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Abstract 
 
Empirical Bayes approaches have been widely used to analyze data from high throughput 
sequencing devices. These approaches rely on borrowing information available for all the genes 
across samples to get better estimates of gene level expression. To date, transcript abundance in 
data from next generation sequencing (NGS) technologies has been estimated using parametric 
approaches for analyzing count data, namely – gamma-Poisson model, negative binomial model, 
and over-dispersed logistic model.  One serious limitation of these approaches is they cannot be 
applied in absence of replication.  
 
The high cost of NGS technologies imposes a serious restriction on the number of biological 
replicates that can be assessed. In this work, a simple non–parametric empirical Bayes modeling 
approach is suggested for the estimation of transcript abundances in un-replicated NGS data. The 
empirical Bayes analysis of NGS data follows naturally from the empirical Bayes analysis of 
microarray data by modifying the distributional assumption on the observations. The analysis is 
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presented for transcript abundance estimation for two treatment groups in an un-replicated 
experiment, but it is easily extended for more treatment groups and replicated experiments.      
 
Keywords: Empirical Bayes, Microarrays, Next-Generation Sequencing, Poisson distribution, 
Differential Gene Expression. 
 
 
1. Introduction 

 
NGS technologies have emerged as a promising alternative to previous technologies such as 
microarrays and Serial Analysis of Gene Expression (SAGE). Researchers have shown that 
results from NGS technologies are highly replicable with little technical variation (Marioni et al., 
2008). Other studies have shown that NGS technologies have an important role to play in future 
genome related research (Shendure, 2008). RNA-Sequencing is an attractive area of application 
of NGS technologies (Cloonan et al., 2009). One of the important issues in RNA-Sequencing 
experiments is the estimation of transcript abundances.  
 
Presently, very little attention has been paid to the estimation of transcript abundances in un-
replicated experiments. The main reason for this is lack of reliable statistical inference in un-
replicated experiments. But many un-replicated experiments are conducted by biologists for the 
purpose of surveying an organism, for preliminary analysis, or because of the high cost of NGS 
technologies. This paper presents an empirical Bayes method for the estimation of transcript 
abundances in un-replicated experiments.  
 
The transcript abundance in NGS data have been estimated using a classical parametric model – 
over-dispersed logistic regression model (Baggerly et al., 2004) and also through Bayes and 
empirical Bayes approaches which model information from all the genes, namely – a Bayesian 
beta-binomial model (Vêncio et al., 2004) and an empirical Bayes gamma-Poisson model 
(Thygesen and Zwinderman, 2006). A conditional maximum likelihood approach based on a 
negative binomial model (Robinson and Smyth, 2007, 2008) has also been used to estimate 
transcript abundances in NGS data. While these approaches model within group variation to 
improve the estimation of transcript abundance, this information is missing in un-replicated 
experiments.  
 
Our method takes advantage of the parallel structure of the NGS data at transcript level to 
compensate for the missing information about within group variation. It combines information 
available about transcript abundances from counts at the transcript level as well as counts 
available for all the transcripts to get better estimates of transcript abundances in an un-replicated 
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NGS experiment. This paper addresses the issue of estimating transcript abundances, but it is a 
matter of choice of semantics. The theoretical and practical details remain the same for 
estimating gene abundances or tag abundances.   
  
2. Non–parametric empirical Bayes model framework 

 
 

We use the empirical Bayes approach developed in Robbins (1956) to obtain the estimates of 
transcript abundance. The main difference between existing parametric empirical Bayes 
approaches and our non–parametric empirical Bayes model is the non–parametric prior 
distribution imposed on the transcript abundances. Our approach is minimally restrictive in prior 
assumptions and facilitates flexible and robust estimation of transcript abundances, specifically 
in absence of replication, when there is a limited availability of data, and when distributional 
assumptions are hard to verify. The hierarchical Poisson model, shown later (equation 2.2), 
guarantees the transcript abundance estimates can be calculated from the observed data easily 
and efficiently. 
  
Let gtn be the observed count of transcript g in the sample with treatment t and gtθ is the 

expectation of gtn . The library size of a particular treatment group t is defined as the total 

number of transcripts in the treatment group (and, may not be known apriori) and is denoted as 

.tn . The transcript counts depend on the library size, as large library size implies high transcript 

counts. Our aim is to estimate the transcript abundance, gtλ , which is independent of library size. 

