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ABSTRACT: Next-generation sequencing (NGS) technologies have opened the door to a wealth
of knowledge and information about biological systems, particularly in genomics and epigenomics.
These tools, although useful, carry with them additional technological and statistical challenges
that need to be understood and addressed. One such issue is amplification bias. Specifically, the
majority of NGS technologies effectively sample small amounts of DNA or RNA that are amplified
(i.e., copied) prior to sequencing. The amplification process is not perfect, and thus sequenced read
counts can be extremely biased. Unfortunately, current amplification bias controlling procedures
introduce a dependence of gene expression on gene length, which effectively masks the effects of
short genes with high transcription rates. In this work we present a novel procedure to account for
amplification bias and demonstrate its effectiveness in estimating true gene expression independent
of gene length.
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1 Introduction

A number of biotechnological advances have been developed recently that assist scientists in as-
sociating genes with various biological outcomes. Omne such advance is called Next-Generation
Sequencing (NGS). NGS technologies (Margulies et al. 2005; Mardis, 2008; Bennet, 2004) have
allowed researchers to perform genome-wide studies at extremely high resolution on a variety of
heritable biological phenomena, including gene expression via RNA-seq (Marioni et al., 2008)),
DNA methylation via MethylC-seq (Lister et al., |2008), and histone modifications via ChIP-seq
(Mikkelsen et al., 2007). While these tools are useful, there are nontrivial technological and statis-
tical issues that need to be understood and addressed in order to analyze these data properly.

1.1 RNA-seq Workflow

There are three primary technologies used in NGS applications: the 454 Genome Sequencer FLX
by Roche (Margulies et al., 2005)), SOLiD by Applied Biosystems (Mardis, 2008]), and the Genome
Analyzer (also called the “Solexa” sequencer) by Illumina (Bennet|, 2004). In this work, we focus on
data originating from the Illumina platform, which has been used in a variety of NGS applications
(Marioni et al., 2008; |Lister et al., |2008; Mikkelsen et al., 2007), though the methods presented
can be easily adapted for the other technologies. RNA sequencing (RNA-seq) is an approach for
quantitatively assessing gene expression levels using high-throughput sequencing. In gene expression
applications, mRNA is isolated, randomly fragmented using high-frequency sound waves (referred to
as sonication), and converted to complimentary DNA (¢cDNA). Fragments are then selected based on
size (approximately 200 bases in length), and amplified through polymerase chain reaction (PCR)
(Saiki et al. [1988]). The first 36-50 bases of each fragment are actually sequenced (resulting in
segments known as reads), since the quality of base calls degrades over the length of the fragment.
In cases where a reference genome (i.e., reliable genomic sequence) exists, these reads are then
aligned to the reference genome, providing the start and stop locations of the reads (Figure [1)).

The mRNA transcripts, and subsequently the resulting reads, are assumed to be generated exclu-
sively from gene regions that can produce upward of tens of thousands of transcripts per gene.
After alignment to a reference genome, the number of reads that mapped to each gene is counted
and serve as a representation of each gene’s transcription level. Several statistical issues arise in
the analysis of these discrete data. Since the cost of NGS studies is often prohibitively high, most
studies employ relatively few biological replicates; in fact, many studies are unreplicated (i.e., one
sample per treatment or condition) entirely. This presents non-trivial issues when estimating model
parameters and deviations from the specified model. Secondly, sources of technical variation further
complicate the statistical approaches needed to correctly analyze these data.

1.2 RNA-seq Gene Expression Data Analysis Methods

A wide variety of open-source software, primarily in R, exists to perform analyses of NGS gene
expression data. In particular, edgeR (Robinson and Smyth| 2008]) and DEseq (Anders and Huber,
2010) are the most commonly used packages, and both have a similar modeling strategy (we will
focus on edgeR for clarity). In R, edgeR typically models differential gene expression using a
Negative Binomial model. Suppose ng4;; is the observed number of reads mapping to gene g in
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Figure 1: General overview of the RNA-seq process. In RNA-seq applications, mRNA is isolated
and fragmented, then amplified, sequenced, and aligned to a known reference genome. Each of
these steps has potential to introduce biases in the resulting data. In particular, the amplification
process can potentially cause an over-representation of certain fragments, resulting in biased gene
expression estimates.

treatment j and sample k. Then the Negative Binomial probability of observing ng;i is defined as

-1 -1 Ngjk
PNyt = ngsbligss dus] = =t %) (s )% e
PR IR T T (67 1) 4 Tngg + 1) \1+ gjdg; bgi + Haj

Under this model, E[Ngyji| = pg; and V[Nyjr| = pig; + dgj muf]j. The parameter ¢g4; represents the
overdispersion, or extra variation relative to a Poisson assumption, present in the data.

