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COMPARISON OF LINEAR MIXED MODELS FOR 
MULTIPLE ENVIRONMENT PLANT BREEDING TRIALS 

 
Carl A. Walker1, Fabiano Pita2, Kimberly Garland Campbell1,3 

1 Dept. of Crop and Soil Sciences, Washington State University; 2 Quantitative Genetics Group, 
Dow AgroSciences; 3 USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research 
Unit 
 
Abstract 
Evaluations of multiple environment trials (MET) often reveal substantial genotype by 
environment interactions, and the effects of genotypes within environments are often estimated 
using cell means, i.e. the simple mean of the observations of each genotype in each environment.  
However, these estimates are inaccurate, especially for unreplicated or partially replicated trials, 
so alternative methods of analysis are necessary.  One possible approach utilizes information, 
often from pedigree data, about relationships among the tested genotypes through the use of a 
genetic relationship matrix (GRM).  Predictive accuracy may also be improved by the use of 
factor analytic (FA) structures for environmental covariances.  In this study, data were simulated 
to resemble results from a range of MET.  These simulated data sets covered a range of scenarios 
with varying numbers of environments and genotypes, environmental relationship patterns, field 
trial designs, and magnitudes of experimental error.  The simulated data were used to evaluate 20 
mixed models, ten of which included GRMs and ten which did not.  The models included ten 
structures for environmental covariances including structures with no environmental correlation, 
structures with constant correlation among environments, and six FA structures.  These models 
were compared to each other and to cell means and Additive Main effects and Multiplicative 
Interaction (AMMI) methods in terms of successful convergence and predictive accuracy.  For 
most of the scenarios, models which included a GRM and a compound symmetric, constant 
variance structure produced the most accurate estimates.  Models with GRM and FA structures 
were more accurate only when used to evaluate scenarios simulated with Toeplitz patterns of 
relationships and more than 25 genotypes or five environments.  Unfortunately, the improved 
accuracy with the FA structures in these scenarios came at the cost of reduced convergence rates, 
so FA structures may not be reliable enough for some uses.   
 
1. Introduction 
Evaluations of genotypes in varied environmental conditions are referred to as multiple 
environment trials (MET), and are used in advanced stages of plant breeding programs to 
identify genotypes with superior performance across environments and within specific 
environments or sets of environments.  Yield data from MET often show genotype by 
environment interactions (G×E), and often are analyzed using a two-way analysis of variance 
(ANOVA) model where genotype, environment, and their interaction are treated as fixed effects: 

ijkijjiijk geegy εµ ++++= )(  
where yijk is the yield (or other response variable) of the kth replicate of the ith genotype in the jth 
environment, μ is the overall mean, gi is the fixed effect of the ith genotype, ej is the fixed effect 
of the jth environment, (ge)ij is the interaction between the ith genotype and the jth environment, 
and εijk is the experimental error associated with the ijkth observation; i = 1…Ng, j =…Ne, k = 
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1…Nr.  The estimates of genotype within environment effects are the means across replicates of 
each genotype in each environment (i.e. cell means).  The major disadvantage of this approach is 
that these estimates are usually based on very little data (dependent on the number of replicates) 
and so are less predictively accurate than some alternative estimators.  An additional 
disadvantage of this approach is that it cannot be used to estimate G×E effects when genotypes 
are not replicated within environments, since the effect of G×E and experimental error would be 
confounded.  That is, experimental error cannot be separated from the specific effect of each 
genotype and environment combination. 

Various estimators have been shown to be more accurate for MET than cell means.  
These include the Additive Main effects Multiplicative Interaction (AMMI) models (Gauch and 
Zobel, 1988; Gauch, 1988) and sites regression (SREG; Cornelius and Crossa, 1999) model 
families, which are sometimes referred to as linear-bilinear models. These two fixed-effect 
model families include sums of multiplicative terms, resulting from singular value 
decomposition, replacing (ge)ij, in the case of AMMI, or gi +(ge)ij for SREG.  The AMMI and 
SREG models have been shown to be relatively equivalent in terms of predictive accuracy 
(Cornelius and Crossa, 1999).  Like the analysis of G×E in a fixed-effects ANOVA, the standard 
implementation of these models cannot be used when data from any genotype and environment 
combination is missing.  However, the expectation-maximization algorithm has been used to 
impute missing data with the AMMI model (Gauch and Zobel, 1990). 

Instead of treating genotype effects within environments as fixed, these effects can be 
considered random values leading to linear mixed models, which have important inherent 
benefits over fixed-effects models.  Using mixed models, non-constant error variance structures, 
including within-field spatial correlation, can be easily incorporated in the same model as 
genotype and environment effects.  Additionally, mixed models easily handle missing data and, 
with some specific models, even unreplicated data or prediction of genotype effects in 
environments they were not tested in. 