We normalize gtθ  by dividing it by .tn  to obtain the transcript abundance, gtλ . Equation 2.1 

shows the relationship between gtλ , .tn  and gtθ . 

(2.1) .        where  1   and  =1,2t gt gtn g G tλ θ= =   

The statistical model assumes: gtn  given gtθ  are independent for different transcripts g in a 

particular treatment group t, gtn  given gtθ  follows a Poisson distribution with mean parameters 

gtθ , respectively, and gtθ  in a particular treatment group t are assumed to follow a non–

parametric distribution ( )tπ θ , apriori.  Essentially, we consider the hierarchical Poisson model 

specification as follows. 
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The empirical Bayes estimate, ĝtθ , of gtθ  is obtained in equation 2.3 (Carlin and Louis, 2008, 

Section 5.3.2, equation 5.30).  
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The hierarchical structure of the model equation 2.2 ensures ĝtθ  is easily and efficiently 

estimable from the observed data. Equation 2.3 illustrates information borrowing, as ĝtθ borrows 

information from all the transcript counts available in the treatment group t in addition to the 
count of transcript g.  
 

A naïve estimate of the library size .tn  for a particular treatment t is 

(2.4) .
1

ˆ
G

t gt
g

n n
=

=∑
 

(2.5) . ( )
1

ˆ ,
G

t gt G t
g

n n n G
=

= + ×∑  

where ( )G tn  is the maximum of all the available transcript counts in the sample with treatment t. 

 

Because the estimate in equation 2.4 will underestimate the true library size; instead we will use 
the estimate in equation 2.5. This is similar to Efron’s idea of offsetting the naïve estimate by a 
quartile of its gene wise value (Efron et al., 2001). In our case, we modify the naïve estimate in 
equation 2.4 by adding the maximum (100th quartile, ( )G tn ) of all the transcript counts in the 

sample with treatment t times the number of transcripts (G). We need to multiply ( )G tn  by G to 

make the transcript count comparable to the order of library size. The offset corrects for the 
negative bias of equation 2.4 and improves the estimate ˆ

gtλ  (equation 2.6). 
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The estimate of transcript abundance, ˆ
gtλ , is obtained by normalizing ĝtθ by the estimate of 

corresponding library size .̂tn  (equation 2.6). 

(2.6) 
.

ˆ
ˆ

ˆ
gt

gt
tn

θ
λ =  

The estimate ˆ
gtλ  is based on ĝtθ , so it also borrows information from all the transcript counts in 

treatment t to estimate the abundance of transcript g. Therefore, even if there is a single 
observation for a transcript in any treatment, the estimate in equation 2.6 uses all the transcript 
counts available in a particular treatment to calculate ˆ

gtλ . In addition, because the estimate is 

obtained using a non–parametric prior, it is more flexible and robust. This is a desirable feature 
as the available data is limited in un-replicated experiments; in addition, ˆ

gtλ  is obtained with 

minimal assumptions and uses all the available data in treatment t. The parametric empirical 
Bayes estimates may not be robust to deviation of data from prior distributional assumptions. 
Also, any prior distributional assumptions may be hard to verify in un-replicated experiments.  

 

3. Simulations and Results 
 
The empirical Bayes estimate ˆ

gtλ  (equation 2.6) gains its robustness and flexibility by borrowing 

information available along the parallel structure of transcripts for treatment t. This implies the 
increase in number of transcripts in a sample results in an increase in the reliability of the 
estimate (due to increased information borrowing). This fact is demonstrated via a simulation 
study in which the number of transcripts (G) available in a sample increases as 200, 2000, and 
20000. Typically, the total number of transcripts in a particular treatment in NGS data is of the 
order of at least thousands, depending on the diversity of the expressed mRNAs and sequencing 
time (Robinson and Smyth, 2008). The situation totaling 200 transcripts is included as an 
extreme scenario, and to assess the performance of empirical Bayes estimates under the 
limitation of available information to share (for details about information sharing in empirical 
Bayes methods, please see: Efron, 2003). There are two treatment levels: 1 and 2; treatment 1 is 
the base-line case.  
 