In edgeR, ¢4; can be calculated in several ways. It can be set to be the same for all genes (¢4; = ¢o),
different for each gene (¢4; = ¢4), or as a weighted average of ¢y and ¢,. The weighted average
represents a form of information-borrowing among genes, and often improves inference in settings
with low replication (Robinson and Smythl [2008). In many exploratory research settings, RNA-
seq experiments employ only single replicates per treatment group. In these cases, ¢g4; is set
to 0, effectively reducing the Negative Binomial test to an Exact Poisson test, which assumes
E[Ngjl = pgj = V[Ngjl.

1.3 Amplification Bias, Natural Read Duplication, and Censoring

One cause of technical variation is amplification bias. As previously stated, fragmented cDNA is
subjected to amplification via PCR in each of the NGS applications (Figure[1)). The amplification
New Prairie Press

https://newprairiepress.org/agstatconference/2012/proceedings/4 38



Conference on Applied Statistics in Agriculture
Kansas State University

process is not perfect, and reads can suffer from amplification bias (Chepelev et al.l [2009). This
means that extra copies of certain reads may exist, perhaps tens of thousands of extra copies. The
typical procedure to correct for this type of bias is to ignore any duplicate reads by limiting the
number of reads starting at the same base to be 1 read (Figure . This censoring procedure, herein
referred to as “censoring,” ignores the possibility of natural read duplication (multiple copies of the
same read which is not due to amplification bias), and thus underestimates true read count. For
example, in the human liver samples analyzed by Marioni et al. (2008), 10-15% of the genic bases
exhibited duplication, accounting for approximately 30% of the observed reads. While approxi-
mately only 1% of the bases exhibited more than 10 duplicated reads, the number of reads starting
at these bases comprised approximately 10% of the total reads. The prevalence of duplicated reads
in these samples illustrates the need for statistical methods that are able to correct for amplification
bias without needlessly censoring natural duplication.

x,.g/> J
T M ol AN o gflpg ®

Counts

G A C C

A G C A C G A A A cC G C G A

Figure 2: Representation of a single gene expression profile generated using RNA-seq. The blue
bars represent legitimate reads, while the red bars represent amplification bias. :cf represents the
number of reads at the " genomic base. The “censoring” procedure truncates the number of reads
at each base at 1, as depicted by the dashed red line.

The effects of censoring on gene expression depend primarily on gene length and rate of tran-
scription. Under censoring, at most only one read is considered from each nucleotide in a gene.
This artificially limits the estimate of gene expression to values less than or equal to gene length.
However, for a given level of gene expression, the expected occurrence of natural read duplication
decreases as gene length increases when reads are assumed to be distributed uniformly across the
gene. As such, the effects of censoring decrease as gene length increases. Conversely, for a given
gene (with length L, for example), the effects of censoring are more pronounced when gene tran-
scription increases or when the total number of reads increases. In these cases, the sensitivity to
detect differences between genes of short length is typically lower than that for longer genes. This
length bias can be dramatically reduced when natural read duplication is allowed, simply because
the dependence on gene length is mitigated.

Perhaps most important is the ranking of genes based on statistical significance when testing
for differential expression. Typically, genome-wide studies are used by researchers as hypothesis
generating studies, from which interesting results are further investigated through confirmatory
experiments. As such, the genes which exhibit the greatest statistical significance are prioritized in
downstream, confirmatory studies. Correctly estimating gene read abundance, and consequently
reducing the effects of length bias, has the potential to drastically reorder the gene rankings when
compared to the censoring procedure.

We present a novel approach to correct for amplification bias while allowing for natural duplication.
The proposed method, Robust Adjustment of Sequence Tag Abundance (RASTA; Algorithm 1),

New Prairie Press

https://newprairiepress.org/agstatconference/2012/proceedings/4

39



Conference on Applied Statistics in Agriculture
Kansas State University

accurately estimates true tag abundance by separating legitimate reads from incorrectly amplified
reads through a novel application of hierarchical clustering, and sets appropriate thresholds for the
amplified reads through a novel application of the zero-truncated Poisson distribution. The effects
of RASTA on differential gene expression testing, both in terms of power and ranking of results, are
investigated. While we motivate the procedure through gene expression simulations, the method
is general enough to be applied to DNA methylation and histone modification studies as well.

