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Statistical Tests for Stability Analysis with Resampling Techniques 

Jixiang Wu, Karl Glover, and William Berzonsky 

Plant Science Department, South Dakota State University, Brookings, SD 57007 

 

Abstract 

Crop trials or crop performance trials (CPT), which are among the most important 

activities associated with plant breeding programs, are commonly used to measure the 

performance stability of genotypes. Several methods which include variation, regression, and 

cluster analyses for determination of crop stability have been proposed and are commonly used. 

However, many of these approaches require the use of normally distributed data. Thus, 

commonly used statistical tests, like the t- or F-test may not be appropriate when the assumptions 

of data are violated. In this study, two resampling techniques (jackknife and bootstrapping) were 

integrated into several crop stability analyses. An upland cotton data set from China was 

analyzed to demonstrate the utility of these methods in measuring performance stability.  

1. Introduction 

Genotype-by-environment (G×E) interactions have been a common issue in developing 

widely adapted crop cultivars (Gray, 1982; Kang and Miller, 1984). A cultivar associated with 

high G×E interactions indicates that it is sensitive to various environmental conditions and it is 

has low performance stability. Thus, fully investigating G×E interactions or stability is critical to 

determining cultivar adaptation to specific markets. 

Crop trials or crop performance tests (CPT) at multiple locations and possibly in multiple 

years are executed to generate experimental data for measuring genotype. Due to the complexity 

of field trials and various definitions of yield stability (Lin et al., 1986),  many different 
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statistical methods for measuring stability have been proposed.  Based on review paper (Lin et 

al.,1986), these methods can be clustered into two basic categories: variation-based (Francis and 

Kannenberg, 1978; Plaisted and Peterson, 1959; Shukla, 1972; Wricke, 1962) and regression-

based (Eberhart and Russell, 1966; Finlay and Wilkinson, 1963; Perkins and Jinks, 1968). Both 

variation and regression-based methods are more focused on yield consistency across 

environments. It appears more appropriate that genotype yield performance and yield stability be 

considered simultaneously (Fan et al., 2007; Kang and Mangari, 1995; Kang, 1993). Another 

commonly used approach has been the additive main effects and multiplicative interaction 

(AMMI) method (Crossa et al., 1990). Based on principal component analysis, as it treats multi-

environmental data as multivariate data structures, this method considers these two important 

parameters as well. 

The aforementioned methods use data that are balanced (Crossa et al., 1990; Kang, 1993; 

Lin et al., 1986); however, many crop trial data may include missing data points due to various 

reasons (Zhu et al., 1993), or data may be unbalanced due to some genotypes not being trialed in 

successive years. It is also possible that error variances are heterogeneous among environments 

(Edwards and Jannink, 2006). In addition, many statistical tests for stability parameters are 

related to t-tests and/or F-tests (Kang, 1993), which assume data are normally distributed. 

Additionally, the environmental index is used as an independent variable in regression-based 

stability analyses, and as a linear function of observations, it is a random variable rather than a 

fixed one such as is required by a linear regression analysis. Conventional t-tests/F-tests may not 

be appropriate when an independent variable is also a random variable. Furthermore, breeders 

and/or farmers are also interested in stability being something that can be compared between 
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genotypes. Thus, it is necessary that more general approaches and statistical tests be added to the 

existing group of stability analysis methods.   

Mixed linear model approaches have been commonly used to analyze various data 

structures, including missing and unbalanced data structures (Little et al., 2006; Rao, 1971; Wu 

et al., 2006; Zhu, 1998). On the other hand, resampling techniques such as those exemplified by 

the jackknife approach (Miller, 1974; Wu et al., 2008; Wu et al., 2012; Zhu et al., 1993), 

bootstrapping (Davison and Hinkley, 1997; Efron, 1979), and permutation (Manly, 2006) have 

been widely used for statistical tests for various parameters. In this study, we focused on 

variance components, G×E interactions, genotypic means/ranks, and regression based stability 

for crop trial data. A mixed linear model approach (Wu et al., 2006; Zhu, 1989; Zhu, 1993; Zhu, 

1998) was used to estimate variance components and to predict G×E interactions. A regression-

based method was used to determine the stability of each genotype (Finlay and Wilkinson, 1963). 