Mixed model analyses have a long history in animal breeding (Henderson, 1973), and 
recent research has demonstrated new approaches to make them very effective in plant breeding.  
If a mixed linear model is used, genotypes are selected based on empirical best linear unbiased 
predictors (BLUPs) calculated using the estimated variance parameters.  A very basic mixed 
model would assume a random effect of genotypes within environments that has a variance-
covariance matrix of σ2I, where σ2 is a constant variance parameter and I is an identity matrix.  
In most breeding programs, plant or animal, at least a portion of the genotypes assessed in a trial 
are related and therefore would be expected to show some correlation in their effects.  Pedigree 
information can be used through a Genetic Relationship Matrix (GRM; or additive relationship 
matrix, or numerator relationship matrix) to take advantage of these relationships and improve 
predictive accuracy (Henderson, 1973).  The GRM is usually symbolized as A, and A = 2[fii′], 
where fii′ is the coefficient of parentage or coancestry between genotypes i and i′ (Mrode and 
Thompson, 2005).  When a GRM is used in a linear mixed model, genotype performance can be 
predicted in environments they were not replicated in.  The GRM allows the model to use 
information from related genotypes to predict the unreplicated genotype, because known 
covariances are modeled between pairs of related genotypes.     

Another modification that may improve the predictive accuracy of mixed models is to 
increase the complexity of the variance-covariance matrix of the random G×E effect beyond σ2Ig 
(Piepho, 1994).  The matrix can be  described as the product of two other matrices, such that Gge 
= Ge ⨂ Ig, where Ig is an identity matrix with dimensions equal to the number of genotypes, and 
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structures of varying complexity can be used to model Ge (Smith et al., 2001).  One option for Ge 
is the factor analytic (FA) structure which increases in complexity with the number of factors 
used.  When using a FA structure researchers must choose how many factors to include.  More 
factors allow for greater flexibility, but may reduce model parsimony.  Multiple researchers have 
demonstrated that a factor analytic structure can be combined with pedigree information to 
improve model fit, as measured by information criteria (Crossa et al., 2006; Oakey et al., 2007; 
Kelly et al., 2009; Beeck et al., 2010).  These researchers have analyzed a limited number of real 
MET data sets; a simulation study could determine if the FA model with a GRM is the most 
effective model for a much wider range of MET. 
 The objective of this work was to simulate and analyze MET data sets to determine 
which linear models would be most effective in breeding programs by consistently providing the 
most accurate estimates and determine how the ideal model changes as a result of different MET 
conditions. 
 

2. Methods 
 
Simulations were conducted to generate data sets which resemble MET across a range of 
conditions.  The simulations included randomly generated true effects of genotypes within 
environments and the phenotype of each observation, resulting from the addition of a random 
experimental error to the true genotype effect.  These simulated data sets covered a range of 
scenarios with varying numbers of environments and genotypes, environmental relationship 
patterns, field trial designs, and magnitudes of experimental error. 
 True genotype effects within each environment were simulated as random samples from 
multivariate normal distributions with means of 0 and covariance matrices (ΣGE) that differed 
among scenarios.  The ΣGE were the Kronecker (or direct) product of a matrix of correlations 
between environments (ΣE) and a matrix of correlations between genotypes (ΣG).  The ΣE were of 
two sizes: 5 by 5 or 10 by 10, corresponding to scenarios with 5 or 10 environments, 
respectively.  The degree of correlation in each ΣE followed two patterns: compound symmetry, 
with constant correlations of 0.7, or Toeplitz structures with bands of constant correlation 
decreasing, from 0.9 to 0.3 or from 0.85 to -0.3, with distance from the diagonal for the 5 or 10 
environment scenarios, respectively.  These specific covariance values are by no means the only 
covariance values that could occur in a MET, but were chosen to be near values observed in 
MET.  The ΣE were generated with homogeneous or heterogeneous variances within 
environments.  The variances ranged from 0.5 to 1.5 for the least and greatest variances, 
respectively.  This three to one ratio is often used as a rule-of-thumb cutoff for considering 
variances to be heterogeneous, but greater and less heterogeneity are also possible.  Two options 
for ΣG were considered, corresponding to scenarios of 25 or 50 genotypes.  A GRM was 
estimated from the pedigree in a Dow AgroSciences early generation study of North American 
Stiff Stalk maize inbred lines, and the two options for ΣG were both submatrices of this GRM, 
specifically the submatrices corresponding to the first 25 and 50 genotypes in the study.  For 
each combination of these options, i.e. each ΣGE, true genotype effects were sampled 100 times.   