2 Robust Adjustment of Sequence Tag Abundance (RASTA)

RNA-seq reads can be assumed to be generated by two distinct processes: legitimate reads (in-
cluding natural duplication) and amplification bias. As the number of reads increases for a given
gene, either through increased transcription or through increased sequencing depth, the number of
legitimately duplicated reads is expected to increase. For a given mapped read, we define “read
count” as the number of observed mapped reads starting at the same base in the genome. Let

zd ~ Poisson(y, = =2) i=1,...,n; 29 >1 (2)

be the read counts for the n bases with observed reads for a given gene g, where \; and L, are the
overall transcription rate and length for gene g, respectively. Typically v, is estimated as

D
g = S 3

but as z{ are restricted to be positive only, ¥, provides a biased estimate of 7,. Instead, we model

the legitimate base counts for a given gene using a zero-truncated Poisson(y,) (ZTP) distribution
(Yee and Wild, 1996). Let

[e.9]

= BOC 100z 1) = Y e =gy Py 2 ) 0
x=1 :

be the estimate of v, obtained from the ZTP distribution. This value is readily estimated via the
VGAM package (Yee, 2010) in R.

For a given value of ’f;, a threshold T can be defined such that any counts greater than T} at a
given base location can be considered to be a result of amplification bias. Here we define T as the
95" percentile of the Poz‘sson('y;‘) distribution. Then, for each 27, define

y! = min(af, ) Pr(X?TP <Ty) = 0.95, (5)

and the digital gene expression (DGE) estimate for gene g is defined as

DGE, =Y . (6)

In order to estimate 7, from observed data, we first partition the read counts into legitimate reads
and amplification biased reads. To achieve this, we apply hierarchical clustering to the unique
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values of z§, 29, ..., 27 for a given gene g. Unique z¢ are used here to decrease computation time.

For a pair of read counts (7, x? ) from gene g, we define the distance (or dissimilarity) to be

Ll —af)

9 |ad +af|’ ™)
known as the Canberra distance (Lance and Williams, [1966, (1967). The Canberra distance is less
sensitive to large values when compared to the Manhattan or Euclidean distances (Krausel 1987)
and is appropriate when detecting deviations from normal observations (Krebs, |1989; Emran and
Ye, 2001). Hierarchical clustering is employed with complete linkage based on the distance matrix
DY. Under complete linkage, clusters with the smallest maximum pairwise distance are merged in
each step. After clustering, the resulting hierarchical tree is divided into two clusters that represent
the legitimate reads and the biased reads. Read counts assigned to the cluster with the lowest mean
are then used to estimate 7, as described previously, under the assumption that amplification bias
produces larger counts than expected under the Poisson generating process for legitimate reads.

Algorithm 1. Robust Adjustment of Sequence Tag Abundance (RASTA) Algorithm
0. Summarize read information as the number of reads starting at each base (z9,23,...,29)
for each gene, ignoring bases for which no reads were observed (Figure .

_ et

= ErTat

2. (a) Perform hierarchical clustering on the unique base count values for each gene using complete linkage.
(b) Define legitimate base counts as those assigned to the cluster with the smallest mean.

3. [Estimate the mean legitimate base count 7, via a zero-truncated Poisson distribution.

4. Set the threshold T, = max(1,T;), where T} is defined as the 95" percentile
of the Poisson(v;) distribution.

5. Set the adjusted read count as y; = min(z{,T,).

6. Set digital gene expression as DGE =), y; for each gene.

Estimate pairwise distances between read counts (z, ) for gene g as df

There are issues that arise from this process when genes experience no sign of amplification bias. In
cases of low digital gene expression (DGE) relative to gene length, the clustering algorithm generally
assigns the greatest read counts to the “bias” cluster. In these cases, RASTA may effectively ignore
the duplicate reads (i.e., T, g = 1), which is the same as censoring; this results in a lower estimate
of 7/ since naturally duplicated reads are not used in the estimation process. However, RASTA
typically allows for larger DGE values when compared to ad hoc methods for genes with high DGE
relative to gene length or those with amplification bias.

