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A Comparison of Analytic and Bayesian Approaches for Characterizing 
Thermal Hysteresis in Cattle Using Algebraic and Geometric Distances 

 
F. Yang1, A. M. Parkhurst1, S. Zhang1, C. N. Lee2, T.M.Brown-Brandl3, K.G. Gebremedhin4, 

P.E. Hillman (retired)4 
1Department of Statistics, University of Nebraska – Lincoln 

2 Department of Human Nutrition, Food and Animal Sciences, University of Hawaii-Manoa 
3USDA-ARS U.S. Meat Animal Research Center 

4 Department of Biological and Environmental engineering, Cornell University 
 
 

Abstract 
 
A high ambient temperature poses a serious threat to cattle. Above a certain threshold, an 
animal’s body temperature (Tb) appears to be driven by the hot cyclic air temperature (Ta) and 
hysteresis occurs. Elliptical hysteresis describes the output of a process in response to a simple 
harmonic input, and the trajectory forms a closed loop. The hysteresis loop shows a rotated 
elliptical pattern which depends on the lag between Tb and Ta. The objectives of this study are 1) 
to characterize hysteresis using bootstrapped ellipse specific nonlinear least squares 2) to 
reformulate models using the Bayesian method, and 3) to assess the contribution of the Bayesian 
approach by comparing the risks using two metrics: algebraic and geometric. Comparisons and 
illustrations are made using simulations over three levels of signal strength. For each method; 
bootstrap and Bayes, both algebraic and geometric distances are compared based on the root 
mean square distance (RMSE) from fitting the hysteresis loop. Data from a heat stressed steer in 
a field experiment was analyzed to illustrate and compare the results from each method. 
 

 

1.Introduction 

The input-output trajectory of a hysteresis system displays the dependence of the current value 
on past history. Elliptical hysteresis describes the behavior of a hysteretic process in response to 
periodic variations of a single input. In animal science, hysteresis is important when animals are 
thermally challenged since body temperature (Tb) shows a dramatic response to heat stress, (HS). 
Studies show Tb is essentially unresponsive to air temperature (Ta) until a threshold is reached 
and then there is a dramatic response to increasing air temperature; and hysteresis becomes 
prominent. (Hahn, Parkhurst, & Gaughan, 1997; Mader, et al., 2001)During heat stress, the 
dynamics can be characterized by thermal hysteresis which follows an elliptical loop. It measures 
and depicts the amount of heat stress an animal experiences in a hot environment.(Parkhurst, 
Model for Understanding Thermal Hysteresis During Heat Stress: A Matter of Direction, 2010)  
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A phase diagram for Tb versus Ta indicates the time-dependence and memory associated with 
the hysteretic behavior; thus, plotting a phase diagram between Tb and Ta provides a way to 
illustrate the existence of thermal hysteresis. Thermal hysteresis becomes prominent once a delay 
(or lag) between Tb and Ta is noticeable in the Tb-Ta diagram and the supposition that Ta is the 
driving force when an animal is thermally challenged appears plausible. (Figure 1) 

 

Figure 1. Left: A time series plot shows a 4 hour lag between Tb and Ta for an animal in the 
temperature controlled chamber. Right: The diagram of Tb ~ Ta for this animal shows a closed 
loop representing thermal hysteresis and the characteristics of the Elliptical Hysteresis Loop 

25 30 35 40

39
.0

39
.5

4
0.
0

40
.5

4
1.
0

Thermal Hysteresis Loop

Input-Ta

O
ut
p
ut
-T

b

Coercion
Retention

2r

1r

1A m p

2A m p



 

Since the thermal hysteresis loop shows a rotated elliptical pattern when input is sinusoidal, 
modeling the rotated ellipse  is important to estimating the characteristics of the hysteresis 
system. An ellipse can be represented using a pair of first-order differential equations: 

      b a

a b

Amp Ampdy dx
x y

dt Amp dt Amp
  

                                            (1.1)
 

After rotating the ellipse counter-clockwise over an angle θ and translating to the centroid (ca,cb), 
the ellipse can be reparameterized as 

 ( ) cos( ) sin( )a bt Amp t Amp t 
                                          (1.2)

 

By solving the differential equations, an ellipse centered at the origin can be obtained 
parametrically as 

1 2

1 2

cos( )cos( ) sin( )sin( )( )

sin( )cos( ) cos( )sin( )( )
a

b

t t cx t

t t cy t

  
   