For each set of genotype within environment effects, simulations were generated for three 
trial designs (RCBD – randomized complete block designs, MAD – modified augmented 
designs, and unreplicated designs) and three experimental error variances.  Since spatial field 
effects were not considered, the only effect of the experimental design was to determine the 
number of replicates of each genotype in each environment.  Therefore, other designs commonly 
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used in MET will still have equal or unequal replication, regardless of blocking structure, and so 
would not add much beyond the designs tested here.  For the RCBD scenarios, every genotype 
was replicated three times.  Whereas in the MAD scenarios, genotypes were not replicated 
except for primary and secondary “checks” that were replicated five and two times, respectively, 
for every 23 non-check genotypes.  In the unreplicated design, each genotype appeared once in 
each environment.  Every observation had a unique phenotype equal to the true effect of the 
genotype in an environment plus a random experimental error selected from a normal 
distribution with mean of 0 and one of three error variances (σe

2 = 0.1, 0.5, or 2.0).  These error 
variances corresponded to repeatabilities (variance of the genotype within environment effects 
divided by the variance of the phenotypes for a given simulation) of about 0.9, 0.6, and 0.25, 
respectively. 

A total of 20 related linear mixed models were compared for their ability to predict the 
simulated genotype effects within environments based on the simulated phenotypic data.  Models 
were fit using the program ASReml-R, release 3.0 (Butler et al., 2009), which is a package for 
the R programming language (R Development Core Team, 2010).  The models were all of the 
form: 

εZfμy ++= , 
where y is the vector of observed phenotypes, μ is a vector of the grand mean, f is the vector of 
genotype within environment effects, and ε is the vector of experimental error terms.  The joint 
distribution of f and ε is given by: 
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where 2
Rσ  is a constant error variance and G is a covariance structure that varies for each of the 

20 models and is separable: 
G = GE ⨂ B, 

where both GE and B were varied, resulting in 20 models:  
B = I or A, 

where  I is an identity matrix and A is a GRM.  This study evaluated the ideal situation, when the 
GRM used perfectly reflects the actual relationships among the genotypes; therefore, A was set 
equal to the ΣG used in the simulation of each scenario.   

Ten structures were used to model GE and these are shown below for a five environment 
example.  The simplest structure was independence (no covariance) and identical variances: 
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A generalization of this is the diagonal structure, where environments are still independent, but each can 
have different variance: 
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A constant covariance can be added, yielding compound symmetric structures with uniform or 
heterogeneous variances: 
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Six FA structures were compared.  Structures were fit with one to three factors and uniform or 
heterogeneous specific variances: 

GE = ΛΛ′ + Ψ 
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In an effort to improve convergence rates, models were fit sequentially in the order of the 
GE structures described above.  Parameter estimates from simpler models were used as the 
starting values of the next more complex structure for which the simple structure was a specific 
case.  If a model did not converge, the next more complex structure was not attempted.  The 
percentage of simulations of a scenario for which a model converged was defined as the 
convergence rate. 

In addition to the mixed linear models, estimates of genotype effects within environments 
were derived from cell means (the mean of the replicates of a genotype in each environment) and 
Additive Main effects Multiplicative Interaction (AMMI) models.  The AMMI models are fixed 
effects linear models with main effects for genotype and environment.  The effects of genotype 
by environment interaction have been replaced with an approximation of the matrix using a 
reduced set of the principle components (Gauch, 1988).  Only RCBD scenarios were analyzed 
using the AMMI models.  The AMMI models were fit with all possible numbers of principle 
components.  The most accurate, as judged by the correlations described below, of the AMMI 
models for each simulation were compared to the mixed linear models.  
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To evaluate each model’s predictive accuracy, Pearson correlations between the 
estimated effects of genotypes within environments and the true effects generated in the 
simulation were calculated for each simulation.  The mean of these correlations across the 100 
simulations for each scenario allows conclusions to be drawn to identify the best model for each 
scenario.  While not formally evaluated, mean correlations appeared to stabilize after the first 50 
simulations. 

 
3. Results and Discussion 
Due to the large number of scenarios evaluated, it is ineffectual to present all convergence rates 
and prediction accuracy estimates.  Instead, salient data are presented to provide evidence for 
conclusions.  Complete data are available from the author upon request.  Not all models 
converged for all data sets, and convergence rates generally decreased as model complexity or 
MET size increased.  Accuracy results are not reported for models that could not be used for 
certain scenarios or converged for less than 10 percent of the simulations. 