Jackknife and bootstrapping techniques were used to test the significance of each parameter or 

conduct multiple comparisons among parameters (Davison and Hinkley, 1997; Efron, 1979; Wu 

et al., 2008; Wu et al., 2012). An upland cotton data set (Zhu et al., 1993) was used to 

demonstrate the utility of using these methods for stability analysis and statistical tests.  

2. Materials, Models, and Methods 

2.1.Materials 

The data used in the present study was cotton lint yield, reported by Zhu et al. (1993). The 

data were collected in 1989 and 1990 from eight varieties grown in 24 locations in the Yellow 

River Region of China. Cultivar Zhong 206 was missing at one location in 1989 and, due to 

weather problems in 1990, at one location was abandoned and not harvested. Only mean values 

of each environment for each cultivar were available for analyses. 
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2.2.Genetic models 

As a consequence of different data structures and experimental designs, there are several 

different models that can be used for analyzing crop trial or multi-environmental data. In this 

study, we employed four genetic models based on if field plots were replicated (randomized 

complete block design) and if experiments were repeated between years.  

Model 1: 

Assuming that g genotypes (cultivars) are grown in multiple years and locations with r 

replications in each environment (a combination of year and location), a mixed linear model can 

be expressed as follows 

௛௜௝௞ݕ ൌ ߤ ൅ ௛ܻ ൅ ௜ܮ ൅ ௝ܩ ൅ ௛௜ܮܻ ൅ ܩ ௛ܻ௝ ൅ ௜௝ܮܩ ൅ ௛௜௝ܮܻܩ ൅ ሻ௞ሺ௛௜ሻܮሺܻܤ ൅ ݁௛௜௝௞   (1) 

Whereݕ௛௜௝௞  is an observation; ߤ  is population mean, ௛ܻ  is year effect; ܮ௜  is location 

effect; ܩ௝  is genotypic (variety) effect; ܻܮ௛௜  is year-by-location interaction effect; ܩ ௛ܻ௝  is 

genotype-by-year interaction effect; ܮܩ௜௝  is genotype-by-location interaction effect; ܮܻܩ௛௜௝  is 

genotype-by-year-by-location interaction effect; ܤሺܻܮሻ௞ሺ௛௜ሻ  is block effect with year and 

location; and ݁௛௜௝௞ is random error.  

Model 2: 

When only mean plot values without replication in each environment are used for 

analysis, then each of the block effects should be dropped from Model 1. In addition, because 

each genotype-by-year-by-location interaction effect is confounded with random error, this term 

should be dropped from Model 1 too. Thus, Model 1 can be rewritten as in (2). 
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௛௜௝ݕ ൌ ߤ ൅ ௛ܻ ൅ ௜ܮ ൅ ௝ܩ ൅ ௛௜ܮܻ ൅ ܩ ௛ܻ௝ ൅ ௜௝ܮܩ ൅ ݁௛௜௝      (2) 

Definitions of all terms in equation (2) are the same as in Model 1. It must be noted that 

the random error ݁௛௜௝ in Model 2 may contain a genotype-by-year-by-location interaction effect 

mentioned in Model 1, and the data set in this study can be analyzed with this model by use of a 

mixed linear model approach described in section 2.3. 

Model 3: 

If g genotypes are grown in multiple locations in one year with plot repetition s, Model 2 

can be simplified and represented as equation (3). 

௜௝௞ݕ ൌ ߤ ൅ ௜ܮ ൅ ௝ܩ ൅ ௜௝ܮܩ ൅ ௞ሺ௜ሻܤ ൅ ݁௜௝௞        (3) 

The terms in equation (3) are defined in equation (1), and this model can be used for a 

modified Skukla’s stability analysis (Kang and Mangari, 1995; Kang, 1993) and AMMI stability 

analysis (Crossa et al., 1990).  