(3.1) ( )~ gtgt Poissonn θ  
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Equations 3.1–3.3 give details about the overall simulation setting. The transcript counts ngt are 
generated from Poisson distribution with mean parameters gtθ  (equation 3.1). We further assume 

that 10% of the transcripts are differentially expressed to make the simulation study close to 
reality (even if the aim of the paper is not to study differential expression of transcripts). This is 
accomplished by making the first 10% of the transcripts in treatment 2 to have 2gθ higher than 

the 1gθ  by 10 unit (equation 3.2). The difference of 10 units is arbitrary; if the difference is 

increased, the pattern of the estimated abundances agrees more with that of the true abundances. 
Other details about the effects of choosing the difference between 2gθ  and 1gθ  are in the 

Appendix. In addition to describing the estimation of ˆ
gtλ  (equation 2.6), we also demonstrate the 

robustness and flexibility of estimate ˆ
gtλ  by using two prior distributions on gtθ ; one prior is a 

uniform distribution and the other is a gamma distribution prior. A heuristic exploratory data 
analysis follows for detecting differentially expressed transcripts in un-replicated experiments.  
 
3.1 Simulation using uniform and gamma prior on gtθ  

 
We simulate the mean parameters ( gtθ ) of the transcript counts (ngt) from uniform and gamma 

distribution by first generating zgt from uniform and gamma distribution, respectively and then 
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scaling zgt by the appropriate library size (equations 3.2–3.3). The distribution specific 
parameters (a, b, α, and β in equation 3.3) and library sizes (L1, L2 for treatment 1 and 2, 
respectively in equation 3.2) are chosen to increase the number of transcripts with low counts. 
This was done to make the simulation closer to real life scenario where a large number of 
transcript counts in NGS data are low; low counts are typically less than or equal to 5. The 
parameters α, and β of gamma prior were chosen such that the mean and variance of the uniform 
and gamma prior match. Table 3.1 contains the values and details of the parameters a, b, α, β, L1, 
L2, and d depending on the total number of transcripts (G) in the sample (equations 3.1-3.3). The 
parameters a, b, α, and β determine the mean and variance of zgt depending on the uniform or 
gamma prior. L1, and L2 control the scaling of zgt depending on the total number of transcripts. 
These parameters control the value of gtθ  generated, which is further used to generate ngt. The 

first 10% of the transcripts are differentially expressed, which is denoted by the parameter d. The 
results of the simulations did not change noticeably on choosing different parameters. 
 

Transcripts (G) (a, b) (α, β) L1 L2 d 

200 (0.0001, 0.001) (4.5, 8223) 4×104 5×104 20 

2000 (0.00001, 0.0001) (4.5, 82236) 4×105 5×105 200 

20000 (0.000001, 0.00001) (4.5, 822367) 4×106 5×106 2000 

Table 3.1: The parameter settings in the simulation depending on the total number of transcripts 
in the sample (G). The parameters a and b are the range parameters of the uniform distribution of 
zgt in equation 3.2. The parameters α and β are the shape and rate parameters of the gamma 
distribution of zgt in equation 3.2. L1 and L2 are the library sizes for treatments 1 and 2, 
respectively. The parameter d denotes the number of differentially expressed transcripts in the 
sample.   
 
Figures 3.1.1 and 3.1.2 summarize the results of simulation using uniform and gamma priors on 

gtθ  by a smoothed color density representation of the scatter plot of log2 estimated abundance of 

transcripts vs log2 true abundance of transcripts. The smooth scatter plot is obtained through a 
kernel density estimate (R Development Core Team, 2010). The overall pattern of the scatter plot 
is captured by the loess curve (in red color) and the line of slope 1 (in black color) denotes the 
ideal case – when the estimated transcript abundances equal the true transcript abundances. Due 
to the parameter setting of the simulation study (Table 3.1), the true transcript abundances are 
high when the total number of transcripts is 200 and the true transcript abundances are low when 
the total number of transcripts is 20000. This pattern is also observed in Figures 3.1.1 and 3.1.2.  
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Figures 3.1.1 and 3.1.2 show two key features of the simulation results irrespective of the prior 
on gtθ . First, it is clear the loess curve is almost parallel to the line of slope 1 for all the three 