As a baseline scenario, consider the MET scenario with 5 environments with a compound 
symmetric ΣE that has homogeneous within environment variances, 25 genotypes, a randomized 
complete block design, and an error variance of 2.0 (repeatability ≈ .25; Table 1).  The mean 
(over all 100 simulations) correlation of the cell means with the true genotype within 
environment effects was a modest 0.69.  On average, the best AMMI model improved predictive 
accuracy (0.78).  Only the best of the mixed models matched or exceeded this value.  This might 
lead one to conclude that the AMMI is nearly the best method for the analysis of MET.  
However, it is important to note that the most accurate AMMI model was chosen for each 
simulation and in actual practice this is not always possible, since it is not known and must be 
guessed by various methods.  Additionally, a major disadvantage of the standard AMMI model 
compared here is that cannot be used for experimental designs where some genotypes are not 
replicated.   

Accuracy of the mixed linear models was usually greater than the cell means.  The mean 
accuracy for the mixed model without a GRM and with an identical structure for GE was equal to 
that of the cell means.  The equal accuracy, as measured by Pearson correlations, occurs because 
the empirical BLUPs of the mixed model differ from the cell means only by a constant shrinkage 
factor.  The shrinkage factor varies over genotypes within environments for all of the other 
mixed models considered.  When variances were allowed to vary across environments (diagonal 
structure), mean predictive accuracy decreased, suggesting that the additional parameters only 
served to model noise in the phenotypes.  Inclusion of a constant correlation term by using the 
compound symmetric structures improved accuracy of the predictions, closer to that of the 
AMMI model.  This improvement was expected, since the data were simulated with a constant 
correlation of 0.7 across environments.  Again, allowing for heterogeneous variances did not 
improve predictive accuracy.  The use of the more complex FA structures provided no additional 
improvement in accuracy over the compound symmetric structure.  Allowing for heterogeneous 
specific variances did not improve predictive accuracy.  Adding additional factors beyond the 
first did not noticeably change the mean accuracy.  The lack of superiority of the FA structures is 
not surprising, since this scenario was simulated with a constant correlation among 
environments, just like the compound symmetric structure used for GE in the analysis.  The use 
of a GRM when modeling simulations of this scenario consistently improved predictive accuracy 
across, no matter the structure used for GE.  The benefit was greatest when the compound 
symmetric structure with constant variance was used with it.  This combination resulted in a 
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predictive accuracy greater than the best AMMI model.  The changes in accuracy caused by 
different GE were similar whether or not a GRM was included.  Therefore, the best model 
included a GRM and a compound symmetric, uniform within environment covariance structure 
(GRM CSU).  The preceding results applied to the baseline scenario, and in the following we 
will describe how these results change in other scenarios and if the GRM CSU model is always 
the most accurate. 

As error variance decreased from 2.0 to 0.5 to 0.1 (repeatability ≈ 0.25, 0.6, and .9, 
respectively), the accuracy of all models increased dramatically, but unevenly (Table 2).  The 
benefits of using more complex models for GE or using a GRM decreased with decreasing error 
variance.  At the lowest level of experimental error, using the best mixed linear model provided 
estimates of effectively no greater accuracy than the cell means.  These results were nearly 
uniformly consistent across all other scenario variations.  The effects of other scenario variations 
were generally consistent across error variances and were most dramatic when σe

2 = 2.0.  
Therefore, only results from scenarios with error variances of 2.0 will be presented for clarity.  
Spatial field effects are often a major concern when evaluating MET (Smith et al., 2001).  
However we did not simulate them here to focus on determining the most appropriate models for 
random effects of genotypes within environments.  If real MET data has substantial spatial 
effects that have not been accounted for, estimates may be biased or experimental error may be 
increased.  Even if spatial effects are accounted for in the model, the accuracy of the model is 
likely to decrease due to errors in estimating the spatial effects.  The magnitude of this decrease 
in accuracy will need to be determined in future studies. 

Experimental design had a dramatic effect on model accuracies and altered the effects of 
other scenario variations (Table 3).  Not all models could be used with all experimental designs.  
As described above, the traditional AMMI model can only be applied to estimate genotypes that 
are replicated in each environment, limiting it to RCBD.  All other models are suitable for RCBD 
and MAD, but only models that incorporate a GRM can be used with unreplicated designs.  With 
all other variables held constant, estimates from RCBD scenarios were consistently and 
substantially more accurate than those from MAD scenarios, which were themselves slightly 
more accurate than those from unreplicated scenarios.  The accuracy of each model varies across 
the designs, but the ranking of the models is generally consistent.  Of note is that the GRM CSU 
model is consistently the most accurate model, but the benefit of using it instead of the cell 
means model is greater for the MAD and unreplicated designs.  Effects of other scenario 
variations were not very consistent across the experimental designs and MET experimental 
design flexibility is often limited, so further results will be presented for all three.  The lower 
accuracies for MAD and unreplicated designs are likely simply due to the reduced number of 
observations for most genotype by environment combinations.  This increases the value of the 
way the GRM CSU model uses information from related genotypes and environments to adjust 
the cell means. 