Model 4: 

If genotypes are grown in multiple locations in a single year, with only genotype mean 

values recorded, then Model 3 can be modified as represented in equation (4). The random error 

term ݁௜௝ in equation (4) includes a possible genotype-by-location effect. 

௜௝ݕ ൌ ߤ ൅ ௜ܮ ൅ ௝ܩ ൅ ݁௜௝          (4) 

Though the model in equation (4) cannot be used to detect genotype-by-location effects, it is 

commonly used for various stability analyses, such as variation-based analyses(Francis and 

Kannenberg, 1978; Plaisted and Peterson, 1959; Shukla, 1972; Wricke, 1962), regression-based 
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analyses (Eberhart and Russell, 1966; Finlay and Wilkinson, 1963), modified Skukla’s stability 

analyses (Kang and Mangari, 1995; Kang, 1993), and AMMI stability analyses (Crossa et al., 

1990).  If multi-year data are to be used, it is necessary that both Models 1 and 2 be converted to 

Model 3 or Model 4 (Lin et al., 1986). 

2.3.Methods 

Variance component estimation and random effect prediction 

It is often the case that crop trial data does not include all genotypes at all environments, 

or trials are not at the same locations every testing year. It is also possible that some plots in 

specific environments are missing (Zhu et al., 1993). Thus, many experimental data are not 

balanced and as a consequence, analysis of variance (ANOVA) methods are not applicable (Zhu, 

1998). On the other hand, mixed linear model approaches, such as maximum likelihood (Hartley 

and Rao, 1967), restricted maximum likelihood (Patterson and Thompson, 1971), and minimum 

norm quadratic unbiased estimation (MINQUE) (Rao, 1971; Wu et al., 2010; Wu et al., 2006; 

Zhu, 1989; Zhu, 1998) methods are more generalized and appropriate for various data structures. 

In this study, a MINQUE approach with all prior variance components equal to 1 was employed 

for variance component estimation (Zhu, 1989). The reason to use a MINQUE approach is that it 

does not require data being normally distributed (Rao, 1971).  Effects were predicted by applying 

an adjusted unbiased prediction method (Zhu, 1993). A jackknife technique with a randomized 

10-group jackknife can be used to detect significance of each parameter of interest (Miller, 1974; 

Wu et al., 2008; Wu et al., 2012). 

Stability analyses 

In stability analysis, we only focused on genotypic mean ranks and means, and slopes 

(b1) and coefficients of determination (R2) related to regression-based analysis for all genotypes 
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(Finlay and Wilkinson, 1963; Lin et al., 1986). Data were converted by setting the combinations 

of years and locations as environments so Model 4 could be employed for these mentioned 

analyses. 

The bootstrapping technique (Davison and Hinkley, 1997; Efron, 1979) was employed to 

estimate bootstrap means and their corresponding 2.5% and 97.5% percentiles as the low limit 

(LL) and upper limit (UL) of 95% confidence interval for each parameter of interest by repeating 

1000 times. Multiple comparisons for parameters of interest can be made based on 95% 

confidence intervals among different cultivars. The whole yield data set (sample size=375) was 

resampled with replacement for estimating genotypic means and ranks, while 47 environmental 

indexes and the phenotypic means in all 47 environments for each cultivar were resampled with 

replacement for regression-based stability analysis.  

2.4. Data analysis 

Model 2 was employed to estimate variance components and to predict genotypic effects 

and genotype-by-location (cultivar-by-location) interaction effects, which are reported in Tables 

2, 3, and 4. Data were also converted so that Model 4 could be used for estimation of genotypic 

means/ranks and regression-based stability analysis. 

All data analyses were conducted by an R package GenMod developed by Jixiang Wu at 

South Dakota State University. 

3. Results 

3.1.  Genotypic means and ranks 

Genotypic means and rank values and their corresponding 95% confidence 

intervals for each of eight cultivars are provided in Table 1. The results demonstrated 
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that there were significant differences among cultivars for cotton lint yield. Cultivar 

Zhong 206 was significantly higher than cultivars Ji 84-25, Yun1929, and Lu 155, while 

no significant differences were detected compared with the remaining cultivars. 

