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USING TIME SERIES TO STUDY DYNAMICS OF SWEAT RATES OF HOLSTEIN 
COWS EXPOSED TO INITIAL AND PROLONGED SOLAR HEAT STRESS 

B. Liang1, A.M. Parkhurst1, K.G. Gebremedhin2, C.N. Lee3, R.J. Collier4, P.E. Hillman2 

 

1. Department of Statistics, University of Nebraska at Lincoln 
2. Department of Biological and Environmental Engineering, Cornell University 

3. Department of Animal Science, University of Hawaii at Hawaii 
4. Department of Animal Science, University of Arizona 

 
 

ABSTRACT 
Sweating is a very important way for cows to cope with heat stress.  We are interested in the 
ability of Holstein cows to sustain high sweat or evaporation rates when exposed to solar 
radiation. There were two solar heat stress treatments: onset and prolonged.  The onset data 
provided an opportunity to examine the impact of sudden exposure to a solar thermal load.  The 
prolonged data allowed us to examine the impact of exposure to solar heat stress for an expended 
period (5 hr).  Two questions of interest were: Do cows sweat at a constant or cyclic rate?  Is 
there a difference in the dynamics of the two treatments: onset and prolonged solar heat stress?  
The data were examined for stationarity. In the time domain, we fit ARIMA models and 
estimated the parameters. In the frequency domain, we used nonparametric spectral estimation to 
identify cyclic patterns in the sweat rates.  The usefulness of each technique for analyzing the 
dynamics of sweat rates is discussed.   
 
1. INTRODUCTION 
Many studies have been conducted to investigate the relationship between milk production and 
environmental conditions, especially air temperature, of high-producing cows.  It is well known 
that a thermally challenging environment has detrimental effects in the characteristics of milk 
(Regan and Richardson 1938; West 2003).  The initial purpose of this experiment was to study 
how a hot and humid environment affects the milk yields of high producing Holstein cows.  
However, in a pre-trial experiment, simulated hot and humid environment reflecting field 
conditions in many regions of the country, such as Florida, Arizona, Hawaii and southern 
California, proved too stressful for high producing dairy cows.  After 3 hours of solar exposure 
in the pre-trial experiment, several cows had rectal temperatures above 40.00C and a respiration 
rate above 125 /min.  Thus, the focus of the study turned to how cows sweat during hot and 
humid environment.  Sweating (or transpiration) is the production of water excreted by sweat 
glands in the skin.  It is a means of thermoregulation.  To stay cool, animals sweat to loose water 
by evaporation.  The main purpose of this study was to learn whether the sweat (or evaporation) 
rate is constant or cyclical in nature.  In order to do that, spectral analysis method was used to 
study the periodogram of evaporation rate in the frequency domain.  
 
Water evaporation for a cow may be affected not only by the environmental situations, such as 
ambient temperature, relative humidity and air velocity, but also by the cow’s own internal 
mechanisms.  Since our data were collected as a time series, it is desirable to know how the 
evaporation rate of cow is affected by its own past values. Therefore, ARIMA models are used to 
explore the relationship between the current value of a cow’s evaporation rate and its past values 
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in time.  For both onset data and prolonged data, results from both the time and frequency 
domains are compared in an attempt to learn more about the dynamics of evaporation for both 
series.   The objective of this study is to present a protocol for using time series to characterize 
sweat rates associated with initial and prolonged exposure to solar radiation.  
 

2. MATERIALS AND METHODS   

2.1. Data Collected and Experimental Design 
The experiment was conducted in the environmental modules of the Parker Agricultural 
Research Complex, University of Arizona, Tucson AZ. Twelve high producing Holstein cows 
were subjected to a hot-humid environment with the solar load at 550 watts/m2 for about 5 hours 
(10:00am-15:00pm). The initial room temperature was set to 300C and relative humidity was 
70%. After about 5 hours of exposure to solar radiation, the room temperature was increased to 
350C, and the relative humidity was decreased to 50%.  In this experiment, measurements such 
as body temperature, relative humidity, air velocity (flow rate) and atmospheric pressure were 
measured by a portable calorimeter immediately before and after air passed through the sample 
area (76 mm x 102 mm) of the dorsal surface of a cow defined by the portable calorimeter.  Data 
were collected for 20 minutes at 10-sec intervals. Measurements before the air passed through 
the sample area were defined as ambient measurements, while measurements after the air passed 
through the sample area were defined as sample measurements. Humidity Ratio was calculated 
as a function of all temperature, humidity and pressure. Unlike temperature, evaporation rate 
could not be measured directly.  Instead, it is a calculated variable.  It is the humidity ratio 
difference of ambient and sample (Hillman et al. 2001).  For the onset treatment, data were 
collected right after the solar load was turned on. For the prolonged treatment, data were 
collected after the cows were exposed to solar radiation for at least 4 hours.  Data for cow 5651 
were made available to demonstrate the use of time series analysis for characterizing the two 
treatments. 
 
