
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2011 - 23rd Annual Conference Proceedings 

MULTI-PARENTAL MATING DESIGN ANALYSIS: MODEL MULTI-PARENTAL MATING DESIGN ANALYSIS: MODEL 

EVALUATION AND APPLICATION IN SPRING WHEAT EVALUATION AND APPLICATION IN SPRING WHEAT 

M. Kadariya 

K. D. Glover 

J. Wu 

J. L. Gonzalez 

See next page for additional authors 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Kadariya, M.; Glover, K. D.; Wu, J.; and Gonzalez, J. L. (2011). "MULTI-PARENTAL MATING DESIGN 
ANALYSIS: MODEL EVALUATION AND APPLICATION IN SPRING WHEAT," Conference on Applied Statistics 
in Agriculture. https://doi.org/10.4148/2475-7772.1050 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kansas State University

https://core.ac.uk/display/267195823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2011
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2011%2Fproceedings%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2011%2Fproceedings%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2011%2Fproceedings%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1050
mailto:cads@k-state.edu


Author Information Author Information 
M. Kadariya, K. D. Glover, J. Wu, and J. L. Gonzalez 

This is available at New Prairie Press: https://newprairiepress.org/agstatconference/2011/proceedings/9 

https://newprairiepress.org/agstatconference/2011/proceedings/9


 

MULTI-PARENTAL MATING DESIGN ANALYSIS: MODEL EVALUATION AND 

APPLICATION IN SPRING WHEAT 
 

M. Kadariya, K.D. Glover, J. Wu, and J.L. Gonzalez
 

Plant Science Department, South Dakota State University,  

Box 2140C, Brookings, SD 57007, USA 

 

Abstract 

Conventional quantitative genetics studies have mainly focused on bi-parental mating systems. 

However, genetic potential of selected individuals within a segregating population may be 

limited due to only two parents being used for each cross. Multiple-parental mating systems have 

been proposed that involve three or four diverse parents. This provides a higher potential of 

combining desirable genes. Due to complexity of the data structure of multi-parental mating 

systems, analysis of variance (ANOVA) methods are not applicable in analysis. The objective of 

this study is to validate and apply a mixed linear model approach, minimum norm quadratic 

unbiased estimation (MINQUE), to analyze a widely used additive-dominance (AD) genetic 

model. Various simulations were conducted to validate the use of this approach. Twelve different 

spring wheat genotypes were used to develop populations in the study. Phenotypic data 

containing parents and their F2 (second filial generation) on preharvest sprouting (PHS) 

resistance in spring wheat (Triticum aestivum L.) developed by multi-parental crosses were used 

as a demonstration. The simulation study showed that a modified AD model can be used to 

estimate variance components in an unbiased manner within this complex data structure. Actual 

data analysis revealed that both additive and dominance effects were responsible for PHS 

resistance. Several parents associated with desirable additive effects for PHS were identified. In 

addition, some crosses with desirable heterozygous dominance effects were also identified, 

which can be used for hybrid development. Results should help breeders to obtain useful genetic 

information by using the methods suggested in this study. 

  

 Key words: Preharvest sprouting, minimum norm quadratic unbiased estimation, additive 

dominance-model. 

 

1. Introduction 

 

Wheat (Triticum aestivum L.) is a major food source for millions of people in the world. There 

are many factors limiting wheat production, and out of these pre-harvest sprouting (PHS) of 

grain has been a severe problem in many parts of the world including the US. Pre-harvest 

sprouting is defined as the condition of in-spike germination of physiologically mature seeds 

during unfavorable harvest conditions. In other words, PHS occurs when harvest time coincides 

with relatively high humidity in the field due to untimely rainfall (King, 1984; Derera et al., 

1976). 