transcript numbers (except one case in treatment 1 when the total number of transcripts is 200 
and prior is gamma distribution). This implies that the overall pattern of estimated transcript 
abundances agrees with the pattern of true transcript abundances, but in most cases the empirical 
Bayes method overestimates the transcript abundances. Second, we observe the increase in total 
number of transcripts in the sample results in a precise estimation of transcript abundances and 
an increase in the agreement with the pattern of their true value. This is demonstrated by the 
shrinkage of the width of the blue band around the loess curve as the total number of transcripts 
increase from 200 to 20000 in both the treatments. Due to a small mean and skewness of the 
gamma distribution of zgt, the loess curve in figure 3.1.2 is not parallel to the line of slope 1 as it 
is in figure 3.1.1. We also observe the pattern of scatter plots in Figures 3.1.1 and 3.1.2 is diffuse 
when the total number of transcripts is 200. This is due to limited information sharing between 
transcripts when the total number of transcripts in the sample is 200. 
 

 
Figure 3.1.1: Smoothed color density representation of the scatter plot of log2 estimated 
abundance of transcripts vs log2 true abundance of transcripts, obtained through a kernel density 
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estimate. gtθ  has a uniform prior. The treatments 2 and 1 are in the first and second row, 

respectively. The number of transcripts in a sample for a particular treatment vary across the 
columns as 200, 2000, and 20000. The intensity of the blue color is proportional to the number of 
points in the region. The superimposed red line in the scatter plot corresponds to the loess curve 
and the black line corresponds to a line of slope 1. The loess curve is almost parallel the line of 
slope 1 (except in treatment 2, when the total number of transcripts is 200), implying an overall 
agreement between the estimated abundance of transcripts and the true abundance of transcripts 
with a positive bias in most of the cases.  
 

 
Figure 3.1.2: Smoothed color density representation of the scatter plot of log2 estimated 
abundance of transcripts vs log2 true abundance of transcripts, obtained through a kernel density 
estimate. gtθ  has a gamma prior. The treatments 2 and 1 are in the first and second row, 

respectively. The number of transcripts in a sample for a particular treatment vary across the 
columns as 200, 2000, and 20000. The intensity of the blue color is proportional to the number of 
points in the region. The superimposed red line in the scatter plot corresponds to the loess curve 
and the black line corresponds to a line of slope 1. The loess curve is almost parallel the line of 
slope 1 (except in treatment 1, when the total number of transcripts is 200), implying an overall 
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agreement between the estimated abundance of transcripts and the true abundance of transcripts 
with a positive bias in most of the cases.  
 
The only major concern in our simulations is the positive bias in the non-parametric empirical 
Bayes estimates of transcript abundances. Given the limitation of the available data in un-
replicated experiments, it is hard to decrease the bias. However, this can be accomplished by 
better estimation of the library sizes.  
 
The positive bias in empirical Bayes estimates is not a big issue, as biologists are mostly 
interested in comparisons (contrasts) between two treatments rather than individual treatment 
effects. Figures 3.1.1 and 3.1.2 show that the positive bias in estimates is almost same in 
treatments 1 and 2. The theoretical justification for this observation is the majority of the 
transcript abundances are for non-differentially expressed transcripts and they are estimated from 
the same prior distribution on gtθ . Therefore, a possible solution to the problem of positive bias 

is to subtract the log2 abundances of transcripts in treatment 1 from the corresponding log2 
abundances of transcripts in treatment 2. This eliminates most of the positive bias and the 
resulting quantity is the log2 fold change of transcript abundances of treatment 2 with respect to 
treatment 1. The fold change is a familiar scale for the biologists and hence easier to work with. 
This idea is further expanded in the next section to perform an exploratory data analysis for the 
differential expression of transcripts. 
 
 
3.2 Exploratory data analysis for detecting differential expression 
 
As pointed out before, lack of replication results in unreliable statistical inference as related to 
differential expression. However, after estimating transcript abundance we an exploratory data 
analysis can be performed to detect differentially expressed genes in treatment 2 with respect to 
treatment 1. Figure 3.2.1 illustrates differentially expression when the total number of transcripts 
in the sample is 20000 and gtθ has a gamma prior. The scatter plot shows estimated log2 fold 

change of transcript abundances from treatment 1 to treatment 2 versus transcript number. In the 
simulation, the first 2000 transcripts are differentially expressed with a positive log2 fold change. 
This can be seen in the scatter plot as a band of green and red (extreme left) shifted above the 
rest of the green band in scatter plot. The differentially expressed transcripts (with higher means) 
in treatment 2 have higher fold change compared to transcripts which are not differentially 
expressed. Thus, the differentially expressed transcripts separate out from the un-expressed 
transcripts by an upward (or downward) shift in general. It is also seen that there are transcripts 
whose estimated fold change is higher than 2 or lower than 0.5, but they are not differentially 
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expressed. These are the false positives of the heuristic based analysis of differentially expressed 
transcripts. 