3 Simulation Study

3.1 Simulation Settings

A simulation study was conducted to evaluate and compare the performance of RASTA to “cen-
soring.” We simulated RNA-seq data by fixing the total number of genes at 1,000. The frequency
of DGE counts per gene approximately follows a power-law (Balwierz et al., [2009), and as such, we
simulated the true DGE rate for gene g as

Ag ~ exp(Pareto(location = 3.5, scale = 7)) g=1,...,1000 (8)
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(Auer and Doergel [2011)). We incorporate amplification bias by setting the prevalence of bias to be
ngas = .001 (or 1 out of every 1000 bases), and the bias DGE count to be

Abias — Uni form(10,1000) g=1,...,1000. (9)
The value of 772”5 and the upper bound on )\gms are relatively conservative, as the prevalence of
amplification bias in real data often exceeds 1%, and the read counts can exist in tens of thousands
(Marioni et al., [2008; |Lister et al. 2008). These conservative estimates were chosen to incorporate
any recent (and future) improvements to the biological protocols developed for NGS technologies.
Gene lengths were simulated based on the mouse and Drosophila melanogaster annotation databases
from Ensembl (Flicek et al., [2011) with

Ly ~ exp(Normal(p = 8,0 = 2)) g=1,...,1000. (10)
For a given gene with parameters A\, and )\gms , the legitimate reads follow

A
Poisson(vy, = LJ) g=1,...,1000, (11)
g

and the counts arising from amplification bias follow

bias
Poz’sson(wgm%) g=1,...,1000. (12)
For each gene, the counts were preprocessed by either truncating all counts to 1 (i.e., the current
censoring practice) or assessed via RASTA. These modified counts were then added, and resulted
in an adjusted DGE value for each gene. This process was repeated 500 times to account for
simulation-to-simulation (sampling) variability.

For the 1,000 simulated genes, both differentially expressed (500) and non-differentially expressed
(500) genes were generated for three biological replicates in two treatments. DGE rates for each
gene were generated as follows: for differentially expressed genes, means were sampled separately
from , yielding /\gT1 and /\2;2 for treatments 77 and T5 respectively; for non-differentially ex-
pressed genes, the means were sampled together ()\y). For each simulated data set, both RASTA
and “censoring” were applied to the observed base counts. Resulting gene counts were analyzed for
differential expression using the Exact Negative Binomial model in edgeR under a common disper-
sion assumption (Robinson and Smyth, 2007, [2008). P-values were adjusted using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, [1995) in edgeR.

3.2 Comparing Adjusted DGE to True DGE

Figure [3] illustrates the effectiveness of RASTA to maintain accurate DGE estimates. In general,
RASTA captures the true transcription rate more accurately than the censoring method, particu-
larly for genes with larger v, values. In cases with lower v, values, RASTA often returns the same
values as the “censoring” approach. In other words, RASTA generally does no worse than the
“censoring” approach, and in many cases drastically out-performs its counterpart.
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Figure 3: Simulation results for amplification bias correction methods. The RASTA method is
displayed in blue, while the censoring method is displayed in red. Since natural read duplication
is a function of both transcription rate (A) and gene length (L), adjusted digital gene expression
(DGE) values were scaled by length and plotted against the true v = % values. As the true ~
values increase, RASTA more accurately adjusts the observed DGE counts relative to the current

“censoring” procedure, which is bound above at 4 = 1 (or zero in log scale as displayed above).

3.3 Effects of RASTA on Differential Expression Analyses

For the simulations previously described, statistical power and false discovery rates (FDR) were
estimated by calculating averages power and FDR (¢ = 0.05) across the simulations. RASTA
yields similar statistical power and FDR in simulations when compared to the censoring procedure
(power: 0.655 vs. 0.602, FDR: 0.23 vs 0.14, respectively). Although the power and realized FDRs
were similar, summaries comparing true and estimated log fold changes showed greater accuracy
under the RASTA method. This is expected when considered in conjunction with the results in
Figure [3] To illustrate this, estimated log fold changes were regressed against true log fold changes
(Figure [4]) for the purpose of demonstrating accuracy (i.e., the relative closeness of the RASTA and
“censoring” approaches to the identity line). The regression slope for RASTA was considerably
closer to 1.0 than the censoring method (0.95 and 0.83, respectively), indicating an increase in
accuracy when estimating true log fold change between the two treatments.