 

Pre-harvest sprouting has resulted in yield loss, as well as degradation of nutritional and 

processing quality of grain. This will eventually lead to economic losses to farmers and the 

processing industry. Exposure of grain to wet conditions during the ripening stage triggers a 
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sequence of physiological processes such as release of alpha-amylase enzyme. With increased 

alpha-amylase activity, the grain carbohydrate reserve is hydrolyzed affecting bread wheat 

quality causing yield loss, reduced test weight, sticky crumb, collapsed loaves, and dark-colored 

crusts (Derera et al., 1976; Mares et al., 2005). Hagberg falling number test (AACC, 2000) is 

used to quantify sprout damage, which measure starch degradation due to alpha amylase activity 

before appearance of any visible sprouting symptoms (Stoy, 1982). Sound, non-sprouted grain 

contains less alpha-amylase activity, which prolongs the time to degrade gelatinized starch, and 

results in a higher falling number. In durum wheat (Triticum turgidum L.), PHS can decrease test 

weight, increase semolina bran specks, cooking losses, poor color, decreased firmness, and 

reduced spaghetti stickiness values. Thus, PHS limits the production of high quality wheat for 

export and also for domestic use.  

 

Since PHS can cause significant damage to wheat growers and processors by reducing yield and 

baking quality, improving PHS resistance is a prioritized breeding objective that breeders have 

sought for years. Development of PHS-resistant cultivars is likely the most effective way to 

address the problem. Pre-harvest sprouting resistant cultivars are highly desirable in wheat 

growing areas where periods of wet weather frequently occur during harvest. Breeding for PHS 

resistance is challenging however, as it is quantitatively inherited and influenced by many factors 

including genetic constitution of the line, gene interaction, environmental conditions, and 

genotype × environment interactions. Screening and selection on the basis of phenotype is 

difficult, and DNA markers linked to genes involved in PHS represent a more reliable tool for 

selecting resistant genotypes (Tan et al., 2006).  

 

Developing desirable PHS resistance lines with competitive yield potential rely on identification 

of genetic information among various crosses being made. Data analyses on these crosses play 

an important role. Many quantitative genetic studies are based on bi-parental mating schemes, 

which include North Carolina I (NCI), North Carolina II (NC II), and diallel mating designs 

(Comstock and Robinson, 1948, 1952; Griffing, 1956). By using analysis of variance (ANOVA) 

methods, valuable genetic information, such as genetic variance components and genetic effects, 

can be obtained and used for crop improvement. Since selection from bi-parental crosses may be 

limited, three- or four-parental crosses (i.e., multi-parental crosses) have been used to develop 

populations for selection (Nandarajan & Gunasekaran, 2005). Unlike bi-parental mating designs, 

a multi-parental cross can contain more diverse alleles for selection. However, theoretical 

investigations on multi-parental mating designs are limited due to complex genetic structures and 

pedigrees. Further theoretical investigation of multi-parental mating designs will be an important 

addition to current knowledge associated with genetic mating designs. 

 

Mixed linear model approaches have been proposed and can be used for complex model and 

unbalanced data structure from long time (Hartley and Rao, 1967; Rao 1971, Zhu, 1998). These 

are matrix and vector based approaches, which offer flexibility in analyzing complex data 

structures. There are three types of mixed linear model approaches: maximum likelihood (ML), 

restricted maximum likelihood (REML), and minimum norm quadratic unbiased estimation 

(MINQUE) (Hartley and Rao, 1967; Rao, 1971; Searle et al., 1992). The MINQUE approach 

was proposed by Rao (1971) for estimating variance components and to predict effects of 
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interest. Both ML and REML process requires iteration procedure and assumption of normally 

distributed data. MINQUE approach can be applied to different data distribution and does not 

require iteration process (Rao, 1971). 

 

Among various genetic models proposed (Zhu, 1993; Wu et al., 2010a), the additive-dominance 

(AD) model is one of the most commonly used genetic models. Our first objective of this study 

was to develop and validate an AD model for the complex data structure developed from three- 

and four-parental crosses. Using mixed linear model approaches, we numerically evaluated 

empirical Type I errors and testing powers for variance components with simulated genetic data. 

Our second objective was to apply this AD model and approach to an actual data set composed 

of 12 spring wheat parents and 109 three- or four-parental crosses. Variance components, 

heritability, and genetic effects for PHS were calculated.   