2.2. Statistical Methods 
 
2.2.1. Spectral Analysis 
In order to study the cyclical behavior of a time series, spectral analysis is often used.  With the 
aid of a periodogram (an estimator of the spectral density function), strong periodic components 
in a time series can be identified by large periodogram values at or near those frequencies.  In 
this study, the nonparametric spectral estimation method was used.  The spectrogram was 
generated using the function spec.prgam in the statistical package R® (Version 2.7.2).   
Smoothing was used to minimize the noise and make the signals more prominent for easier 
identification.  But it requires a reasonable bandwidth of the L fundamental frequencies so that 
the real frequencies are not averaged out by taking too broad a band.  Bandwidth, denoted by Bω , 

has the following relationship: = LB
nω .  A number of different L values were selected to get a set 

of averaged periodograms and then the L value was selected by comparing the averaged 
periodograms.  The values of L need to be kept small relative to n (the number of data points).   
In this study, three L values (3,5,7) were used.  Also, the modified Daniell kernel was used to 
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improve the resolution of the peaks in the smoothed periodograms.  In order to decide which 
band peaks are significant, we calculated 95% confidence intervals beginning with the largest 
peak.  The lower limit of the confident interval was used as a baseline.  Only those band peaks 
above the baseline were considered dominant peaks and the corresponding frequencies were used 
to define the periodic components. 
 
2.2.2. ARIMA Model 
 
2.2.2.a Stationarity 
To fit an ARIMA model to a time series { ; 0,  1, 2, ...tx t = ± ± }, the series must be stationary. 
In this study, weak stationarity was used.   

Mean function of a series tx is defined as: ( ) ( )xt t tu E x xf x dx
∞

−∞
= = ∫                                              (1) 

Autocovariance function is defined as: ( , ) [( )( )]x s s t ts t E x u x uγ = − −                                           (2) 
Weak stationary, means the mean function, defined in equation (1), is constant and does not 
depend on time t, and the covariance function, defined in equation (2), depends on s and t only 
through their difference |s-t|.  Frequently, the trend and the variability of a series can be detected 
by looking at the time series plot.  Therefore, a time series plot of each treatment was studied 
before proceeding with further analysis.   
 
Differencing and detrending are two major methods that are often used to achieve stationarity of 
the data.  Detrending provides more information about the dynamics of the series.  After 
removing the trend from the data, the resulting data achieve stationarity in the mean.  In this 
study, to achieve stationary data, the detrending method was used.  Logarithm and power 
transformations are very useful to equalize the variability over the length of a single series.  The 
Box-Cox power transformations box.cox.powers in the car library (R. 2008) are used to check 
the stability of the variance.  
 
2.2.2.b ARIMA model 
A time series { ; 0,  1, 2, ...tx t = ± ± } will be ARMA(p,q) if it is stationary and  

( ) ( )t tB x B wφ θ=  

  φ(B) =1− φ1B − φ2B
2 −"− φpB p         

  θ(B) =1+θ1B + θ2B
2"+ θqBq  

Where, tw  is white noise, normally distributed with mean zero and variance σw
2, and pφ  ≠ 0, qθ ≠ 

0. The parameters p and q are called the autoregressive and the moving average orders 
respectively.  
 
If tx has a nonzero mean µ, we set 1*(1 )pα µ φ φ= − − ⋅⋅⋅− − and the model becomes 

  xt =α + φ1xt−1 +"+ φp xt− p + wt +θ1wt−1 +"+θq + wt−q      
 
If differencing is used to get a stationary time series, the ARIMA model is used. A process tx  is 
said to be ARIMA (p,d,q) if   ( )*(1 ) ( )d

t tB B x B wφ θ− = . 
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Since only the detrending method was used in this study, we focused on ARMA(p,q) model for 
both treatments series. 
 