 
Figure 4.1: Scatter plot of estimated log2 fold change of transcript abundances from treatment 1 
to treatment 2 vs transcript number; the total number of transcripts in the sample is 20000 and 

gtθ has a gamma prior. The inverted red triangles denote all the transcripts with estimated fold 

change greater than 2, the blue colored rhombus denote all the transcripts with estimated fold 
change less than 0.5, and the green colored circles represent all the transcripts with fold change 
between 0.5 and 2. In the simulation, the first 2000 transcripts are differentially expressed which 
can be seen in the scatter plot as a band of green and red (extreme left) shifted above the rest of 
the green band in scatter plot. This is a heuristic to detect differentially expressed transcripts in 
treatment 2 with respect to 1. 
 
 
 
 
4. Discussion 

 
Due  to lack of sufficient information to share, empirical Bayes method did not perform well 
when the total transcripts is 200 compared to the case with 2000 and 20000 transcripts. Therefore, 
empirical Bayes methods are advantageous when the number of transcripts in the sample is high.  
 
Statistically, the lack of replication imposes a serious restriction on the detection of differentially 
expressed transcripts. The non–parametric empirical Bayes method of estimating transcript 
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abundances can be extended to the detection of differentially expressed transcripts if the number 
of replicates in a particular treatment group is increased. This will lead to better estimation of 
within group variation and thus better overall inference about differential expression of 
transcripts. 
 
NGS data with replicates can be analyzed by treating each replicate as an observation from an 
un-replicated experiment. We can estimate the transcript abundances using the methods of 
Section 2 and average the abundances for a particular transcript across replicates to obtain the 
overall transcript abundances for that treatment group. But, by doing this, we do not model the 
hierarchy available for the replicates. Statistical inference can be improved by modeling this 
hierarchy and this is the direction of our future research in this area.  The limitation of the 
analysis to two treatment groups is for illustration purpose, but this method is equally applicable 
to the case of multiple treatment groups.   
 
5. Summary 

 
We have shown a simple non–parametric empirical Bayes modeling approach for estimating 
transcript abundances in un-replicated NGS experiments. The method is easy to implement and 
facilitates robust and flexible estimation of transcript abundances with limited assumptions. The 
methodology is readily extended to replicated experiments and multiple treatment groups. We 
have also presented a heuristic to detect differentially expressed transcripts in un-replicated 
experiments. 
 
Appendix 
 
Here, we analyze the effects of choosing the difference between 2gθ  and 1gθ  on the estimation of 

transcript abundances. These effects were mentioned briefly in Section 3. Figure A.1 summarizes 
the effects of choosing the difference between  2gθ  and 1gθ  as 10 and 100 on the estimation of 

transcript abundances. The prior on gtθ  is a gamma distribution. The number of total transcripts 

and treatments remain the same as in the simulations (Section 3). We observe as the difference 
between 2gθ  and 1gθ  increases from 10 to 100, the agreement between the loess curve and the 

slope of line 1 becomes almost close to the ideal scenario – when the estimated transcript 
abundances equal the true transcript abundances. This observation holds specifically for the 
differentially expressed transcripts which have higher transcript abundances. These patterns of 
observations also held for other values of differences between  2gθ  and 1gθ  and for uniform prior 
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on gtθ . The patterns, when the total number of transcripts is 200, are irregular due to limited 

information sharing among the transcripts.  

 
Figure A.1: Smoothed color density representation of the scatter plot of log2 estimated 
abundance of transcripts vs log2 true abundance of transcripts. The first two rows correspond to 
the difference between 2gθ  and 1gθ  of 100 and the next two rows correspond to the difference of 

10. The treatments 2 and 1 are in the first and second row respectively for each value of the 
difference. The number of transcripts in a sample vary across the columns as 200, 2000, and 
20000. gtθ  has a gamma prior. The intensity of the blue color is proportional to the number of 

points in the region. The superimposed red line in the scatter plot corresponds to the loess curve 
and the black line corresponds to a line of slope 1.  
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