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ABSTRACT 

Processing and handling cattle requires expenditure of energy causing an elevation of body 

temperature, depending on the ambient conditions. Therefore, caution should be exercised in 

moving cattle, especially during summer. More knowledge of the dynamics of body temperature, 

(Tb), could lead to specific recommendations on how far and under what conditions cattle can be 

moved before becoming thermally challenged. Data comes from feedlot trials conducted over 

four days.  A bi-logistic mixed model of Tb is used to describe the effects of moving and 

handling on Tb.  This model provides estimates for several important biological parameters 

describing the thermal challenge and recovery: the maximum Tb challenge, challenge rate 

constant (rate constant for increase in Tb), time to maximum rate of challenge (challenge 

inflection point), baseline for recovery, recovery rate constant (rate constant for decrease in Tb) 

and time to maximum recovery rate (recovery inflection point).  Fitting a nonlinear mixed model 

with six parameters under extremely variable animal and environmental conditions is difficult 

especially when the treatment factor (distance) is introduced into the model. Additional 

difficulties in fitting the model arise as the experimental design increases in complexity from a 

CRD to a replicated Latin square. The objectives of this study are: to examine the bi-logistic 

model with distance as a treatment factor and estimate the relative efficiencies as the 

experimental design is simplified. 

 

1.  INTRODUCTION 

 

There are over 10 million head of cattle feed in feedlots in the Great Plains and Western Corn-

belt of the United States at any one time. Processes, such as vaccination and treatment for 

parasites, are done for cattle within a few days after they came into the feedlot. In most cases, 

cattle are returned to the processing facilities to receive health care and all cattle have to be 

moved or handled when they are shipped to the packing plant once they are finished. Both 

processing and handling of cattle can cause a sharp rise in body temperature, especially during 

hot ambient conditions and this increases the risk of heat stress in cattle.
 
(Parkhurst and Mader, 

2000) 

 

Heat stress affects animals‟ growth and results in reduced feed intake.  Heat stress also causes 

economic losses to livestock producers. In extreme cases, heat stress can even result in death of 

susceptible cattle. For example, the heat waves in Iowa (1995) and Nebraska (1999) resulted in 

death lost of more than 3,500 head of cattle and million dollar losses in the beef industry. The 

heat wave in California (July 2006) resulted in over $1 billion losses and higher food prices due 

to a lower production (Aitha et al. 2007).  

 

Previous work by Parkhurst and Mader(2000) suggests using the nonlinear bi-logistic model to 

describe the steers‟ movement and handling during the summer. Our focus is on modeling the 
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growth and decay of an animal's body temperature during a moving event in order to characterize 

the dynamics of the moving process and additionally provide animal-level prediction.  It is a 

subject-specific model which explicitly acknowledges individual behavior while incorporating 

scientific characterizations in the expectation function. The nonlinear mixed-effect formulation 

allows for considerable flexibility in the specification of the random-effects structure and can be 

extended to allow for heteroscedastic and correlated within-groups errors. Thus, we use the 

nonlinear bi-logistic model to fit data from an experiment conducted as a replicated Latin square 

with two distance treatments. However, nonlinear analysis is very sensitive to the choice of 

starting values. Thus, the analysis begins with the simplest experimental design, a completely 

randomized design (CRD). We then progress to a crossover design using pen as a crossover 

factor. Then, we analyze the replicated Latin square design. Finally, we compare the relative 

efficiencies of all three designs. 

 

      Thus, in this study, there are three objectives. 

1. Investigate use of bi-logistic model to describe the moving event and estimate the 

parameters. 

2. Determine significance of heat stress by comparing effects of distance (200 meters vs. 

1200 meters) as body temperature responds to heat challenge and recovery during 

moving event. 

3. Compare analyses as experimental design increases in complexity from a completely 

randomized design to a crossover design to a replicated Latin square based on 

interpretation of parameter estimates, information criteria and residual diagnostics. 