 

2. Materials and Methods 

2.1. Population development and structure 
 

In order to increase genetic diversity and combine more favorable alleles in line development, 

the population in our study was developed from three- or four-way crosses of different spring 

wheat genotypes. Figure 1, provides an example of development of a single family from a three-

way cross giving rise to four individual progeny. In total, 12 spring wheat genotypes were used 

as parents to create 109 multi-parent families which gave rise to 729 F2 individuals. Complete 

list of families developed in this along with respective parents used in crosses is presented in 

Appendix 1. These spring wheat genotypes were selected from spring wheat breeding program 

and had varying level of PHS resistance.  

 

 

 
 

 

                                     Figure 1. Example of a family   

Dapps Traverse

F1

Dapps/Traverse
Blade

F2 Progeny 

(phenotyping)
1 2 3 4

1 2 3 4 F1

Dapps TraverseDapps Traverse

F1

Dapps/Traverse
BladeF1

Dapps/Traverse
Blade

F2 Progeny 

(phenotyping)
1 2 3 4

F2 Progeny 

(phenotyping)
1 2 3 4

1 2 3 4 F11 2 3 41 2 3 4 F1
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2.2. Phenotypic evaluation 

 

Pre-harvest sprouting resistance test were conducted with F2 progeny from each individual 

within F1 families. Phenotyping based on a progeny test was performed as a measure of PHS.  

Intact spikes were hand harvested at physiological maturity (loss of green color from the 

peduncle and glumes). Harvested spikes were air dried for 3-5 days under ambient temperature 

and stored in -20
0
 C to preserve dormancy prior to evaluation. Sprouting experiments were 

carried out in a greenhouse mist chamber developed for this purpose. About 10 spikes from each 

line were tested visually for sprouting resistance. All spikes were tested by being placed in a rack 

made of wire mesh. To maximize uniformity of the mist treatment, racks were repositioned daily 

within chamber (Rasul et al., 2009).  Humidity conditions inside the chamber were maintained 

by applying mist for 60 sec at 60 min intervals throughout the entire experiment. Spikes were 

kept inside the chamber for 3-5 days. Spikes of each line were rated based on 0 to 9 scale, where 

0 indicated no visible sprouting and 9 indicated extensive visible sprouting over entire spike 

(McMaster and Derera, 1976). All parents used in developing populations were also tested for 

PHS resistance and considered checks.  

 

2.3. Genetic Model and Data analysis 

 

The AD genetic model and its extensions have been widely used in different studies (Zhu, 1998; 

Tang et al., 1996; Wu et al., 2010a; Saha et al., 2006; Jenkins, 2006, 2007). Assume that there 

are no genotype-by-environment interaction effects and there are normal segregations in each 

cross. Given an AD model, genetic components for parents and crosses (bi-, tri-, and tetra-

parental crosses) at different generations are different. For generalization and simplicity, we 

assume that the female is a F1 cross of parents i and j and the male is a F1 cross of parents k and l. 

If these genotypes are evaluated in a field with a randomized complete block (RCB) design, a 

generalized AD model for the cross of F1(ij) and F1(kl) in the r block can be developed based on 

Cockerham’s genetic model (1980): 

 

For F1: 

 ��������	
 = µ +


�
�� +



�
�� +



�
�� +



�
�� +



�
��� +
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��� +
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Where µ is the population mean; �� , �� , �� or �� is the additive effect; 

����, ��� , ��� , ��� , ���, ��� , ��� or ���
 is the dominance effect; �� is the block effect. The last 

term is the random error. It is reasonable to treat additive and dominance effects as random 

because parents were chosen from a large population.  
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It must be pointed out that these two equations can be converted to different mating designs. For 

example, if i=j=k=l, the AD model in equations (1) and (2) becomes an AD model for parent. If 

i=j and k=l, the above equations are for a bi-parental cross. If i=j and k≠l or i≠j and k=l, these 

two equation are for a tri-parental cross. If i≠j and k≠l, then these equations are for a tetra-

parental cross. These two equations are more generalized than those for bi-parental crosses 

reported previously. In addition, if no block effect is included in the model, then this effect �� 

can be deleted from these two equations. 

