biological process activity between PA and IVF in
the TE cell type.

All of these results are the subject of ongoing interpretation and discussion with
animal reproduction collaborators. It may be worthwhile to note in passing that many of the
most significant differences vs. IVF for the other embryo types involve biological processes
related to “development” – including muscle, skeletal, and brain. It is not surprising that
the highest profile counts (Table 3) in ICM and TE cell types do not agree, and this result in
fact supports previous observations that biological process activity is fundamentally different
in these cell types.

4 Summary

In this manuscript we used a motivating example to build a statistical framework to char-
acterize genes that are differentially expressed (or not) in multiple comparisons of interest,
which we term “multivariately differentially expressed.” The statistical framework capital-
izes on the appropriateness of Stouffer’s p-value combination method for such cases. In
this motivating example, the characterization was in terms of biological processes from the
Gene Ontology annotation system (The Gene Ontology Consortium 2000), and the multiple
comparisons of interest corresponded to multiple gestation days. However, the framework
is generalizable beyond this motivating example and can characterize in terms of additional
annotations (such as molecular function or cellular component) from the Gene Ontology
system or KEGG pathways (Ogata et al. 1999).

Future work will include at least two components. First, the Benjamini-Yekutieli ad-
justment (Benjamini and Yekutieli 2001) utilized in Section 2.4 is a fairly severe adjustment.
While this severity is related to the allowance for dependence by this method, we believe
it may be mitigated by simultaneously accounting for the known nested structure among
Gene Ontology terms. Thus one component of our future work will include adapting this
adjustment method to control a meaningful error rate while allowing for dependence within
a known structure such as Figure 4. The second component of our future work will involve
automating our procedure to characterize multivariately differentially expressed genes, such
as in a package for Bioconductor (Gentleman et al. 2004). Briefly, given a matrix of p-values
(with rows for genes and columns for specific multiple comparisons of interest) and gene set
definitions (such as in a list object in R), we could efficiently create a matrix of Stouffer’s com-
bined p-values (with rows for gene sets and columns for the specific multiple comparisons
of interest) that have been adjusted for [dependence-allowed] multiple hypothesis testing,
and then assign each gene set to various possible profiles across the specific comparisons of
interest (as in Table 3). We anticipate using this automated procedure to efficiently charac-
terize multivariately differentially expressed genes in studies conducted by other researchers
in animal reproduction and other fields, including some current collaborators.
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