 

 

2.  MATERIALS AND METHODS 

2.a  Data and Experimental Design 

The data were taken every two minutes from Aug. 10
th 

to Aug.14
th

 in 1999. The body 

temperature (Tb) of the steers was measured as the ear‟s tympanic temperature. Four steers were 

chosen. Two of them were assigned to pen 1 and the other two were assigned to pen 2. The pens 

were identical in size and bunk space. On Aug. 9
th

, all four steers were weighed and tympanic 

data-loggers were placed in the left ear to record body temperature at 2-minute intervals. The 

experiment was conducted as a replicated Latin square, Table 2.1. On Aug. 10
th

 and 11
th

 (period 

1), the steers in pen 1 were moved approximately 200 meters (treatment level 1). The steers in 

pen 2 were moved approximately 1200 meters (treatment level 2). The four steers were not 

moved on Aug. 12
th

.  On Aug. 13
th

 and 14
th

, the steers in each pen were assigned the opposite 

treatment and moved accordingly.   

 

                         Table 2.1 Replicated Latin Square Design for Experiment 

 

 

 

 

 

 

 

Pen Steer 

Aug 10    

Day 1 

Aug 11      

Day 2 

 Aug 13    

 Day 3 

Aug 14    

  Day 4 

1 377 200 200 

  
 R

es
t 

    1200     1200 

 445 200 200     1200     1200 

2 442 1200 1200 200 200 

 508 1200 1200 200 200 
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Figure 1. Observed Tympanic Temperature versus Time for each Pen-Steer/Day 

 
 

 

 

 

Figure 1 shows the raw data for each steer in each pen over the four runs on Aug 10 to Aug 14. 

Data is not shown for Aug 12 since there were no runs. The short 200 meter runs are indicated by 

a solid line; the long 1200 meter runs by a dashed line. From the plot, we note the following 

points: 

1. For each run, there is a sharp rise in Tb. 

2. Tb tends to return to baseline of zero.  

3. The peaks of the long runs are higher than those of the short runs.  

From these observations and prior research (Parkhurst and Mader, 2000), we choose the six-

parameter bi-logistic model to analysis this dataset. 
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2.b  Expectation function 

The six-parameter bi-logistic model results in the expectation function given by   

)()( 2211 11













XX
ee

y               Eq1 

Where the response variable, y, is the body temperature of the steers which is measured every 2 

minutes and the independent variable, X, is the time (minutes) at which the steers‟ body 

temperature is taken. There are six parameters in the model:   is the maximum Tb, 1  is the 

challenge rate constant, 1  is challenge inflection point,  is the baseline for recovery, 2  is the 

rate constant for heat recovery, and 2  is challenge inflection point.  

 

 

2.c  Random Effects Structures for Three Experimental Designs 

 

2.c.i  Completely Randomized Design 

Besides the fixed effect parameters specified above, the random effects are also considered. For 

each of the four days, there are two pens and two steers within each pen. Thus, we consider the 

pen and the steers within pen as hierarchal random effects. The variation in days is included in 

the error term. The factor in the experiment is the distance.  

 

 

The fixed and random effects for each of the six parameters are 

: : /

1: 1: /1

1: 1: /1

: : /

2 2: 2: /

2

     

1           

1    

  

2         

pen steer pen

k pen k steer pen

tau pen tau steer pen

delta pen delta steer pen

k pen k steer pen

alpha b b

k b b

tau b b

delta b b

k b b

ta

 











 
 
   
 

  
 

  
   
 
  

2: 2: /2   tau pen tau steer penu b b

 
 
 
 
 
 
 
 
 

  

         Eq 2 

 