 

Analysis of variance methods are unable to estimate variance components and genetic effects for 

the above two equations which include complex genetic structures. Thus, we applied a mixed 

linear model approach, minimum norm quadratic unbiased estimation (MINQUE), which has 

been extensively used in various studies (Zhu, 1989, 1994; Zhu and Weir, 1994; Wu et al., 

2006a, b, 2010a,b), to estimate variance components. In order to apply MINQUE approach, the 

above two equations can be expressed in terms of vectors and matrices as follows: 

 

� = 1� + ���� + ���� + ���� + �   (3) 

 

      

Where, y is an observation vector with dimension ! × 1, known; µ is the population mean as 

defined as above;  

1 is the vector with all elements 1; 

�� is the vector for additive effects, ��~MVN �0, %�
�I
'; 

() is the incidence matrix for additive effects; 

�� is the vector for dominance effects, ��~MVN �0, %�
�I
'; 

(* is the incidence matrix for dominance effects; 

�� is the vector for block effects, ��~MVN �0, %�
�I
'; 

(+ is the incidence matrix for block effects; 

�  is the vector for random errors, � ~MVN �0, % 
�I
'. 

 

Variance components in the above AD model can be estimated by solving the following 

MINQUE normal equations for u, v = 1, 2, …, 4 if block effects are included: 

 

,-.��/
012�3

0�3
'12�/
'],%/

�] = ,�012�/�/
012�]  (4) 

 

where the trace tr is the sum of diagonals of a matrix and  

 

12 = 52
6 − 52

68�8052
68
68052

6            (5) 

 

Where 52 = ∑ :/�/�/
0�

/;   and 52
6 is the inverse matrix of 52 with prior values uα in place of 

2

uσ  in 52. Since different prior values yield similar variance component estimation (Zhu, 1989), 

we set uα =1.  
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In this study, we primarily focused on spring wheat data sets which simply follow complete 

randomized design (CRD), so there were no block effects and block effects were deleted from 

the model accordingly. Thus, only three components were included. The first section of this 

study was that of genetic model evaluation, as data set was complicated with either 3 or 4 

parents. Simulation study was conducted to evaluate appropriateness of using mentioned genetic 

model for data analysis. Bias, Type I error, testing power and mean square error (MSE) (Wu et 

al., 2006a, 2010b) were calculated from simulation procedure based on 200 simulations. In the 

first case, all variance components were set to zero except random error. This case evaluated 

Type I error for all variance components except random error. In the second case, all variance 

components, including random error, were set to 20. This was done to determine testing powers 

for different variance components at different probability levels. The jackknife procedure was 

applied for statistical tests by randomly removing 10% of observations each time and repeated 20 

times (Wu et al., 2010b).  

 

The second section of this study was the application of this genetic model to an actual spring 

wheat data set. Phenotypic data from F2 progeny from families and parents were analyzed for 

genetic model evaluation. In addition to variance component estimation, genetic effects for 

additive effects and dominance effects were predicted by the adjusted unbiased prediction 

approach (Zhu, 1993). All genetic model evaluation and actual data analysis were conducted by a 

computer program GenMod (Wu et al., 2010a).  Details about this computer program and its use 

have been described in the paper from previous proceedings of this conference (Wu et al., 

2010a).   

 

3. Results and Discussion 

3.1 Simulation study 

 

The simulation study was important to evaluate appropriateness of using this model with the data 

structure discussed. Simulation results from two different specific cases are presented in Tables 1 

and 2. Results showed that each variance component was estimated in an unbiased manner 

(Table 1).  Type I error for both additive and dominance variance were 0.05 and 0.04 

respectively.  

 

Table 1. Estimated Type I error for estimating Variance Component for AD model 

 Pre-set value Bias Type I error MSE 

VA 0 0.00 0.050 0.816 

VD 0 0.114 0.040 0.675 

Ve 20 0.037 - 0.013 

 

The testing power of both additive and dominance effects were desirable (Table 2). Thus 

simulated results indicated that using the modified AD genetic model gives an unbiased 

estimation of variance components with desirable biases, type I error, and testing power.  
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Table 2. Estimated Testing Power for estimating Variance Component for AD Model 

  Pre-set value Bias Power MSE 

VA 20 -0.617 1.000 0.816 

VD 20 0.614 0.98 0.675 

Ve 20 0.081 1.000 0.013 

 

3.2. Actual data analysis 

3.2.1. Phenotypic means for parents and F2 progeny 

 

In this study, only the PHS trait is discussed among parents and F2 populations. Preharvest 

sprouting resistance scores of individual plant of parent ranged from 2 to 9 explaining the range 

of resistance. Mean PHS score of all parents is about 6.798. Mean PHS scores of F2 progeny 

within F1 families range from 4.96 to 7.38 slightly lower than overall parent’s score (Table 3).  