When a scenario with 50 genotypes was compared to the baseline scenario with 25, 
predictive accuracy was found to increase for all models (Table 4).  This was generally a minor 
improvement, but was greater for many of the models with heterogeneous variances or FA 
structures.  The increased number of genotypes brought these models closer to parity with the 
CSU models.  It is well known that variance parameters are better estimated when the number of 
treatment levels is high.  This is because each level is an observation from an unknown 
distribution of effects, and so more levels increases the sample size used to estimate the 
parameters of the distribution.  Here the greater number of genotypes provides more information 
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for the estimation of parameters in GE, increasing accuracy for the more complex models.  The 
lesser improvement for RCBD scenarios suggests diminishing accuracy returns when each 
genotype is replicated.  That is, both increasing numbers of treatments or increasing replication 
improve accuracy, but not in an additive fashion.  

Increasing the number of environments in the MET again increased the accuracy of 
almost all models, but only very slightly for models that did not include correlations in GE (Table 
5).  The benefits of using a structure that allows correlation between environments became more 
dramatic with the greater number of environments, but the difference between the CSU and one 
factor models decreased.  Despite this, the GRM CSU model was the most accurate choice for 
either number of environments. 

To this point, all the scenarios considered have been simulated using a compound 
symmetric constant variance pattern for ΣE, so it is entirely expected that models which include 
the compound symmetric constant variance structure for GE would be the most accurate.  These 
scenarios were include to reflect the situations that can occur in real MET when environments 
are similarly related.  What is more interesting is whether this changes for scenarios where the 
MET were simulated with more complex patterns of relationships. 

In real MET data sets, environments often exhibit differing amounts of variability in 
genotype performance; that is, in certain environments the differences among genotypes are 
more dramatic than in other environments.  To simulate such scenarios, ΣE were chosen that had 
a 3:1 ratio between the most varied and least varied environments.  When compared to the 
scenarios with constant variances, accuracies from a scenario with heterogeneous variances were 
very similar (Table 6).  Models including heterogeneous variances or FA structures were only 
slightly more competitive with the more parsimonious models.  Most importantly, the GRM 
CSU model was still the most accurate, if only just slightly for RCBD and MAD scenarios.  We 
see the same trends when comparing constant and heterogeneous variance scenarios with 50 
genotypes or 10 environments (data not shown).  These results suggest that even when 
environments differ in their variance (at least at a 3:1 ratio), it is more important for a model to 
be parsimonious rather than flexible in this way.  This can be explained in that a more flexible 
model requires more parameters to be estimated with the same amount of information, reducing 
the information per parameter and reducing the accuracy of the estimation of each parameter.  
Here we observed that this reduction in accuracy of estimating individual parameters eliminated 
any gain in overall accuracy provided by better matching the heterogeneous nature of the data 
variance. 

Accuracy means for each model were very similar between the 25 genotype, five 
environment, compound symmetric scenarios and matching scenarios simulated with a Toeplitz 
pattern (Table 7).  Factor analytic structures were more competitive when used to analyze 
Toeplitz scenarios, but the GRM CSU model was still the most accurate.  This suggests that there 
may have been insufficient information to accurately estimate the increased number of 
parameters included by the FA structures.  That is, the well estimated single correlation 
parameter more accurately reflected the different correlations among pairs of environments than 
did the poorly estimated factors.  When assessing the effect of relationship pattern for scenarios 
with 50 genotypes or 10 environments, FA structures were even more competitive (Tables 8 & 
9).  For some Toeplitz scenarios, FA models had superior accuracy compared to the GRM CSU 
model.  This may be due to the wider range of simulated covariance values (0.85 to -0.3 versus 
0.9 to 0.3), in the case of 10 environments.  When more genotypes were simulated these 
provided more information to better estimate the additional parameters in the FA structures. 
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Interestingly, the use of a GRM was less beneficial for these scenarios.  It is important to note 
that the GRM FA models converged for fewer simulations than the GRM CSU models.   