Both fixed and random effects are considered for the six parameters:  , 1 , 1 , , 2  and 2 . The 

fixed effects, alpha, k1, tau1, delta, k2 and tau2 represent population means. Random effects 

bpen =[ penb : , penkb :1 , pentaub :1 , pendeltab : , penkb :2 and pentaub :2  ] represent the deviation from the 

population means associated with each pen. Random effects bsteer/pen=[ pensteerb /: , pensteerkb /:1 , 

pensteertaub /:1 , pensteerdeltab /: , pensteerkb /:2 and pensteertaub /:2 ] represent the deviations from the population 

means associated with each steer within a pen We assume that random effects are independent; 

that is, bpen ~ N(0,ψpen), bsteer/pen ~ N(0,ψsteer/pen), and ε~N(0, σ
2
I) are independent of each other.  
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The covariance for pens, pen  , is a diagonal matrix. 
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The steers within pen covariance matrix pensteer / , is the diagonal matrix. 
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When distance is included as a treatment factor, the expectation function for CRD is given by the 

following modification of Equation 1. 
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And D represents the coefficients of the distance treatment effects. 

 

Table 2.2 R-code for nlme with CRD 

strdata.allday.group<-groupedData(ytb~time|pen/anm, data=strdata.allday, 

order.groups=TRUE) 

 

steers.all.nlme.trt<-nlme(ytb~alpha/(1+exp(k1*(time-tau1)))+(delta-

alpha)/(1+exp(k2*(time-tau2))), 

                     fixed=alpha+k1+tau1+delta+k2+tau2~factor(trt), 

                     random=pdDiag(alpha+k1+tau1+delta+k2+tau2~1), 

                     data=strdata.allday.group, 

                     control=list(maxiter = 100000, minFactor=0.5^2048), 

                     start=c(1.04667,3,-0.29804,0,10.24813,4, 

                             0.10620,3,-0.09614,0,26.30476,5)) 

0,   for 200 meter run      

 1,   for 1200 meter run   
C


 

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2.c.ii  Crossover Design 

For this design, the steers serve as their own control to compare the two distance treatments: S 

(short, 200 meters, C=0) and L (long, 1200 meters, C=1) in a 2x2 crossover design. The steers 

within a pen are randomized to one of the treatment sequences – either SL or LS. Steers within a 

pen randomized to the SL sequence run the short distance first then “cross over” and run the long 

distance. Between the two treatments, a day of no runs provides a “wash out” period.  The 

treatment is applied to the pen for two days. There are two steers in each pen for each day. We 

treat pen as a crossover factor. Pen, day and steers within pen-day are considered as random 

effects. 

 

The fixed and random effects for the six parameters are: 
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            Eq 6 

 

Both fixed and random effects are considered for the six parameters:  , 1 , 1 , , 2  and 2 . The 

fixed effects, alpha, k1, tau1, delta, k2 and tau2 represent population means. Random effects 

bpen =[ penb : , penkb :1 , pentaub :1 , pendeltab : , penkb :2 and pentaub :2  ] represents the deviation from the 

population means associated with each pen. Random effects bday =[ dayb : , daykb :1 , daytaub :1 , daydeltab : , 

daykb :2 and daytaub :2 ] represent the deviation from the population means associated with each day. 

Random effects bsteer/pen&day=[ daypensteerb &/: , daypensteerkb &/:1 , daypensteertaub &/:1 , daypensteerdeltab &/: , 

daypensteerkb &/:2 and daypensteertaub &/:2 ] represent the deviations from the population means associated 

with each steer within a pen-day combination. We assume that random effects are independent; 

that is, bpen ~ N(0,ψpen), bday~N(0, Iday

2 ), bsteer/pen&day ~ N(0,ψsteer/pen&day), and ε~N(0, σ
2
I) are 

independent each other.  

 

The covariance for pens, pen  , is a diagonal matrix. 
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The steers within pen and day covariance matrix day&steer/penε , is diagonal matrix. 
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When distance is included as a treatment factor, the expectation function for Crossover design is 

given by the following modification of Equation 1.  
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And D represents the coefficients of the distance treatment effects. 