However, each F2 individual’s PHS score within F1 families range from 1 to 9, explaining range 

of resistance level present in populations. 

 

Table 3. Mean, minimum, and maximum PHS score for parents and F1 families 

    PHS score 

Parent Mean 6.798 

  Min 2.000 

  Max 9.000 

F1 families Mean 6.286 

  Min 4.960 

  Max 7.380 

 

Lists of parents used in the developing populations along with their average PHS scores are 

listed in Table 4. Among the 12 parents used in this study, ‘Dapps’ had the lowest PHS score and 

was most resistant whereas ‘Ingot’, with highest score was the most susceptible parent. Most of 

the parents used in the study are susceptible to PHS, whereas some genotypes such as ‘AC-

Snowbird’, ‘Argent’, ‘Blade’, and ‘Grandin’ appear moderately susceptible.  
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Table 4. Parental means for PHS score  

Parents Average PHS score 

AC-SNOWBIRD 6.008 

ARGENT 6.566 

BLADE 6.425 

DAPPS 5.150 

GRANDIN 6.126 

GRANGER 7.13 

HAT-TRICK 7.35 

INGOT 7.96 

LOLO 7.103 

LOSCHA 7.031 

TRAVERSE 7.042 

ULEN 7.304 

 

3.2.2. Variance Components 

 

Explained AD model was used in actual data analysis of this study. Different variance 

components that make up genetic effects were calculated and summarized as Table 5. Both 

additive and dominance variance were significant for PHS. This revealed that both variance 

components were responsible for PHS resistance. Estimated variance components expressed as 

proportions of total phenotypic variance are summarized in Table 6.  

 

Table 5. Estimation of Variance Components 

Parameter Estimate  SE 

Additive variance (VA) 0.549
****

 0.036 

Dominance variance (VD) 0.442
**

 0.095 

Residuals (VE) 0.746
****

 0.018 

Phenotypic variance (VP) 1.738
****

 0.084 

**=0.01, ****=0.0001 significance level 

 

Heritability estimates are useful in formulating breeding plans to achieve the most progress from 

selection. Heritability can be defined in several ways, but stated simply it describes how much a 

character is transferred to offspring from parents. Both broad- and narrow-sense heritabilities 

were calculated. Broad-sense heritability (ratio of both additive and dominance to phenotypic 

variance) was 0.57 and narrow-sense heritability (ratio of additive to phenotypic variance) was 

0.315 (Table 4). Higher narrow-sense heritability allows for greater progress to be made through 
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early-generation trait selection and few tests are generally required. However in this case, where 

narrow-sense heritability was not high, selection in later generations using tests carried out in 

space and time is suggested to most effectively improve PHS resistance. 

 

Table 6. Estimated Proportion of Variance Component for AD Model using F2 and Parent’s PHS 

Trait 

Parameter Estimate  SE 

VA/VP 0.315**** 0.022 

VD/VP 0.254*** 0.041 

***=0.001, ****=0.0001 significance level 

 

3.2.3. Additive effects 

 

Additive effects which are equivalent to general combining ability in an AD model, is important 

in line development. Table 7 summarizes additive effects for each spring wheat parent used in 

this study. Genotypes such as ‘Dapps’, ‘AC-Snowbird’ and ‘Loscha’ had significant negative 

additive effects, whereas ‘Ingot’, ‘Hat-Trick’, ‘Granger’ and ‘Lolo’ had significant positive 

effects for PHS resistance. In order to increase PHS resistance, lower phenotypic values are 

required. Negative additive effects will increase resistance and positive additive effects will 

decrease resistance. Parents with significant negative additive effects are good general combiners 

for increasing resistance. These genotypes can be considered while making crosses to improve 

resistance against PHS. Parents with significant positive effects will more likely increase 

susceptibility and should be avoided as much as possible.  