These results suggest that when estimating the effects of genotypes within environments 
from MET, using a GRM produces more accurate estimates, as does using a CSU or FA 
structure, depending on the pattern of relationships among environments.  This study assumed 
the ideal situation, when the GRM matrix used perfectly matches the true genetic relationships.  
In reality the GRM matrix is usually estimated based on pedigree or marker data and so will be 
subject to error.  Such errors would reduce the predictive accuracy of models that incorporate a 
GRM, possibly to a degree that would eliminate the advantage observed in these simulations.  
Further study is necessary to determine the likelihood of such a situation.  Other authors have 
demonstrated superior model fit, as measured by information criteria, using GRM with FA 
structures rather than compound symmetric structures (Crossa et al., 2006; Oakey et al., 2007).  
This suggests that these authors analyzed data sets with complex relationship patterns similar to 
the Toeplitz simulations in this study.  In real MET, very simple relationship patterns, i.e. near 
compound symmetry, are unlikely, so the results for the Toeplitz pattern simulations may be 
more applicable.  In the Toeplitz simulations, FA structures were only more accurate than the 
CSU structure for some of the scenarios with more than 25 genotypes or 5 environments.  Even 
when the FA structures were more accurate, they were only a small improvement over the CSU 
structure.  At this point it becomes important to note the differing convergence rates between 
models with these two structures.  For the scenarios simulated with 10 environments in a 
Toeplitz pattern, 25 genotypes, and an error variance of 2.0, convergence rates for models using 
FA structures were much lower than when a CSU structure was included (Table 10).  Model 
convergence might be improved through trial and error techniques, such as introducing different 
starting values.  In real world high throughput applications, the ease of fitting a model can be 
much more important than small differences in accuracy, so a model which almost always 
converges and has competitive accuracy, i.e. the GRM CSU model, may be the best choice.   

 
4. Summary 
This study used simulations to help determine how various mixed models perform when used to 
analyze a range of MET.  For most of the scenarios, models which included a GRM and a 
compound symmetric, constant variance structure produced the most accurate estimates.  Models 
with GRM and FA structures were more accurate only when used to evaluate scenarios simulated 
with Toeplitz patterns of relationships and more than 25 genotypes or five environments.  The 
choice of compound symmetric versus FA structures may depend on whether accuracy or 
reliability is more important.  Analyses of additional simulations with more genotypes and/or 
more environments could determine if these conclusions are consistent for larger MET.  
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Table 1. Baseline Scenario.  Pearson correlations between estimates/predictions of effects of genotypes within environments and the true 
simulated effects of genotypes within environments for a baseline scenario of 25 genotypes, a randomized complete block design, an error 
variance of 2.0, and 5 environments simulated with a compound symmetric relationship and a common within environment variance.  

Cell Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 

           

  
GRM ID GRM Diag GRM CSU GRM CSH GRM FA1U GRM FA1H GRM FA2U GRM FA2H GRM FA3U 

  
0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 

 

Table 2. Effect of Error Variance.  Pearson correlations between estimates/predictions of effects of genotypes within environments and the true 
simulated effects of genotypes within environments for scenarios with three levels of error variance and 25 genotypes, a randomized complete 
block design,  and 5 environments simulated with a compound symmetric relationship and a common within environment variance.  

Design ErrorVar 
Cell 

Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
RCBD 0.1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 
RCBD 0.5 0.89 0.89 0.89 0.89 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
RCBD 2 0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 

             

  
Design ErrorVar 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
RCBD 0.1 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.97 

  
RCBD 0.5 0.89 0.89 0.92 0.91 0.91 0.91 0.91 0.91 0.9 

  
RCBD 2 0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 
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Table 3. Effect of Experimental Design.  Pearson correlations between estimates/predictions of effects of genotypes within environments and 
the true simulated effects of genotypes within environments for scenarios with three experimental designs and 25 genotypes, an error variance 
of 2.0, and 5 environments simulated with a compound symmetric relationship and a common within environment variance.  

Design Cell Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
RCBD 0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 
MAD 0.5 

 
0.5 0.44 0.57 0.51 0.52 0.54 0.54 0.54 0.54 

Unrep 0.48 
          

            

  
Design GRM ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
RCBD 0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 

  
MAD 0.51 0.47 0.66 0.51 0.6 0.61 0.59 0.6 0.62 

  
Unrep 0.48 0.43 0.64 0.49 0.59 0.58 0.57 0.57 0.56 
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Table 4. Effect of genotype quantity.  Pearson correlations between estimates/predictions of effects of genotypes within environments and the 
true simulated effects of genotypes within environments for scenarios with 25 or 50 genotypes, three experimental designs, an error variance 
of 2.0, and 5 environments simulated with a compound symmetric relationship and a common within environment variance.  