 

 

Table 2.3 R-code for nlme with Crossover Design (Zhou et al, 2007) 

steers.crossover.trt<-nlme(ytb~alpha/(1+exp(k1*(time-tau1)))+(delta-

alpha)/(1+exp(k2*(time-tau2))), 

                           fixed=list(alpha+k1+tau1+k2+tau2~factor(trt), 

                                      delta~1),                                            

                           random=list(newGF=pdIdent(alpha~factor(day)-1), 

                                       newGF=pdIdent(k1~factor(day)-1), 

                                       newGF=pdIdent(tau1~factor(day)-1), 

                                       newGF=pdIdent(delta~factor(day)-1), 

                                       newGF=pdIdent(k2~factor(day)-1), 

                                       newGF=pdIdent(tau2~factor(day)-1), 

                                       pen=pdDiag(alpha+k1+tau1+delta+k2+tau2~1), 

                                       Event=pdDiag(alpha+k1+tau1+delta+k2+tau2~1)), 

                            data=steer.crossover.all, 

                            control=list(maxiter = 10000000, minFactor=0.5^2048), 

                            start=c( 0.958905,4,-0.260786,0,12.015596,5, 

                                        -0.125704,0,20.204041,5,0.05)) 

 

0,   for 200 meter run      

 1,   for 1200 meter run   
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2.c.iii  Replicated Latin Square 

There are two squares. The first days, one and three, are considered as the first Latin square; the 

second days, two and four, are consider as the second Latin square. Thus, there are two 2x2 Latin 

squares. Pens are the row effect; day is the column effect and for the first square the focus is in 

the initial day of the run. The two treatment distances (1200 meters and 200 meters) are 

randomly assigned to occur once in each row (pen) and once in each column (initial day). The 

second square, which focuses on the second day of the run, is similar.  Since there are two steers 

in each pen for each day, the pen-day combination may be considered an event. We consider 

square, pen within square, day within square, and steer within pen-day within square as random 

effects.  

 

The fixed and random effects for each of the six parameters are 
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 Eq 10 

 

Both fixed and random effects are considered for the six parameters , 1 , 1 , , 2  and 2 . The 

fixed effects, alpha, k1, tau1, delta, k2 and tau2 represent population means. Random effects 

bsquare =[ squareb : , squarekb :1 , squaretaub :1 , squaredeltab : , squarekb :2 and squaretaub :2  ] represent the deviation 

from the population means associated with each square. Random effects bpen/square=[ /square:penb ,

squarepenkb /:1 , squarepentaub /:1 , squarependeltab /: , squarepenkb /:2 and squarepentaub /:2  ] represent the deviation from 

the population means associated with each pen within a square. Random effects bday/square =[

squaredayb /: , squaredaykb /:1 , squaredaytaub /:1 , squaredaydeltab /: , squaredaykb /:2 and squaredaytaub /:2 ] represent the 

deviation from the population means associated with each day within a square. Random effects 

bsteer/pen&day/square=[ squaredaypensteerb /&/: , squaredaypensteerkb /&/:1 , squaredaypensteertaub /&/:1 , 

squaredaypensteerdeltab /&/: , squaredaypensteerkb /&/:2 and squaredaypensteertaub /&/:2 ] represent the deviations from 

the population means associated with each steer within a pen and a day within a square. We 

assume that random effects are independent; that is, bsquare~ N(0, Isqaure

2 ),  

bpen/square~N(0,ψpen/square), bday/square~N(0, Isquareday

2

/ ), bsteer/pen&day/square~ N(0,ψsteer/pen&day/square), 

and ε~N(0, σ
2
I) are independent of each other.  
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The covariance for pens within square, squarepen /  , assumed to be a diagonal matrix. 

squarepen / ~





















2

/:2

2

/:1

2

/:

0

00

000

squarepentau

squarepenk

squarepenalpha








                                Eq 11 

 

The covariance for steers within pen and day within square, squaredaypensteer /&/  , is a diagonal 

matrix. 

 

squaredaypensteer /&/ ~





















2

/&/:2

2

/&/:1

2

/&/:

0

00

000

squaredaypensteertau

squaredaypensteerk

squaredaypensteeralpha








 Eq 12 

 

When distance is included as a treatment factor, the expectation function for replicated Latin 

square design is given by the following modification of Equation 1. 
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  Eq 13 

 

 

 

 

 

And D represents the coefficients of the distance treatment effects. 