In these simulations, the resulting order of of the ranked genes varies dramatically between cen-
soring and RASTA. We investigated this phenomenon in several ways. First, we inspected the 100
genes found to be highly differentially expressed between the RASTA and censoring methods, and
calculated the number of genes that appear in both lists. Over the 1000 simulations, the average
number of matching results between the two lists was only approximately 14 (mean: 14.30, stan-
dard deviation: 3.84). Generalizing this, we compared the number of matching genes in lists of
top n genes (n = 1,...,1000), and the results are displayed in Figure |5l For list lengths less than
200 genes, the number of matching elements between the two methods is quite low. As the list
lengths exceed 400 genes, the rate of matching increases. We also compared the ranks between
the two full lists using Friedman’s Test (Friedman) {1937, [1940|). The average p-value of Friedman’s
Test between RASTA and “censoring” is 0.03 (standard deviation: 0.12), which provides additional
support that the order of results is quite different between the two methods. Finally, we compared
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Figure 4: Simulation results for true vs. estimated log fold change when comparing RASTA versus
“censoring.” As the true log fold change values increase (in absolute value), RASTA (blue) more
accurately estimates the log fold change relative to the censoring (red) procedure (regression slopes:
0.95 vs 0.83, respectively).
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Figure 5: Simulation results for the number of matching elements between the top lists of length
n. The superimposed red line indicates perfect matching between the lists. The rate of matching
remains low for the top ranked genes in lists of less than 200 genes.
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Figure 6: Simulation results comparing estimated vs. true differential gene expression ranks for
RASTA and “censoring” approaches. True ranks are defined as the Canberra distance between
the simulated rates of transcription. Estimated ranks are defined by the ordered p-values after
differential expression tests are performed. The RASTA approach (blue) more accurately estimates
true gene ranks than the censoring procedure (red).

the true rankings of genes to the estimated rankings produced by differential testing (Figure |§[) On
average across the simulations, RASTA more accurately captures the true ranks when compared
to the censoring method. These results not only support the use of RASTA when controlling for
amplification bias, but they also indicate a real need to address amplification bias as a problem
that is currently affecting the results being reported in the literature.

3.4 Gene Length Bias

The prevalence of natural read duplication depends on quantification of gene expression (i.e., the
DGE) and gene length. For a given level of DGE, natural read duplication is more likely to occur
in shorter genes than in longer genes, and as such, shorter genes are generally more affected by the
current censoring procedure. Because of this, there is a bias toward longer genes when testing for
differential gene expression. By more accurately estimating DGE, especially for shorter genes with
high DGE, we are able to all but eliminate length bias in our simulations as average DGE levels
increase (Figure [7)).
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Figure 7: Gene length bias simulation results. The censoring method is presented in red, while
the RASTA method is presented in blue. The solid lines represent simulated gene expression levels
based on (Auer and Doerge, 2011). The dashed lines represent a doubling, on average, of DGE
levels. For the original simulation settings, RASTA provided a marginal improvement over the
censoring procedure. When average DGE was increased, RASTA showed little evidence of length
bias, while the censoring procedure’s bias became much more pronounced.

4 Real Data Analysis

4.1 Data and Methods

The censoring and RASTA approaches were employed to preprocess the unreplicated Arabidopsis
RNA-seq data from Lister et al. (2008). In this study, metl-3 mutants (deficient in methyla-
tion) were compared to wild-type (Col-0) controls. Gene start and stop locations were used to
define 22,266 annotated genomic regions, and were based on the Columbia reference genome gained
from The Arabidopsis Information Resource (TAIR |Swarbreck et al.| (2008)). Although the total
number of mapped reads for the met1-3 and Col-0 samples were approximately equal (5,997,689
and 6,283,230, respectively), the occurrence of read duplication, either from natural duplication or
amplification bias, was dramatically different between the two samples (Table .

Gene counts under each of the control procedures were analyzed using the Exact Negative Binomial
model in edgeR (Robinson and Smythl 2007}, 2008). P-values were adjusted using the Benjamini-
Hochberg FDR procedure, and the nominal significance threshold was set at & = 0.01. Gene set
enrichment analysis (GSEA) was performed on the resulting lists of significant genes using agriGO
(Du et al., |2010; Berg et al., 2009). The agriGO toolkit performs GSEA using a test based on the
hypergeometric distribution to assess the over- or under-representation of gene ontologies in the
lists of significant genes when compared to all genes with annotated ontologies, and corrects for
multiple testing using FDR under dependence (Benjamini and Yekutieli, [2001)).
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met1-3 Col-0
Total Reads | 5997689 | 6283230
Unique Reads | 2991256 | 1264135
Single bases with > 5 reads | 139972 | 285610
Single bases with > 10 reads | 38718 72227
Single bases with > 100 reads 232 849
Max number of reads at a single base 5525 17063

Kansas State University

Table 1: Distribution of read duplication for the unreplicated met1-3 and Col-0 Arabidopsis lines
in Lister et al. (2008). The Col-0 wild-type sample displays considerably more duplication than
the metl-8 mutants at each of the levels presented.