   
                                        (1.3)

 

Where λ1 and λ2are the major and minor axes of the ellipse after rotation so that 

       2 2 2 22 2
1 2 1 2cos( ) sin( )  and  sin( ) cos( )a bAmp Amp            

Several features of the hysteretic elliptical loop characterize the dynamics of heat stress. The 
amplitudes of Ta and Tb indicate the highest or lowest temperature that animals would 
experience. The center of the loop represents the averages (ca, cb). Retention, the departure of Tb 
from the centroid indicates the level of heat left in the body as the thermal challenge recedes. It is 
the buildup of heat at the average input challenge. Coercion, the divergence of Ta from the 
centroid, indicates the strain Ta places on the animal’s thermoregulation process. Alternatively, 
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coercion can be thought of as a measure of the resistance of the body to heat up by increasing Ta. 
The angle of rotation in a hysteresis ellipse is the angle between ellipse’s major axis and the Ta 
(horizontal)-axis. It indicates the length of the time delay; i.e. how long Tb lags Ta. The lag can 
be estimated from the angle of rotation of an elliptical loop. The area inside the hysteresis loop 
equals the work done in one period or cycle (Brokate & Sprekels, 1996). Thus, the area of the 
ellipse formed during thermal hysteresis is an indication of the animal’s heat load. As a result, it 
is possible to fit an ellipse for not only predicting Tb by identifying the lag of Tb on the current 
Ta, but also for estimating the amount of head load. 

 

In this study, the ellipse is fit by incorporating both bootstrap and Bayes methods to the ellipse-
specific nonlinear model. The root mean squared errors are quantified by two metrics: algebraic 
and geometric distance. Therefore, the objectives of this study are 1) to characterize hysteresis 
using bootstrapped ellipse specific nonlinear least squares 2) to reformulate the model using the 
Bayesian analysis, and 3) to assess the contribution of the Bayesian approach by comparing the 
risks using two metrics: algebraic and geometric. 

 

2. Methods 

2.1 Ellipse Specific Nonlinear Least Square Method(ES-NLS) 

Developed from (1.3), a rotated ellipse with rotation angle θ and centered at (ca, cb) was written 
parametrically by input (x) and output (y). Therefore, a nonlinear statistical model of 5 
fundamental parameters can be used to describe the relationship between the input and output 
series. 

   2 2

2 2 2 2
2 2 2 2

2 2 2 2

2 cos( )( ) sin( )( ) 2 sin( )( ) cos( )( )
1

cos sin cos sin

a b a b

a b a b
a b a b

x c y c x c y c

Amp Amp Amp Amp
Amp Amp Amp Amp

   
 

   

      
   

 
   

 

(2.1) 

Equation 2.1 is called the parameterized ellipse model. The expected surface of the model is
( ) 0E   .Therefore, the 5 fundamental parameters can be found directly from the nonlinear 

model. The other 4 parameters we need to characterize the dynamics can be derived as (2.2). 
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(2.2) 

 

2.1.1 Starting Values and Self-starter Function 

A self-starter function described by Yang and Parkhurst (2011) was used based for the ellipse-
specific direct least squares method. For the ellipse-specific method, the algebraic distance is 
minimized over the set of n points in the least squares sense that is 
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with the constraint 2
2 1 34 0a a a  . 

Hence, a generalized eigen-system (2.3) can help to determine an unique ellipse fitted to the data. 
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a , which is the eigenvector corresponding to the negative eigenvalue in the eigen-system, is the 
solution to (2.3)  

 { 0 : det | ' |}a Kernel D D C                                            (2.4) 

The starting values for 5 fundamental parameters can be obtained from a . 

2 2
1 2 3 63 4 2 5

_ 2 2_ 2
1 2 32 1 3 2

2 2
1 5 2 4 1 3

1 2 3 6b_ 2 _ 2 2
2 1 3

1 2 3

2
cos sin cos sin4 1

arctan
2 2

4 sin sin cos cos

a a b b
a starta start

start

a a Tb bstart
b start

a c a c c a c aa a a a
Ampc

a a aa a a a

a a a a a aa c a c c a c ac Ampa a a a a a

   


   

   
   

        



          (2.5) 

 