0,   for 200 meter run      

 1,   for 1200 meter run   
C


 

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Table 2.d.3 R-CODE for nlme with replicated Latin square design (Zhou et al, 2006)  

steers.Latin.all.trt<-nlme(ytb~alpha/(1+exp(k1*(time-tau1)))+(delta-

alpha)/(1+exp(k2*(time-tau2))), 

                           fixed=alpha+k1+tau1+delta+k2+tau2~factor(trt), 

                           random=list(square=pdIdent(alpha+k1+tau1+delta+k2+tau2~1), 

                                       newGF=pdIdent(alpha~factor(day)-1), 

                                       newGF=pdIdent(k1~factor(day)-1), 

                                       newGF=pdIdent(tau1~factor(day)-1), 

                                       newGF=pdIdent(delta~factor(day)-1), 

                                       newGF=pdIdent(k2~factor(day)-1), 

                                       newGF=pdIdent(tau2~factor(day)-1), 

                                       pen=pdDiag(alpha+k1+tau1+delta+k2+tau2~1), 

                                       Event=pdDiag(alpha+k1+tau1+delta+k2+tau2~1)), 

                           data=steer.Latin.all, 

                           control=list(maxiter = 10000000, minFactor=0.5^2048), 

                           start=c( 1.043170,3,-0.184198,0,10.861860,5, 

                                    0.172747,3,-0.116807,0,24.673757,5 )) 

 

 

 

2.d  Model Building  

 

2.d.i  Fixed effects 

All analyses are performed in R version 2.8.0.  Initially we fit the model with only fixed effects 

but no random effects using nls procedure. In this way, we estimate parameters and check their 

information provided in the raw data graph. The parameter estimates provide possible starting 

values for the mixed models.  For the mixed model, the data are grouped according to the 

experimental design.  The mixed model is fit using nlme and compared to the fixed model to test 

the importance of using random effects.  

 

2.d.ii  Random Effects 

To identify which random effects are required, we fit the nonlinear mixed model without the 

treatment effect for several sets of random effects and check for model equivalency.   We begin 

with the full model.  Then, we remove the random effect which has the smallest estimated 

standard deviation and compare the models to see if the removed random effect is necessary.  

We use the likelihood ratio test to test for non-significance, p>0.25. If the new model is non-

significant, we select that model and repeat the process until the next model is significantly 

different. 

 

2.d.iii  Including  Treatment Factors  

After fitting the fixed effects and random effects, we take the treatment effect of distance into 

account. We compare mixed model analysis with and without the distance using information 

criteria and the likelihood ratio test.  The NLME with distance model fits better if it has a smaller 

AIC, BIC and larger log likelihood than the mixed model without the treatment effect. If the p-

value for the likelihood ratio test is < 0.0001, the NLME with distance as a factor fits the data 

better than NLME without the factor, 
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2.e  Diagnostics for each Model 
After the model converges, the residuals are analyzed for normality and independence. To check 

for normality we examine the Q-Q plot to see if residuals fall approximately on a straight line. 

The residual-time plot is a check for outliers and patterns that might indicate lack of 

independence.  We use the code „correlation=corAR1()‟ in nlme to estimate autocorrelation 

among residuals. We then compare models with and without ARMA, using the information 

criteria and the likelihood ratio test. 

 

2.f  Relative Efficiencies 

Relative Efficiency of two models is the ratio their mean square errors. It is a common statistical 

method used to compare two models. From the relative efficiency, the better model needs fewer 

observations to achieve the same level of precision as the other model. We calculate the relative 

efficiency as 

 

 

3.  RESULTS AND DISCUSSION 

3.a  Random effects 

We begin by comparing the random effects from each design. For each design we note the 

magnitude of the residual error and how the variation is attributed to each parameter for each 

level of variation. 

  

First, we present the results of the CRD design using the full diagonal random-effects structure 

for both the pen level and the steers within pen level. The estimated standard deviations of the 

random effects are given in Table 3.1.   No violations were detected when the residuals were 

checked for independence and normality. 