Cultivar Ji 84-25 was significantly lower for lint yield than all other varieties, except 

Lu 155. The relative genotypic rankings were similar to for those for genotypic means 

(Table 1). For example, cultivar Zhong 206 was higher than Ji 84-25, Yun 1929, and Lu 

155, while not different from cultivars Ping 28, Shi3409, Jizhi 17, or Zhong 12. 

Cultivar Ji 84-25 was ranked last among all cultivars for lint yield.. 

3.2. Variance components for upland cotton yield 

In our study, we treated all effects as random because we were interested in both 

variance components and effects that can be calculated (Zhu, 1989; Zhu, 1993). 

Variance components and their corresponding proportions for cotton lint yield were 

estimated based on Model 2 and the results are summarized in Table 2.  

Significant year effects, genotype effects, year-by-location interaction effects, 

and genotype-by-location interaction effects were detected, while there were no 

location or genotype-by-year interaction effects for cotton lint yield (Table 2). Among 

all effects, year-by-location interaction effects contributed the most (60%) to the total 

variance. Genotypic effects contributed 13.3% to the total variance, and random errors 

contributed 17.2% or less, because year-location-genotype interaction effects were 

confounded with random errors. 

3.3. Genotypic effects for eight upland cotton cultivars 
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Predicted genotypic values (population mean ̂ߤ  +genotype effect ఫ෢ܩ	 , first 

column), genotypic effects 	ܩఫ෢ (second column), and 95% confidence intervals (3rd and 

4th columns) for genotype effects are provided in Table 3. Genotypic values and 

genotypic effects are equivalent, but genotypic values are more straightforward, while 

genotype effects are deviations from the population mean (the estimated population 

 Comparing the results in Tables 1 and 3, we observed that predicted genotype .(60.53=ߤ̂

values (Table 3) and bootstrapping genotypic means (Table 1) were consistent. In 

addition, the multiple comparisons among genotype effects showed similar patterns. 

Thus, both jackknife and bootstrapping tests can be applied to obtain similar results. 

3.4. Genotype-by-location interaction effects 

Among many G×E interaction effects, genotype-by-location interaction effects 

are one of the most important since environmental conditions for specific locations are 

relatively more predictable. For example, soil types, temperatures, and rainfall, the 

latter two of which can vary significantly year-to-year, are generally consistent between 

locations within the same year. With predicted genotype-by-location interaction effects, 

breeders can determine genotypes that are specifically adapted to some locations or 

similar environments. The interaction effects between eight genotypes and 24 locations 

are listed in Table 4. The variance of genotype-by-location interaction effects for each 

cultivar is also provided in this table (the last line of Table 4).  

Cultivar Ping 28 had the largest variance for genotype-by-location interaction 

effects among all eight cultivars, indicating that this cultivar had the lowest stability 

across these 24 locations. Thus, a breeder might predict that this cultivar would perform 
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better at several specific locations and/or similar locations. For example, to maximize 

its yield, Ping 28 could be grown in locations 7, 9, and 9, while not at location 1 or 17.  

3.5. Regression-based stability analysis 

Regression based stability analysis (Finlay and Wilkinson, 1963) resulted in providing 

two types of parameters: slopes (b1) and coefficients of determination (R2) for all genotypes. A 

low slope (less than 1) suggests that a genotype has lower than average sensitivity to the 

environmental indexes; whereas, a slope equal to 1 suggests it has an average response, and a 

slope greater than 1 indicates that it exhibits higher than average sensitivity to environmental 

indexes. A coefficient of determination of a genotype is a measure of its performance stability. A 

high R2 indicates that a genotype has a high stability of performance across the testing 

environments. With 1000 times bootstrapping, the low and upper limits (2.5% and 97.5% 

percentiles, respectively) for each slope and coefficient were generated. These results are 

summarized in Table 5.  