2.2 Ellipse Specific Nonlinear Least Square with Bootstrap Method (ES-NLS-Boot) 

Bootstrapping developed by Efron (1979; 1993) provides an alternative way of calculating SEs. 
It allows us to estimate the population distribution of the parameter estimates. (R package: Boot) 
By resampling the residuals from ellipse specific nonlinear least square method, subset of each 
simulated realization was drawn randomly with replacement. For each of the 1000 simulated 
realizations, 999 bootstrapping iterations were performed on the ellipse-specific nonlinear least 
squares method. Bootstrapping estimates and SEs for each parameter were obtained by averaging 
over the total number of iterations. (Figure 2) 

 

Figure 2. Diagram of Bootstrapping procedure 
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2.3 Ellipse Specific Nonlinear Least Square with Bayes Method(ES-NLS-Bayes) 

For both the ES-NLS and ES-NLS-Boot methods, all the parameters were viewed as fixed. 
However, in some situations such as uncontrolled air temperature, some parameters may be 
viewed as random quantities. In such case, Markov chain Monte Carlo method (MCMC)  (Carlin, 
2009) provides a good way to fit data. In this study, one of the MCMC methods, Gibbs sampler 
with Metropolis, is applied to ES-NLS when assume amplitude of Tb (Ampb) is randomly 
distributed. 

In ES-NLS_Bayes, we assume the ellipse follows a distribution as  

( , ) iz f x y                                                              (2.6) 

where
   2 2

2 2 2 2
2 2 2 2

2 2 2 2

2 cos( )( ) sin( )( ) 2 sin( )( ) cos( )( )
1

cos sin cos sin

i a i b i a i b
i

a b a b
a b a b

x c y c x c y c

Amp Amp Amp Amp
Amp Amp Amp Amp

   


   

      
  

 
   

 

 and 

is the random error for the whole model. 

The conditional distribution of z given Ampb is derived as 

 2| ~ ,i b iz Amp N  
                                                     (2.7)

 

with prior 

2 2~ ( , )bAmp Gamma a b                                                        (2.8) 

Hence, the posterior distribution of Ampb is 

2

2

2
2

( | ) ( ) exp
2

ia b
b b b

Amp
p Amp z h Amp Amp

b




 
     

                    (2.9) 

The posterior distribution of Ampb can be obtained using the Gibbs sampler with Metropolis, 
which is shown as follows. 
 
Gibbs sampler with Metropolis 
Step 0: Give starting values for Ampb 
Step 1 to T: Draw *

bAmp from a proposal density q(.). In this study, the proposal density
( 1) 2(.) ( , )t
bq N Amp  . Then,  * ( 1)~ t

b bAmp q Amp   

Compute 
* *

( 1) ( 1)

( ) / ( )

( ) / ( )
b b

t t
b b

h Amp q Amp
r

h Amp q Amp   
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( ) *

*
( )

( 1)

If  1, set .   

, with prob 
If  1, set 

,  with prob 1-  

t
b b

t b
b t

b

r Amp Amp

Amp r
r Amp

Amp r

 


  



 

 
Repeat the above steps for m chains. After a t0 burn-in period, the posterior mean for Ampb is 

 
0

( )

1 10

1ˆ ( | )
( )

m T
t

b b j
j t t

E Amp Amp
m T t   


  z                                (2.10) 

 
In this study, m=5 (chains), T=10000 (total iterations), t0=2000 (burn-in). 
 

2.4 Comparisons 

The ES-NLS-Boot and ES-NLS-Bayes methods were compared by root mean squared of 
residuals (RMSE). In this study, RMSE and SEs for every parameter were obtained by two 
metrics: algebraic distance and geometric distance. Comparisons were made between two 
metrics and also between methods. The method with smaller RMSE and SEs would be preferred. 

 

2.4.1 Algebraic distance 

The algebraic distance is a linear distance metric. In 2 , if a closed curve can be defined 
implicitly as ( , ) 0f x y  , where (x, y) is the point on the curve, then the algebraic distance from 

a point ( , )k kx y  to the closed curve is 

A ( , )k kD f x y  

Since a rotated ellipse with rotation angle θ and centered at (cx, cy) was written parametrically as 

(2.1), the algebraic distance from a point ( , )k kx y to this ellipse is  

   2 2

A 2 2 2 2
2 2 2 2

2 2 2 2

2 cos( )( ) sin( )( ) 2 sin( )( ) cos( )( )
( , ) 1

cos sin cos sin

k Ta k Tb k Ta k Tb
k k

Ta Tb Ta Tb
Ta Tb Ta Tb

x c y c x c y c
D x y

Amp Amp Amp Amp
Amp Amp Amp Amp

   