# of Gen Design Cell Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
25 RCBD 0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 
25 MAD 0.5 

 
0.5 0.44 0.57 0.51 0.52 0.54 0.54 0.54 0.54 

25 Unrep 0.48 
          50 RCBD 0.71 0.79 0.71 0.69 0.78 0.77 0.77 0.77 0.77 0.77 0.76 

50 MAD 0.5 
 

0.51 0.45 0.61 0.58 0.58 0.58 0.58 0.58 0.57 
50 Unrep 0.5 

          
             

  
# of Gen Design 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
25 RCBD 0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 

  
25 MAD 0.51 0.47 0.66 0.51 0.6 0.61 0.59 0.6 0.62 

  
25 Unrep 0.48 0.43 0.64 0.49 0.59 0.58 0.57 0.57 0.56 

  
50 RCBD 0.74 0.73 0.82 0.81 0.81 0.8 0.79 0.8 0.8 

  
50 MAD 0.55 0.51 0.7 0.66 0.65 0.65 0.64 0.64 0.65 

  
50 Unrep 0.5 0.46 0.68 0.58 0.63 0.64 0.63 0.64 0.62 
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Table 5. Effect of environment quantity.  Pearson correlations between estimates/predictions of effects of genotypes within environments and 
the true simulated effects of genotypes within environments for scenarios with  three experimental designs, 25 genotypes, an error variance of 
2.0, and 5 or 10 environments simulated with a compound symmetric relationship and a common within environment variance.  

# of Env Design Cell Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
5 RCBD 0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 
5 MAD 0.5 

 
0.5 0.44 0.57 0.51 0.52 0.54 0.54 0.54 0.54 

5 Unrep 0.48 
          10 RCBD 0.7 0.82 0.7 0.68 0.79 0.78 0.79 0.78 0.79 0.78 

 10 MAD 0.51 
 

0.52 0.44 0.67 0.61 0.65 0.61 
 

0.56 
 10 Unrep 0.5 

          
             

  
# of Env Design 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
5 RCBD 0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 

  
5 MAD 0.51 0.47 0.66 0.51 0.6 0.61 0.59 0.6 0.62 

  
5 Unrep 0.48 0.43 0.64 0.49 0.59 0.58 0.57 0.57 0.56 

  
10 RCBD 0.73 0.7 0.84 0.82 0.82 0.81 

   
  

10 MAD 0.52 0.47 0.74 0.65 0.7 0.69 
   

  
10 Unrep 0.48 0.44 0.72 0.59 0.7 0.68 
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Table 6. Effect of heterogeneous environmental variance.  Pearson correlations between estimates/predictions of effects of genotypes within 
environments and the true simulated effects of genotypes within environments for scenarios with  three experimental designs, 25 genotypes, 
an error variance of 2.0, and 5 environments simulated with a compound symmetric relationship and constant or heterogeneous within 
environment variances.  

Constant 
Variance Design Cell Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 

Yes RCBD 0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 
Yes MAD 0.5 

 
0.5 0.44 0.57 0.51 0.52 0.54 0.54 0.54 0.54 

Yes Unrep 0.48 
          No RCBD 0.7 0.77 0.7 0.68 0.75 0.75 0.75 0.75 0.75 0.75 0.74 

No MAD 0.5 
 

0.51 0.46 0.56 0.53 0.54 0.54 0.56 0.55 0.58 
No Unrep 0.48 

          
             

  

Constant 
Variance Design 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
Yes RCBD 0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 

  
Yes MAD 0.51 0.47 0.66 0.51 0.6 0.61 0.59 0.6 0.62 

  
Yes Unrep 0.48 0.43 0.64 0.49 0.59 0.58 0.57 0.57 0.56 

  
No RCBD 0.73 0.71 0.8 0.79 0.78 0.79 0.78 0.78 0.79 

  
No MAD 0.51 0.49 0.65 0.57 0.64 0.62 0.64 0.62 0.63 

  
No Unrep 0.47 0.44 0.64 0.5 0.58 0.57 0.55 0.52 0.52 
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Table 7. Effect of relationship pattern.  Pearson correlations between estimates/predictions of effects of genotypes within environments and 
the true simulated effects of genotypes within environments for scenarios with  three experimental designs, 25 genotypes, an error variance of 
2.0, and 5 environments simulated with a compound symmetric relationship or a Toeplitz pattern and constant  within environment variances.  

Pattern Design 
Cell 

Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
CS RCBD 0.69 0.78 0.69 0.66 0.74 0.73 0.73 0.72 0.73 0.72 0.73 
CS MAD 0.5 

 
0.5 0.44 0.57 0.51 0.52 0.54 0.54 0.54 0.54 

CS Unrep 0.48 
          Toep RCBD 0.69 0.79 0.69 0.66 0.76 0.75 0.75 0.75 0.76 0.76 0.73 

Toep MAD 0.5 
 

0.5 0.44 0.57 0.54 0.55 0.55 0.57 0.57 0.55 
Toep Unrep 0.51 

          
             

  
Pattern Design 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
CS RCBD 0.72 0.69 0.8 0.78 0.77 0.77 0.74 0.75 0.77 

  
CS MAD 0.51 0.47 0.66 0.51 0.6 0.61 0.59 0.6 0.62 

  
CS Unrep 0.48 0.43 0.64 0.49 0.59 0.58 0.57 0.57 0.56 

  
Toep RCBD 0.71 0.68 0.8 0.78 0.77 0.77 0.78 0.78 0.76 

  
Toep MAD 0.49 0.45 0.65 0.55 0.61 0.6 0.6 0.59 0.58 

  
Toep Unrep 0.45 0.43 0.66 0.53 0.61 0.62 0.62 0.62 0.62 
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Table 8. Effect of relationship pattern: 10 environments.  Pearson correlations between estimates/predictions of effects of genotypes within 
environments and the true simulated effects of genotypes within environments for scenarios with  three experimental designs, 25 genotypes, 
an error variance of 2.0, and 10 environments simulated with a compound symmetric relationship or a Toeplitz pattern and constant  within 
environment variances.  