 

Table 3.1.  Estimated Standard Deviations of Random effects for CRD 

 Non-Linear Mixed Models 

Random 

Effect alpha k1 tau1 delta k2 tau2 
 

level Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev 

Pen 3.125e-05 0.0786 0.0176 6.283e-05 2.937e-05 0.00313 

Steers  

within  pen 
7.357e-07 0.0175 2.551 0.154 1.285e-08 13.599 

Residual 0.180 

 

Next, we present the results of the Crossover design using the identity random-effect structure 

for day level and the diagonal random-effects structure for both pen and the steers within pen 

level. The estimated standard deviations of the random effects are given in Table 3.2. The 

crossover model did not converge when treatment effects were assigned for all parameters. When 

the distance effect was removed from the recovery baseline, delta, the model converged and no 

violations were detected when the residuals were checked for independence and normality. 
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Table 3.2. Estimated Standard Deviations of Random effects for CROSSOVER Design 

 Non-Linear Mixed Models 

Random Effect 
alpha k1 tau1 delta k2 tau2 

 

level Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev 

Dayi, 

i=1,2,3,4 

1.133e-38 

 

1.687e-06 

 

1.096 

 

0.00181 

 

2.809e-05 

 

0.0117 

 

pen 0.000598 2.629e-05 0.000454 1.287e-21 2.033e-05 0.0100 

Steers within 

pen-day 
0.157 2.944e-08 1.792e-05 0.295 0.0912 13.185 

Residual 0.0673 

 

Finally, we present the results of the replicated Latin square design using the identity random-

effect structure both for the square and day within square level. The diagonal random-effects 

structure is used in both the pen within square and the steers within pen-day within square level. 

The estimated standard deviations of the random effects are given in Table 3.3 The replicated 

Latin square design has the smallest residual which is not surprising since it accounts for more 

known sources of variation. No violations were detected when the residuals were checked for 

independence and normality. 

 

Table 3.3. Estimated Standard Deviations of Random effects for Replicated Latin Square 

Design 

 Non-Linear Mixed Models 

Random Effect 
alpha k1 tau1 delta k2 tau2 

 

level Std Dev Std Dev Std Dev Std Dev Std Dev Std Dev 

Square 1.835e-10 1.835e-10 1.835e-10 1.835e-10 1.835e-10 1.835e-10 

Day within 

square 

i=1,2 

0.0638 

 

7.073e-09 

 

1.336e-16 

 

6.558e-05 

 

5.433e-05 

 

3.569e-05 

 

Pen within 

square 
9.393e-06 8.193e-10 0.518 0.000509 6.286e-05 1.282e-05 

Steers within 

pen-day within 

square 

0.0896 1.264e-08 1.030 0.374 0.0672 18.858 

Residual 0.0589 

 

At the steer level, the standard deviations for tau1 and tau2 are large in CRD; the standard 

deviation for tau2 is large in crossover design; the standard deviations for tau1 and tau2 are large 

in replicated Latin square design. Comparing these results, we see the standard deviations for 

tau1 are different among these three designs. In the crossover design, the standard deviation for 

tau1 is small; and in other two designs, it‟s large.  This indicates substantial variation among 

steers for the recovery inflection point in the CRD and Latin square. 
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For pen and day, there is no clear pattern among the designs.  At the pen level, all standard 

deviations are small; the largest standard deviation is for tau1 in replicated Latin square design. 

At the day level, the standard deviation for tau1 is large in the crossover design; the standard 

deviation for alpha is large in the replicated Latin square design compared to the crossover 

design. 

 

At the square level, all standard deviations are small in the replicated Latin square design.  The 

variation between the two squares appears negligible. 

 

3.b  Fixed effects 

Table 3.4 summarizes the fixed effect estimates for each parameter distance effect for each 

experimental design. The short distance (200m) is considered to be the reference treatment and 

the long distance (1200m) is the additional effect.  For instance, alpha, the maximum increase in 

Tb for 200m in CRD is 0.61.  The maximum increase for Tb for 1200m in CRD is 

0.61+1.61=2.22C. 