   

      
  

 
   

 

 

(2.11) 

Under the algebraic distance metric, the root mean squared residual is 

2
A A

1

( , )
n

i i
i

RMSE D x y


                                                   (2.12)
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2.4.2 Geometric distance 

Geometric distance indicates the shortest distance from a point to a plane in n . It is also called 
Euclidean distance. In a univariate study, the geometric distance, which represents the departure 
(residual) from observed points to predicted points, is measured using vertical distance. i.e.

ˆG obsD y y  (Figure 3, left). However, in a multivariate study, vertical distance is not adequate. 

Information of other dimensions is lost if only vertical distance is used. (Figure 3 middle left). In 
order to gain more information, geometric distance is important for estimating the variation from 
one point to a curve or a surface. 

Suppose Yn is a point in n , then the geometric distance is the vertical distance from Yn to the 

expectation surface. i.e. ˆn nY Y . (Figure 3 middle right) In this study, geometric distance is the 
distance between the observed point and its projection on the tangent plane on the closed 
curve(Figure 3 right), 

 
      

ˆ ˆ,
ˆ ˆ ˆ ˆmin || , , ||: , 0G x y

D x y x y f x y  
                                (2.13)

 

Figure 3 Illustration of geometric distances. From left to right: univariate case; vertical distance 
in bivariate case; geometric distance in general case (expectation surface); geometric distance in 
bivariate case. 

 

Using the geometric distance, the root mean squared residual is

 

2
G

1

( , )
n

G i i
i

RMSE D x y


 
                                          (2.14)

 

2.4.2.i Gauss Newton's method for obtaining Geometric Distance 

Suppose ( , )k kx y is an observation at point t, and d is the geometric distance from ( , )k kx y to an 

ellipse, then 

   2 22 ( ) ( )k kd x t x y t y                                        (2.15) 
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Let 
2( )

0
d

t





, then a function f about t forthe input and output series can be obtained 

   * *( ) 2 ( ) '( ) 2 ( ) '( )f t x t x x t y t y y t                              (2.16) 

The Jacobian matrix, J, is  

f f f
J

x x y

             


                                                 (2.17) 

The geometric distance can be found using Gauss Newton's method. (Ahn, Rauh, & Warnecke, 
2001) 

Gauss Newton's method is an iterative method. The procedure for finding the corresponding 
tangent point  * *( , )x y  starts with two points 1 1( , )k kx y and 2 2( , )k kx y so that 1 1( , )k kx y is the 

intersect of the ellipse and the line through the observation and centroid and 2 2( , )k kx y is the 

intersect of the ellipse and the line through the observation but orthogonal to the major axis. 
(Figure 4) 

Then, the middle point 0 0( , )k kx y  between 1 1( , )k kx y and 2 2( , )k kx y is used as the initial point for 

finding the tangent point, 

1 2 1 2
0 0( , ) ,

2 2
k k k k

k k

x x y y
x y

    
 

                                     (2.18) 

For step i=1,2, 3,... 

1
0 0( , ) ( , )k kx y J f x y                                                   (2.19) 

1 1( , ) ( , ) ( , )i i i ix y x y x y                                              (2.20) 

The iteration converges at some step n if 

1 1,n n n n

n n

x x y y

x y
 

  
  

 
                                           (2.21) 

with a specified convergence tolerance ε=(1e-6, 1e-6). 

Therefore, the tangent point  

* *( , ) ( , )n nx y x y                                                    (2.22) 
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Figure 4. Illustration of Gauss Newton’s method for finding geometric distance 
 

 

3. Data 

3.1 Simulation 

Three simulation studies are conducted to evaluate the performance of NLS-Boot and NLS-
Bayes. Realistic numbers for the model parameters based on values reported in previous 
literature(Hillman, Gebremedhin, Brown-Brandl, & Lee, 2005)were used. Assume an input heat 
challenge of 24 ±8 oC is applied resulting in an output signal of 39 ± 0.6oC with a 5.1 hr lag. The 
true area of the ellipse is 14.67, the true retention (R) is 0.58 oC, and the true coercion (C) is 7.78 
oC. The 1000 datasets were simulated by adding errors to both Ta (εa) and Tb (εb) such that three 
signal-to-noise ratios (SNR)  levels (weak, moderate, strong) were generated. In strong SNR, εb 

is 0.03 and the corresponding relative variation ( / ,  where 8a b aRV Amp Amp  ) is 267; in 

moderate SNR, εb is 0.05 and the corresponding RV is 160; in weak SNR, εb is 0.13 and the 
corresponding RV is 62.  For each study, the covariance matrices based on algebraic and 
geometric distance were constructed. Hence, six covariance matrices were built in the simulation 
study to compare the NLS-Boot and NLS-Bayes methods.  