Slopes for cultivars Ping 28 and Lu 155 were significantly less than 1, from which one 

would predict these they are less sensitivity than average to the environmental index. On the 

other hand, the slopes for the remaining cultivars were equal to 1, and not significantly different 

from 1, indicating these cultivars had an average response to environmental indices. Cultivar Shi 

3409, Jizhi 17, Zhong 206, and Zhong 12 had higher slopes than Ping 28 and Lu 155, and four 

cultivars: Shi 2409, Jizhi 17, Zhong 206, and Zhong 12 had similar stabilities, all greater than 

0.80. These four cultivars also expressed a higher stability than Ping 28, which was less than 

0.70, numerically the lowest stability among all cultivars.  
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Comparing several methods, we observed that jackknife and bootstrapping techniques 

both gave consistent results for genotype means/values, indicating that either resampling method 

worked well for predicting stability of performance. A regular analysis for estimating genotype 

means integrated with bootstrapping is a reliable method for predicting stability compared to a 

complicated mixed linear model analysis. The genotype-by-location interaction (Table 4) for 

Ping 28 also indicated lower stability and less sensitivity to environmental indexes (Table 5), 

suggesting G×E interaction effects can be used as another measure of the stability for a genotype. 

4. Discussion 

Regression-based stability analysis is one of the most commonly used methods (Finlay 

and Wilkinson, 1963; Lin et al., 1986). Since an environmental index is a linear function of 

observations and it is a random, independent variable, a traditional t-test for the slope is not 

appropriate. With bootstrapping, this issue can be easily resolved. In addition, the confidence 

intervals for parameters of each genotype can be provided such that multiple comparisons among 

genotypes can be made. 

As mentioned by Lin et al. (1986), the results and conclusions are dependent on the 

environments and genotypes used in trials since environmental indices are used for regression 

analyses. Having common genotype checks grown in different years will help in making 

decisions based on performance. In addition, the number of environments used in regression-

based stability analysis should be enough so as to provide accurate predictions. If the number of 

environments is small, examining G×E interaction effects (Gray, 1982; Kang and Miller, 1984; 

Zhu, 1998) or using the AMMI approach (Crossa et al., 1990) might represent useful alternatives. 
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However, the AMMI approach is currently limited to the assumption that trial data are balanced. 

It might be interesting to analyze unbalanced data using an AMMI approach. 

As a practical consideration, many trial data are not balanced, and mixed linear model 

approaches are a generalized way to analyze various data structures (Little et al., 2006; Rao, 

1971; Zhu, 1998). With mixed linear model approaches, both genotype effects/values and G×E 

interaction effects can be predicted (Zhu, 1993). Genotype effects/values can be used to 

determine the averaged performance of cultivars over environments. Additionally, with G×E 

interaction effects, breeders can determine which genotypes are adapted to specific 

environmental conditions. For example, a significant positive G×E interaction effect suggests a 

genotype is adapted to specific environments or locations. Our results showed that information 

on G×E interaction effects can be a useful in determining the yield stability of a cultivar, because 

they can be predicted by mixed linear model approaches, even from an unbalanced data set.  

Environmental conditions can be classified into predictable and unpredictable factors. 

Soils types can be more predictable in each test location and field practices can be fixed as 

compared to temperatures and rainfalls between years. If those more predictable environmental 

factors play a significant role on yield performance, the interactions between genotypes and 

those factors should be very useful to achieve for maximum yield. If interactions between 

genotypes and those unpredictable factors are significant, widely adapted genotypes should be 

considered in breeding selection. For example, two maize hybrids were highly dependent on 

environmental conditions between two years (Fan et al., 2007) .   

There are several ways to boot a multi-environment data set and the results could be 

different from one to another. One way is to resample all observations with replacement and 
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another one is within each environment. The first one was used to estimate genotypic 

means/ranks and their standard errors for these parameters. It appeared that the bootstrapped 

means were very close to means based on the whole data set. In addition, we employed the 

second one to estimate these parameters and the results were almost identical (results not shown). 

The environmental indexes used for regression-based stability analysis are the same for each 

genotype and environmental indexes and phenotypic means in all environments were 

bootstrapped. Therefore, the bootstrapping process for regression-based stability analysis was 

different from the one used for genotypic mean/rank analysis. 