 

Table 3.4. Estimation of fixed effects for all designs 

               CRD CROSSOVER REP.  LATIN SQ 

Parameter Estimate Std 

Error 

Estimate Std 

Error 

Estimate Std 

Error 

alpha.(200) 0.61  

(0.0000) 
0.0600 

0.46 

(0.0000) 
0.0726 

0.39 

(0.0000) 
0.0529 

alpha.factor(1200) 

 

1.61 

(0.0000) 
0.195 

1.33 

(0.0000) 
0.142 

1.42 

(0.0000) 
0.0994 

k1.(200) -0.33 

(0.0004) 
0.0935 

-0.44 

(0.0000) 
0.0604 

-0.68 

(0.0000) 
0.105 

k1.factor(1200) 

 

0.21  

(0.0031) 
0.0713 

0.15 

(0.0129) 
0.0618 

0.38 

(0.0003) 
0.105 

tau1.(200) 6.85 

(0.0002) 
1.848 

8.61 

(0.0000) 
0.683 

8.10 

(0.0000) 
0.539 

tau1.factor(1200) 

 

1.63  

(0.1660) 
1.179 

3.72 

(0.0000) 
0.538 

3.19 

(0.0000) 
0.653 

delta.(200) 0.096  

(0.2268) 
0.0791 

0.19 

(0.0132) 
0.0747 

0.16 

(0.2296) 
0.134 

delta.factor(1200) 

 

0.099  

(0.0296) 
0.0455 __

1 
__ 

0.12 

(0.5226) 
0.189 

k2.(200) -0.11  

(0.0001) 
0.0291 

-0.20 

(0.0000) 
0.0419 

-0.19 

(0.0000) 
0.0322 

k2.factor(1200) 

 

0.067 

(0.0203) 
0.0289 

0.014 

(0.8020) 
0.0542 

0.034 

(0.4083) 
0.0408 

tau2.(200) 17.98  

(0.0176) 
7.557 

26.30 

(0.0000) 
4.951 

33.98 

(0.0000) 
6.884 

tau2.factor(1200) 

 

5.33 

(0.0879) 
3.121 

1.32 

(0.8470) 
6.862 

-7.63 

(0.4291) 
9.647 

          1
 There is no distance effect since the crossover model did not converge when the treatment effect  

            was specified for the recovery baseline, delta 
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The maximum increase in Tb, alpha, in 200 meter runs is significantly different from zero in all 

three designs. The difference in alpha for 1200 meters is significantly higher than for the 1200 

meter runs.  The maximum increase in Tb ranges from 1.79 in the crossover design to 2.23 in 

CRD. 

 

The challenge rate constant, k1, in the 200 meter runs is significantly different from zero in all 

three designs and they are all negative. For the 200 meter runs, k1, is significantly larger than for 

the 1200 meter runs in all three designs. For the 200 meter runs, the challenge rate constant 

ranges from -0.68 in replicated Latin square design to -0.33 in CRD.  For 1200 meters, k1, 

ranges from -0.30 in replicated Latin square design to -0.12 in CRD. 

  

The challenge inflection point, tau1, for 200 meter runs is significantly different from zero in all 

three designs. It ranges from 6.85 min in CRD to 8.61 min in crossover design. The 1200 meter 

challenge inflection point is significantly larger than in the 200 meter run in the crossover design 

and replicated Latin square design; but not the CRD. The challenge inflection point for 1200 

meters ranges from 8.49 mins in the Latin square to 12.33 mins in the crossover design. 

 

The recovery baseline, delta, in 200 meter runs is not significantly different from zero in the 

CRD and replicated Latin square design. The 1200 meter is significant only in the CRD where it 

is 0.19C.  The crossover design model did not converge when distance was used as a treatment 

factor for delta. Thus, the common baseline is estimated to be 0.16 and it is significantly 

different from zero. 