 

3.2 Field Experiment 

A field experimental was conducted over two weeks (from end of July to beginning of August) 
in  2004 at USDA-ARS U.S. Meat Animal Research Center Nebraska. Thirty-two heifers were 
randomly selected in order to study the effect of accessibility to shade among four breeds of 
steers. The Ta and Tb were recorded  hourly. In this article, an Angus steer with black hair coat 
and without access to shade for one hot experimental day was selected, and its Tb and  
corresponding Ta were used to illustrate the NLS-Boot and NLS-Bayes methods.  

 

4. Results 

4.1 Simulation results 
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Overall, the geometric distance always produces the smallest RMSE; as the data becomes nosier 
(i.e. SNR becomes weaker and RV decreases), both the algebraic and geometric RMSEs increase 
(Table 1). The Bayes method provides smaller RMSEs than the bootstrap method for both 
metrics. Both methods underestimate the true algebraic RMSE whereas, both methods 
overestimate the true geometric RMSEs for all three SNR levels. 

Table 1. RMSE by Algebraic distance and Geometric distance for Bayes and Bootstrap methods 
under Strong (S), Median (M), and Low (L) SNR levels. 

Estimate SNR True Bayes Bootstrap 

RMSE 
(Algebraic) 

S .117 .088 .101 

M .172 .138 .139 

W .364 .208 .241 

RMSE 
(Geometric) 

S .038 .051 .057 

M .057 .076 .089 

W .112 .133 .150 

 

Table 2 shows that while the methods provide similar estimates, the estimates provided by NLS-
Bayes are slightly closer to the truth than NLS-Boot. Morover, the NLS-Boot estimates become 
more biased as noise increases. The estimates for Ampb under three SNRs are all over-estimated 
for both methods. The estimates become more biased as the noise increases which causes the 
estimates for the derived parameters: area, lag and retention to be overestimated, while the 
estimates for coercion are underestimated.  

The SE’s for each parameter increase with noise (SNR level) and the geometric distance always 
produces the smallest SE no matter which method is used. When considering which method 
gives SE’s closest to the truth, we find the Bayes method gives geometric SE’s closer to the truth 
while the bootstrap method gives SE’s closer to the truth for the algebraic metric. This is because 
the Bayes method produces the RMSEs which are closer to the truth for the geometric metric and 
the Bootstrap method produces the RMSEs which is closer to the truth for the algebraic metric. 
Both methods underestimate the SE’s. 
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Table 2. Estimates of Ampb, and Derived Parameters: Area, Lag, Retention (R), and Coercion (C) 
and their SEs by Algebraic and Geometric distances using both Bayes and Bootstrapping 
methods under strong (S), median (M), and low (L) SNR levels. 

Param
eter 

S
N

R
 Estimate SE (Algebraic) SE (Geometric) 

True Bayes Bootstrap True Bayes Bootstrap True Bayes Bootstrap 

Ampb S 

.6 

.624 .628 .015 .011 .013 .004 .006 .007 

M .646� .651� .022 .018 .018 .009 .012 .014 

W .729 .738 .058 .033 .038 .018 .021 .024 

Area S 

14.67 

15.08 15.10 .406 .305 .350 .132 .177 .198 

M 15.54 15.56 .624 .501 .505 .243 .324 .379 

W 17.21 17.24 1.50 .854 .989 .461 .547 .617 

Lag S 

5.1 

5.16 5.19 .146 .110 .126 .048 .064 .072 

M 5.23 5.36 .223 .179 .180 .087 .116 .136 

W 5.38 5.67 .492 .281 .326 .152 .180 .203 

R S 

.58 

.61 .62 .015 .011 .013 .004 .006 .007 

M .63� .66� .022 .018 .018 .009 .012 .014 

W .71� .79� .054 .031 .036 .017 .020 .023 

C S 

7.78 

7.71 7.69 .176 .132 .152 .057 .077 .086 

M 7.66 7.62 .256 .205 .206 .099 .132 .155 

W 7.51 7.49 .504 .288 .334 .156 .185 .209 

 