In this study, we employed a jackknife technique to estimate standard errors for all 

variance components and effects while bootstrapping methods for genotypic means/ranks and 

regression-based stability analysis. Based on our limited experience, it seems that jackknife 

techniques are more appropriate than bootstrapping methods on observations for estimations of 

variance components and predictions of random effects. A possible major reason is that each 

resampled data set will contain some missing identities like genotypes and several repeated 

observations. Such resampled data could lead to unfavorable biased estimations/predictions and 

increase large standard errors for those parameters. It might be workable to resample on 

individual residuals with replacement. On the other hand, we also observed that a 10-fold 

randomized jackknife approach was an effective way to integrate with a MINQUE approach to 

reasonably limit Type I error and maintain testing power when (Wu et al., 2012). Multiple 

comparisons for genotype means and genotypic effects were very consistent, which suggests that 

the two resampling approaches (jackknife and bootstrapping) can serve equally well for making 

mean comparisons among genotypes. 
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Generally, the genotypes used in crop trials are considered as fixed effects. In our data 

analysis, we treated all components, except the population mean as random, so that both variance 

components and effects could be calculated (Wu et al., 2006; Zhu, 1989; Zhu, 1993; Zhu, 1998). 

Although, our statistical statements and conclusions were limited to the use of these specific 

genotypes, our analysis showed that the predicted genotype effects were consistent to the results 

when genotypes are treated as fixed effects (Zhu et al., 1993).   
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Table 1: Mean values and ranks and their 95% confidence intervals for eight cotton 
cultivars. 

Cultivar Mean  Rank 
Orig† Boot‡ LLǂ ULǂ  Orig† Boot‡ LLǂ ULǂ 

Ji 84-25 50.34 50.39 46.91 54.13 1 1.00 1 1 
Yun 1929 58.54 58.43 54.61 62.05 3 3.22 2 5 
Ping 28 64.89 64.87 61.45 68.48 6 6.55 5 8 
Shi 3409 60.92 60.90 56.72 64.67 5 4.53 2 6 
Jizhi 17 59.54 59.49 55.03 63.43 4 3.80 2 6 
Zhong 206 67.00 66.88 62.67 70.85 8 7.43 6 8 
Lu 155 57.47 57.43 54.02 60.60 2 2.69 2 5 
Zhong 12  65.39 65.34 61.05 69.31 7 6.79 5 8 

†：Genotypic mean/rank calculated from the original data and ‡: bootstrapped mean/rank from 
1000 resamples. 

ǂ: LL=low limit and UL=upper limit 
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Table 2: Estimated variance components and proportional variance components for 
cotton yield. 

Component Variance Proportional variance 
Estimate P-value Estimate P-value

Year 4.39 0.04 0.02 0.04
Location 7.02 0.22 0.03 0.22
Genotype 27.89 0.00 0.13 0.00
Year×location 125.97 0.00 0.60 0.00
Year×genotype 0.85 0.54 0.00 0.55
Location×genotype 7.95 0.10 0.04 0.10
Residual 36.07 0.00 0.17 0.000
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Table 3: Phenotypic values and genotypic effects for eight cotton cultivars over 24 
locations and two years. 

Cultivar Phenotypic 
value 

Genotypic 
effect 

LLǂ ULǂ  

Ji 84-25 50.59 -9.94 -11.35 -8.53 D 

Yun 1929 58.64 -1.89 -3.06 -0.72 C 

Ping 28 64.83 4.30 2.76 5.84 A 

Shi 3409 60.84 0.31 -0.67 1.29 B 

Jizhi 17 59.54 -0.99 -2.24 0.27 BC 

Zhong 
206 

67.03 6.50 5.27 7.74 A 

Lu 155 57.59 -2.94 -3.74 -2.15 BC 

Zhong 12  65.18 4.65 3.44 5.85 A 

ǂ: LL=low limit and UL=upper limit for genotypic effects 
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Table 4: Genotype-by-location interaction effects between eight cotton varieties and 24 
locations 