 

The recovery rate constant, k2, for 200 meters is significantly different from zero in all three 

designs and they are all negative. They range from -0.20 in crossover to -0.11 in CRD. The 

difference in k2, for 1200 meters is not significant in the crossover and replicated Latin square 

design.  In CRD, the 1200 meter run is significantly greater than 200 meters run and it is -0.04.  

 

The time to maximum recovery rate is the recovery inflection point. For 200 meters, the recovery 

inflection point, tau2, is significantly different from zero in all three designs. It ranges from 

17.98min in CRD to 33.89min in replicated Latin square design. There is no significant change 

in the recovery inflection point for the 1200 meter runs.  

 

 

 

 

3.c  Comparing Experimental Design Models 

 

Table 3.5 summarizes the information needed to compare how well these three designs fit the 

data. The CRD and crossover design are significantly different.  The crossover is better than the 

CRD since it has a smaller AIC and BIC and a larger log-likelihood. Nevertheless, the replicated 

Latin square provides a significantly better fit then either of the other two designs. 
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Table 3.5.  Information Criteria, Log-Likelihoods, and Ratio for Comparing Experimental 

Design Models 

Design df AIC BIC logLik Test L.Ratio p-value 

 

1 CRD 25 -327.10 -212.07 188.55    

2 Crossover 30 -1560.33 -1422.29 810.16 1 vs 2 1243.22 <.0001 

3 Replicated      

   Latin Square 

32 -1719.67 -1572.43 891.83 2 vs 3   163.34 <.0001 

1 vs 3 1391.87 <.0001 

 

3.d  Relative Efficiencies 

The relative efficiencies presented in Table 3.6 also help compare these three designs.  

 

         Table 3.6  Relative Efficiency for each Pair of Design Models 

Comparison Relative Efficiency 

CRD vs. Crossover 2.66 

CRD vs. Replicated  Latin Square 3.05 

Crossover vs. Replicated  Latin 

Square 

1.14 

The relative efficiency of CRD and crossover design is 2.66. This  means using the CRD requires 

2.66 times as many observations as crossover design to achieve the same level of precision. 

Thus, the crossover design is more efficient than the CRD. 

 

The replicated Latin square design is much more efficient than CRD (3.05). On the other hand, 

the replicated Latin square design is only slightly more efficient than the crossover design (1.1). 

This suggests a crossover design may be a viable alternative to replicated Latin squares. 

 

4.  SUMMARY 

The Bi-logistic model provides a good fit for Tb during moving and handling of steers. The six 

biological parameters are important for describing the thermal challenge and recovery. In this 

paper, we show how to improve the model by adding random effects to account for additional 

sources of variation in the animals, pen, and day. While the experimental design is the traditional 

way to account for variation in the data, fitting a nonlinear mixed model with six parameters 

under extremely variable animal and environmental conditions is difficult. Introducing a 

treatment factor such as distance further complicates the situation.  Thus, we suggest beginning 

with a simple model because it is easier to find starting values and obtain convergence.  

 

However, it is important to issue the following caveat. Although it is easier to make the CRD 

model converge, the results in terms of treatment comparisons can be misleading.  The more 

complex designs identify variation that cannot be overlooked.  The crossover design provides a 

significant improvement (in fit) over the CRD. However, the experiment was designed as a 

replicated Latin square and that model provides the best fit. 

 

The relative efficiency provides an interesting implication for future studies. The crossover 

design is almost as efficient as the replicated Latin square and may be considered a viable 

experimental design for future studies.  
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Distance is important when moving steers in a thermally challenging environment. This study 

shows moving steers 1200m is significantly different from moving them 200m.  When the steers 

are moved 1200m, the maximum Tb is 1.4 Co  higher; the heat challenge rate constant is smaller 

(indicating temperature is rising faster) and the challenge inflection point (time to maximum rate 

of challenge) occurs later in the run.  Thus, the steers are more challenged when moved longer 

distances.  These results suggest moving and handling cattle should be carefully managed during 

the summer to avoid heat stress and even death of the animals. 
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