  

Table 7.  Predicted Additive Effects for PHS Resistance 

Parents Estimate SE 

DAPPS -0.718
***

 0.051 

AC-SNOWBIRD -0.796
***

 0.044 

LOSCHA -0.639
***

 0.052 

GRANDIN -0.065 0.036 

ULEN 0.0003 0.033 

ARGENT -0.090 0.031 

INGOT 0.775
***

 0.038 

HAT-TRICK 0.646
***

 0.000 

GRANGER 0.583
***

 0.000 

LOLO 0.256
***

 0.001 

***=0.001 significance level 
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3.2.4. Dominance effects 

 

Two types of dominance effects, homozygous (Table 8) and heterozygous dominance effects 

(Table 9) were predicted. Homozygous dominant effects measure the degree of inbreeding 

depression following hybrid selfing. Negative homozygous dominance for parents results in 

greater amount of inbreeding depression in progeny, if the parents are used in cross, following 

selfing. Both effects are useful in the case where breeders are interested in hybrid development 

and utilization. 

 

Table 8. Predicted homozygous dominant effect for PHS resistance 

Parent   Estimate    SE 

DAPPS 0.567
*
 0.138 

AC-SNOWBIRD 0.866
****

 0.125 

LOSCHA 1.496
****

 0.216 

GRANDIN -0.779
**

 0.152 

ULEN 2.004
****

 0.270 

ARGENT -0.176 0.119 

INGOT -0.116 0.127 

HAT-TRICK -0.526
**

 0.112 

BLADE -0.249 0.104 

GRANGER -0.522 0.188 

TRAVERSE 0.435
*
 0.121 

LOLO 0.052 0.111 

*=0.05, **=0.01, ****=0.0001 significance level 

 

Heterozygous dominant effects are related to specific combining ability for the pair of parents in 

a cross. Significant heterozygous dominant effect is useful for hybrid development. In this study, 

crosses that lead to negative estimates of dominance effects can increase resistance against PHS 

in early generations; where as positive estimates in the crosses might further increase 

susceptibility. Such information can be used by breeders for capturing heterosis. For example, 

crosses with negative heterozygous dominance effects such as ‘Dapps × AC-Snowbird’, Loscha 

× Dapps’, ‘Dapps × Ulen’ etc from following can be used to capture heterosis for PHS 

resistance. 
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Table 9.  Predicted Heterozygous Dominance Effects for PHS Resistance 