4.2 Results

The presence of DNA methylation typically serves as a transcriptional regulator in eukaryote
species; when depleted, gene transcription typically increases (Riggs, |1975; Robertson, 2005; |Shames
et al.l 2007; Arand et al., 2012). The RASTA analysis yielded many more statistically significant
differentially expressed genes than the censoring method (8912 and 2855 genes, respectively). This
increase in number of differentially expressed gene results is in concordance with the biological
knowledge of the two Arabidopsis lines (Lister et al., 2008). The agriGO GSEA results based on
the two gene lists (Table [2)) display a stark contrast in enriched gene ontologies, indicating that
appropriate amplification bias control is important for discovery and downstream confirmation
studies.

5 Discussion

As the costs for sequencing decrease, researchers will require greater and greater sequencing depth
simply due to the demand of accurate sequencing. As sequencing depth increases, the occurrence of
legitimately duplicated reads will increase. As such, the manner in which amplification bias is con-
trolled is likely to have a significant impact on any RNA-seq study. The choice of control procedures
has the potential to affect the order and importance of significantly differentially expressed genes
since the individual gene expression estimates may change considerably (Figure . Specifically, it
is to this point that we believe RASTA will have the most effect. Since confirmatory studies often
target the most differentially expressed genes (i.e., the genes with the lowest p-values), the ordering
of results plays an important role in downstream analyses. In other words, while RASTA may not
provide more statistical power to detect differences between two treatments in all settings, it may
provide a vastly different ordering of significant results.
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RASTA
GO Term Ontology Description Input Reference Adj. p-value
GO:0009791 Post-embryonic development 382 705 4.2e-76
G0O:0034641 Cellular nitrogen compound metabolic process 236 506 5.7e-33
G0:0032501 Multicellular organismal process 664 2094 2.4e-24
G0O:0009987 Cellular process 3036 11684 5.9e-24
GO:0007275 Multicellular organismal development 640 2020 1.4e-23
G0:0010035 Response to inorganic substance 138 279 3.9e-22
GO:0033036 Macromolecule localization 194 462 1.6e-20
GO:0003006 Reproductive developmental process 341 978 2.1e-19
G0:0048856 Anatomical structure development 542 1726 2.8e-19
GO:0008152 Metabolic process 2720 10614 2.9e-19
Censoring
GO Term Ontology Description Input Reference Adj. p-value
G0O:0009628 Response to abiotic stimulus 209 1471 2.2e-19
G0O:0050896 Response to stimulus 440 4057 8.2e-17
GO:0009791 Post-embryonic development 119 705 1.6e-16
G0O:0006950 Response to stress 279 2320 3e-16
GO0:0044262 Cellular carbohydrate metabolic process 84 417 3.3e-16
G0:0010876 Lipid localization 18 24 6.2e-14
G0:0010035 Response to inorganic substance 62 279 6.5e-14
G0:0009266 Response to temperature stimulus 84 485 2.2e-12
G0:0042221 Response to chemical stimulus 239 2085 5.6e-12
GO:0034641 Cellular nitrogen compound metabolic process 81 506 3.5e-10

Table 2: Gene Set Enrichment Analysis results (top ten ontologies) from the agriGO toolkit under
censoring and RASTA amplification bias control procedures for the unreplicated met1-3 and Col-0
Arabidopsis lines in Lister et al. (2008). The “GO Term” and “Description” columns represent
the gene ontologies enriched in the significant gene lists when compared to all Arabidopsis gene
ontologies. The number of genes with each ontology in the significant gene lists and the Arabidopsis
reference are listed in the “Input” and “Reference” columns, respectively. The p-values are based
on the hypergeometric distribution, and are adjusted via FDR under dependence (Benjamini and
Yekutieli, |2001)). The resulting enriched ontologies for the censoring and RASTA approaches are
quite disparate, indicating that the control procedure is highly influential in downstream analyses.
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