Location Ji 84-25 Yun 1929 Ping 28 Shi 3409 Jizhi 17 Zhong 206 Lu 155 Zhong 12
1 4.89** 0.41 -8.39** 0.15 3.75 0.63 -0.92 2.75* 

2 -1.39 1.07 3.22* -2.70 -0.13 3.96* -0.15 2.37* 

3 5.02 -0.79 -1.03 -0.84 -0.48 2.46 0.89 1.15 

4 2.43* -4.56* 0.10 -2.60* -1.53 0.39 0.19 0.25 

5 2.65 1.00 -5.89 0.30 2.65 3.64* -3.77 1.90 

6 -6.96 3.34* -0.96 -2.60 3.20* 0.81 -0.60 2.24 

7 -1.53 -1.69 5.02** 4.74* -0.38 0.82 -0.90 -2.88* 

8 -3.68* 4.40 -2.21 2.66* 0.29 4.09* -3.87** 3.15 

9 -3.95* 0.45 6.61** 1.96 0.94 -1.36 -2.46 1.97 

10 1.15 -0.44 -0.59 -0.30 0.24 0.59 0.32 -0.63 

11 -0.58 -0.04 -0.92 0.52 2.05 -3.00 -1.03 -0.95 

12 -2.95 2.31 2.63 -3.83 -4.98 -1.66 9.32** -3.11 

13 1.44 -0.21 -0.82 0.89 0.93 -1.40 -1.30 2.29* 

14 -0.03 -0.91 0.36 1.62 0.93 -1.56 1.37 0.57 

15 -2.65 3.21 3.04 -1.15 -0.83 -1.89 -1.23 -3.74* 

16 -0.58 0.46 1.64 1.07 0.09 -2.25 -3.82* 3.67* 

17 1.61 -0.55 -8.04** 2.70 -0.47 -1.36 1.31 -0.44 

18 -0.62 1.01 3.80 -1.16 0.73 2.03 0.02 -2.32 

19 1.45 -4.91* 3.97 -4.13* -5.36** 4.21* 0.24 -3.71* 

20 0.74 -2.05 5.76** -0.50 -2.09* 1.91 -1.62 -3.93* 

21 0.17 -2.80 1.14 -3.11* -1.49 -1.73 -1.19 1.98* 

22 -1.19 0.55 -1.85 0.94 0.97 -1.56 3.51 0.44 

23 -1.48 -0.22 -2.63* 2.96* -0.78 -4.74* 3.46* -1.73 

24 0.30 -0.18 -1.53 2.69* 1.21 0.68 0.61 1.38 

Variance† 7.47 4.87 15.38 5.58 4.59 5.90 7.65 5.77 
†: Variance of genotype-by-location interaction effects for each genotype; * and ** are significant from 
zero at probability levels of 0.05 and 0.01, respectively. 
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Table 5: Estimated slopes and coefficients of determinations (ܴଶ) and their 95% 
confidence intervals (LL: low limit and UL: upper limit). 

Slope ܴଶ 
Orig† Boot‡ LLǂ ULǂ Orig† Boot‡ LLǂ ULǂ 

Ji 84-25 0.91 0.91 0.76 1.07 0.74 0.74 0.59 0.86
Yun 1929 1.01 1.01 0.86 1.13 0.83 0.83 0.73 0.91
Ping 28 0.72 0.72 0.50 0.96 0.49 0.49 0.29 0.67
Shi 3409 1.13 1.13 0.99 1.26 0.89 0.89 0.81 0.94
Jizhi 17 1.12 1.12 0.99 1.26 0.88 0.89 0.82 0.93
Zhong 
206 1.14 1.14 0.99 1.28 0.88 0.88 0.81 0.93
Lu 155 0.84 0.84 0.67 0.98 0.72 0.72 0.53 0.85
Zhong 12  1.14 1.14 0.99 1.27 0.88 0.88 0.81 0.93

†：Genotypic mean/rank calculated from the original data and ‡: bootstrapped mean/rank from 
1000 resamples. 

ǂ: LL=low limit and UL=upper limit 
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