Parents in cross Estimate SE 

DAPPS × AC-SNOWBIRD -0.694
****

 0.107 

LOSCHA × DAPPS -0.855
*
 0.255 

DAPPS × GRANDIN  -0.037 0.181 

DAPPS × ULEN -0.972
**

 0.232 

DAPPS × ARGENT -0.009 0.131 

DAPPS × INGOT -0.545 0.179 

DAPPS × HAT-TRICK 0.007 0.150 

BLADE × DAPPS -0.767
*
 0.200 

GRANGER × DAPPS  0.197 0.174 

DAPPS  × TRAVERSE -0.311
*
 0.077 

LOLO × DAPPS 0.136 0.167 

LOSCHA × AC-SNOWBIRD -0.684 0.266 

AC-SNOWBIRD × GRANDIN -0.557
*
 0.159 

ULEN × AC-SNOWBIRD -0.479 0.194 

AC-SNOWBIRD × ARGENT -0.027 0.095 

INGOT × AC-SNOWBIRD -0.810
**

 0.159 

GRANGER × AC-SNOWBIRD 0.403 0.160 

LOSCHA × GRANDIN 0.439 0.217 

ULEN × LOSCHA -1.423
****

 0.223 

LOSCHA × ARGENT -0.436 0.247 

LOSCHA × INGOT -0.228 0.142 

LOSCHA × BLADE -0.285 0.202 

BLADE × LOSCHA -0.256 0.166 

LOSCHA × GRANGER -0.056 0.310 

TRAVERSE × LOSCHA 0.394
*
 0.100 

LOLO × LOSCHA 0.525 0.244 

ULEN × GRANDIN 0.188 0.076 

ARGENT × GRANDIN 1.220
****

 0.182 

INGOT × GRANDIN -0.168 0.069 

GRANDIN × HAT-TRICK 0.114 0.102 

BLADE × GRANDIN -0.369
*
 0.110 

GRANGER × GRANDIN 0.109 0.170 

TRAVERSE × GRANDIN -0.968
****

 0.106 

ARGENT × ULEN 0.079 0.148 

ULEN × INGOT -0.218 0.206 

ULEN × HAT-TRICK 1.182
***

 0.216 

ULEN × BLADE 1.027
*
 0.272 

GRANGER × ULEN -0.851
****

 0.114 

ULEN × TRAVERSE -0.995
****

 0.156 

LOLO × ULEN 0.094 0.079 
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Parents in cross Estimate SE 

INGOT × ARGENT  -0.035 0.195 

ARGENT × HAT-TRICK 0.219 0.115 

BLADE × ARGENT -0.018 0.134 

GRANGER × ARGENT -0.030 0.085 

TRAVERSE × ARGENT 1.233
***

 0.200 

LOLO × ARGENT 0.861
*
 0.229 

INGOT × HAT-TRICK -0.199 0.103 

BLADE × INGOT -0.156 0.182 

INGOT × GRANGER 0.114 0.122 

TRAVERSE × INGOT 0.024 0.173 

LOLO × INGOT 0.067 0.114 

HAT-TRICK × BLADE 0.272 0.160 

HAT-TRICK × GRANGER 0.486
*
 0.142 

TRAVERSE × HAT-TRICK 1.155
****

 0.162 

LOLO × HAT-TRICK 0.443 0.138 

GRANGER × BLADE 0.371
*
 0.100 

TRAVERSE × BLADE -0.274 0.211 

LOLO × BLADE 0.355 0.210 

TRAVERSE × GRANGER -0.016 0.132 

LOLO × GRANGER -1.034
**

 0.238 

*=0.05, **=0.01, ***=0.001, ****=0.0001 significance level 

 

4. Summary 

 

The simulation study showed that a modified AD model can be used to estimate variance 

components in an unbiased manner within this complex data structure. Application of this model 

to actual data analysis revealed that both additive and dominance effects were responsible for 

PHS resistance. Several parents were associated with desirable additive effects for PHS and can 

be used as good general combiners for improving the trait. In addition, some crosses had 

desirable heterozygous dominance effects, which can be used for hybrid development. Finally, 

additional studies can be done using multiple environment case in this study. Modified AD 

model can be further used in analyzing complex data structure with multiple traits and 

environments.  
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Appendix 1.  List of families along with respective spring wheat gentotypes used in crossing. 

 Family Parent 1 Parent 2 Parent 3 Parent 4 Progeny 

1 Dapps Ac-snowbird Loscha  4 

2 Dapps Ac-snowbird Grandin  14 

3 Dapps Ac-snowbird Ulen  5 

4 Dapps Ac-snowbird Dapps Argent 3 

5 Dapps Ac-snowbird Ingot  3 

6 Dapps Argent Hat-trick  6 

7 Dapps Argent Blade  1 

8 Dapps Argent Ulen  5 

9 Dapps Argent Grandin  5 

10 Dapps Argent Argent  5 

11 Dapps Argent Dapps Ulen 2 

12 Dapps Argent Dapps Ingot 2 

13 Dapps Blade Blade  12 

14 Dapps Blade Ingot  12 

15 Dapps Blade Grandin  2 

16 Dapps Blade Granger  4 

17 Dapps Blade Loscha Dapps 4 

18 Dapps Blade Ulen  4 

19 Dapps Blade Dapps Granger 10 

20 Dapps Blade Dapps Hat-Trick 3 

21 Dapps Grandin Grandin  7 

22 Dapps Grandin Ulen  4 

23 Dapps Grandin Loscha  2 

24 Dapps Grandin Hat-Trick  3 

25 Dapps Granger Granger  4 

26 Dapps Granger Hat-Trick  7 

27 Dapps Granger Ulen  7 

28 Dapps Granger Ingot  14 

29 Dapps Granger Ac-snowbird  8 

30 Dapps Granger Loscha  5 

31 Dapps Granger Traverse  10 

32 Dapps Granger Blade  8 

33 Dapps Granger Grandin  8 

34 Dapps Granger Dapps Hat-Trick 5 

35 Dapps Granger Argent  5 

36 Dapps Hat-Trick Blade  7 

37 Dapps Hat-Trick Dapps Loscha 9 

38 Dapps Hat-Trick Granger  6 

39 Dapps Hat-Trick Ulen  4 
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Family Parent 1 Parent 2 Parent 3 Parent 4 Progeny 