4.2 Field experiment results 

Table 3 gives the results for a heat stress day for one Angus steer without access to shade. The 
SNR level for this data is moderated. As expected from the simulation study, the geometric 
metric distance produces smaller RMSE and SE’s. The NLS-Boot and NLS-Bayes returned 
similar estimates with the notable exception of heat load (area).The simulation study indicates 
geometric SEs provided by NLS-Bayes are slightly closer to the truth, NLS-Boot results are used 
for the ease of implementation issue. Therefore, the selected black Angus steer  reached a 
maximum challenge in Tb (0.7±.03C) after being exposed to a maximum increment in Ta 
(7.9±.3C, not shown). The steer’s Tb lagged Ta by 4.8±0.3h causing retention of 0.63 ± 0.05 C 
and coercion of 7.50 ±0.34 C. The heat load given by area is estimated to be 15.66 ± 0.77C2. 
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Table 3. Estimates of Ampb, Area, Lag, Retention (R), and Coercion (C) , their SEs and RMSE 
by Algebraic (A) and Geometric (G) distances using both Bayes and Bootstrapping methods for 
a Heat Stressed Black Angus Steer.  

Parameter Bayes Bootstrap 

Est SE(A) SE(G) Est SE(A) SE(G) 

Ampb .7 .04 .03 .7 .05 .04 

Area 15.8 .89 .72 15.7 .95 .77 

Lag 4.8 .31 .25 4.8 .39 .32 

R .6 .03 .03 .6 .06 .05 

C 7.5 .26 .21 7.5 .42 .34 

RMSE(A) .213 .214 

RMSE(G) .172 .174 

 

5. Conclusion 

geometric distance is recommended for bivariate NLS. Geometric distance provides the  smallest 
RMSE and SE’s. It gives an alternative way to estimate hysteresis loop by minimizing geometric 
sum squared of residuals. Hence, Both Bayes and Bootstrap can be combined with ellipse 
specific nonlinear model for fitting the elliptical hysteresis loop. Both methods produce similar 
estimates. For the five examined parameters, only coercion is under estimated but all other 
parameters are over estimated. Bayes estimates are slightly closer to the truth especially as SNR 
increases and may be explored further. However, NLS-Boot has the advantage that it is easier to 
implement. 

For future study, the NLS-Bayes method may be expanded. More fundamental parameters, such 
as Ampa and θ, could be assumed as random and then incorporated with the NLS-Bayes method. 
Developing the NLS-Bayes method may improve the analysis of datain the cases where the SNR 
level is weak or the process if from uncontrolled Ta obtained from field data (i.e. Tb is 
influenced by other environmental factors).  

 

6. Summary 

Thermal hysteresis elliptical loops can be estimated using ellipse-specific nonlinear least squares 
method. In the ellipse-specific nonlinear least squares method, both bootstrap and Bayes methods 
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can be implemented in order to improve the fitting of an elliptical hysteresis loop.In NLS-boot, 
the residuals from ellipse specific nonlinear least square method were resampled with 
replacement and then 999 bootstrapping iterations were performed on the ellipse-specific 
nonlinear least squares method. In NLS-bayes, amplitude of Tb was assumed to be random when 
holding other constant. Markov Monte Carlo method was used. The posterior distribution of 
Ampb can be obtained using the Gibbs sampler with Metropolis.Five fundamental parameters, 
amplitudes of input and output, centroids, and regression angle of rotation, and four derived 
parameters lag, area, retention, and coercion can be estimated byeach method. Lag and area of an 
elliptical hysteresis loop are two features used to characterize the dynamics of heat stress. In 
simulation study, estimates, including RMSE from algebraic distance, RMSE from geometric 
distance, Ampb, lag, area, retention, and coercion, and the corresponding SE were obtained. The 
simulation study showed there are slight differences among two methods in the quality of the 
parameter estimates.For bothmethods, RMSEs and SEs for all parameters usinggeometric 
distance were always smaller than those usingalgebraic distance.Although estimates fromNLS-
Bayes areslightly closer to the truth in the simulation study, NLS-boot is still has the advantage 
that it is easier to implement.   
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