Pattern Design 
Cell 

Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
CS RCBD 0.7 0.82 0.7 0.68 0.79 0.78 0.79 0.78 0.79 0.78 

 CS MAD 0.51 
 

0.52 0.44 0.67 0.61 0.65 0.61 
 

0.56 
 CS Unrep 0.5 

          Toep RCBD 0.73 0.81 0.73 0.71 0.75 0.75 0.79 0.78 0.82 0.82 
 Toep MAD 0.53 

 
0.54 0.48 0.56 0.57 0.65 0.64 0.67 0.67 

 Toep Unrep 0.52 
          

             

  
Pattern Design 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
CS RCBD 0.73 0.7 0.84 0.82 0.82 0.81 

   
  

CS MAD 0.52 0.47 0.74 0.65 0.7 0.69 
   

  
CS Unrep 0.48 0.44 0.72 0.59 0.7 0.68 

   
  

Toep RCBD 0.77 0.74 0.8 0.78 0.79 0.78 0.83 0.82 
 

  
Toep MAD 0.59 0.55 0.67 0.66 0.69 0.69 

   
  

Toep Unrep 0.56 0.52 0.65 0.58 0.65 0.63 
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Table 9. Effect of relationship pattern: 50 genotypes.  Pearson correlations between estimates/predictions of effects of genotypes within 
environments and the true simulated effects of genotypes within environments for scenarios with  three experimental designs, 50 genotypes, 
an error variance of 2.0, and 5 environments simulated with a compound symmetric relationship or a Toeplitz pattern and constant  within 
environment variances.  

# of Gen Design Cell Means AMMI ID Diag CSU CSH FA1U FA1H FA2U FA2H FA3U 
CS RCBD 0.71 0.79 0.71 0.69 0.78 0.77 0.77 0.77 0.77 0.77 0.76 
CS MAD 0.5 

 
0.51 0.45 0.61 0.58 0.58 0.58 0.58 0.58 0.57 

CS Unrep 0.5 
          Toep RCBD 0.71 0.81 0.71 0.69 0.79 0.78 0.78 0.79 0.81 0.81 0.8 

Toep MAD 0.51 
 

0.51 0.45 0.63 0.59 0.59 0.6 0.63 0.62 0.59 
Toep Unrep 0.49 

          
             

  
# of Gen Design 

GRM 
ID 

GRM 
Diag 

GRM 
CSU 

GRM 
CSH 

GRM 
FA1U 

GRM 
FA1H 

GRM 
FA2U 

GRM 
FA2H 

GRM 
FA3U 

  
CS RCBD 0.74 0.73 0.82 0.81 0.81 0.8 0.79 0.8 0.8 

  
CS MAD 0.55 0.51 0.7 0.66 0.65 0.65 0.64 0.64 

 
  

CS Unrep 0.5 0.46 0.68 0.58 0.63 0.64 0.63 0.64 0.62 

  
Toep RCBD 0.74 0.73 0.82 0.81 0.81 0.82 0.84 0.84 0.82 

  
Toep MAD 0.53 0.5 0.7 0.66 0.66 0.67 0.67 0.66 0.65 

  
Toep Unrep 0.47 0.46 0.67 0.59 0.65 0.64 0.65 0.65 0.64 

 
Table 10. Number of simulations for which each model converged, out of 100, for scenarios with  three experimental designs, 25 genotypes, an 
error variance of 2.0, and 10 environments simulated with a Toeplitz pattern and constant  within environment variances.  

Design ID Diag CorV CorH FA1U FA1H FA2U FA2H FA3U FA3H 
RCBD 100 100 100 93 61 79 33 46 6 7 
MAD 100 100 100 54 28 46 8 16 1 5 

           Design GRM ID GRM Diag GRM CorV GRM CorH GRM FA1U GRM FA1H GRM FA2U GRM FA2H GRM FA3U GRM FA3H 
RCBD 100 100 100 84 41 69 16 33 1 5 
MAD 100 100 100 34 23 36 0 8 0 0 

Unrep 100 100 99 32 15 34 1 8 0 4 
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