40 Dapps Hat-Trick Traverse  11 

41 Dapps Hat-Trick Ingot  9 

42 Dapps Hat-Trick Dapps LoLo 6 

43 Dapps Hat-Trick Dapps Ulen 6 

44 Dapps Ingot Ulen  5 

45 Dapps Ingot Ac-snowbird  11 

46 Dapps Ingot Loscha  3 

47 Dapps Ingot Ingot  13 

48 Dapps Ingot Granger  5 

49 Dapps Ingot Argent  6 

50 Dapps Ingot Traverse  12 

51 Dapps Ingot Dapps Ulen 3 

52 Dapps Ingot Grandin  9 

53 Dapps Ingot Dapps Hat-Trick 11 

54 Dapps Ingot Dapps Loscha 7 

55 Dapps Ingot Dapps Traverse 4 

56 Dapps Ingot Blade  3 

57 Dapps LoLo Ulen  8 

58 Dapps LoLo Dapps Hat-Trick 8 

59 Dapps LoLo Granger  8 

60 Dapps LoLo Loscha Dapps 2 

61 Dapps LoLo Ingot  3 

62 Dapps LoLo Blade  6 

63 Dapps LoLo Traverse  7 

64 Dapps LoLo Argent  4 

65 Dapps LoLo Traverse Dapps 5 

66 Dapps LoLo Dapps Ingot 12 

67 Dapps LoLo Loscha  3 

68 Dapps Loscha Ingot  6 

69 Dapps Loscha Argent  10 

70 Dapps Loscha Granger  10 

71 Dapps Loscha Grandin  19 

72 Dapps Loscha Traverse  11 

73 Dapps Loscha Hat-Trick  7 

74 Dapps Loscha Ac-snowbird  7 

75 Dapps Loscha Dapps Ulen 7 

76 Dapps Loscha Dapps Ingot 15 

77 Dapps Loscha Loscha  6 

78 Dapps Loscha Dapps Granger 7 

79 Dapps Loscha Ulen  3 

80 Dapps Traverse Ulen  10 
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 Family Parent 1 Parent 2 Parent 3 Parent 4 Progeny 

81 Dapps Traverse Grandin  8 

82 Dapps Traverse Ingot  12 

83 Dapps Traverse Granger  9 

84 Dapps Traverse Hat-Trick  12 

85 Dapps Traverse Blade  4 

86 Dapps Traverse Traverse  5 

87 Dapps Traverse Loscha Dapps 5 

88 Dapps Traverse Argent  6 

89 Dapps Traverse Dapps Ulen 6 

90 Dapps Traverse Dapps Loscha 2 

91 Dapps Traverse Dapps Hat-Trick 4 

92 Dapps Traverse Dapps Blade 2 

93 Dapps Ulen Ingot  6 

94 Dapps Ulen Traverse  10 

95 Dapps Ulen Ulen  6 

96 Dapps Ulen Hat-Trick  6 

97 Dapps Ulen Ac-snowbird  8 

98 Dapps Ulen Blade  10 

99 Dapps Ulen Grandin  4 

100 Dapps Ulen Dapps Blade 7 

101 Dapps Ulen Dapps Hat-Trick 10 

102 Dapps Ulen Dapps Granger 2 

103 Dapps Ulen Loscha  7 

104 Dapps Ulen Dapps Loscha 5 

105 Dapps Ulen Dapps Ingot 7 

106 Dapps Blade Argent  5 

107 Dapps Granger Dapps Ingot 4 

108 Dapps Granger Dapps Ulen 8 

109 Dapps Loscha Dapps Hat-Trick 3 
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