2.2.2.b.i Causality and Invertibility 
A valid ARMA(p,q) model 1 1 1 1t t p t p t t q t qx x x w w wφ φ θ θ− − − −− − = + + + +" "  requires causality 
and invertibility for the corresponding AR(p) and MA(q) parts.  Using the backshift operator, B, 
an ARMA(p,q) can be written as ( ) ( )t tB x B wφ θ= , where   φ(B) =1− φ1B −φ2B

2 −"− φpBp .  We 
treat the backshift operator, B, as a complex number, z.  This ARMA model is causal only when 
the roots of ( )zφ  lie outside the unit circle and it is invertible only when the roots of ( )zθ  lie 
outside the unit circle (Shumway and David, 2002).  In this study, polyroot fn in R (2008) was 
used to check the values of roots to see whether or not they lie outside the unit circle and further 
determine the causality and invertibility of the model. 
 
2.2.2.b.ii Model Selection 
AIC was the information criterion used for model selection in this study.  A grid search was used 
to find possible ARMA models for the series.  The grid search method gave us the AIC values 
for all the models that were specified.  The maximum order of p was specified as four and the 
maximum order of q was specified as three.  Based on the rule that the model with smaller AIC 
value is better, the model with smallest AIC value was selected.  
 
2.2.2.b.iii Diagnostics of Residuals 
The fit of an ARMA model was checked for possible violations of the classical assumptions 
about the residuals after it was selected and fit.  Deviations of the residuals from normality were 
checked with the Shapiro-Wilk test, Q-Q plots and histograms.  Checks for uncorrelated errors 
were performed by inspecting time plots and ACF plots of the standardized residuals, as well as, 
the Portmanteau (Ljung-Box) statistical plot for up to twenty lags.  
 
In addition, theoretical ACF plots were compared to the AR(p) model selected for each treatment 
series.  Theoretical ACF plots of AR parts of the model compared to visually investigate how 
well the model fits the effect of past values of evaporation rate on the current value.  

For an AR(1) model, ACF is known as ( )  
(0)

hhγρ φ
γ

=（h)=  , where ρ（h)is autocorrelation; ( )hγ is 

the autocovariance of h lags; (0)γ is autocovariance of 0 lag;φ  is the coefficient of AR(1) model; 
h is the number of lag. 
 
For an AR(2) model, ACF is known as 1 2( 1) ( 2) 0,   1, 2,....h h hρ φ ρ φ ρ− − − − = =（h)  
Let 1 2  z and z be the roots of the associated polynomial, 2

1 2( ) 1z z zφ φ φ= − − .  For a causal model, 
when 1 2 z z= are a complex conjugate pair, then 1 1 1 1 h hc z c zρ − −+（h)= , where 1 1 and c z are written 
in polar coordinates, for example, 1 1| | iz z e θ= , where θ  is the angle whose tangent is the ratio of 
the imaginary part and the real part of 1z .  Then, using the fact that 2cos( )i ie eα α α−+ = , the 
solution has the form 1 | | cos( )ha z h bρ θ− +（h)= , where a and b are determined by the initial 
conditions. 
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In this study, theoretical ACF plots were generated by using ARMAacf in R (2008) by specifying 
the estimated AR coefficients from the models used to fit the treatment time series.  
 
  
3. RESULTS AND DISCUSSION 
 
3.1. Frequency domain 
 
3.1.a. Onset Treatment 
In the frequency domain, spectral analysis was applied to inspect the possible period components 
for both series.  In Figure 1, three frequency bands were tried to smooth the original periodogram 
of onset series.  Notice that using the bandwidth corresponding L=5 to smooth the periodogram, 
Figure 2 gives us one predominant peak at 2=0.03ω .  The second higher peak is lower than the 
95% lower confidence limit of the highest peak.  Therefore, the second peak was not considered 
a significant peak.  When =0.032ω , the cycle of evaporation was 0.032 cycles/10 seconds, 
which means the period of evaporation was about 313 seconds( about 5.2 minutes). 
 
Figure 1. Three Bandwidths used to smooth              Figure 2. Onset Periodogram with lower  
                Onset Periodogram                                                     95% Confidence Baseline                                       

    
 
3.1.b. Prolonged Treatment  
The same method was used to inspect the period components of the prolonged series.  Three 
frequency bands were tried to smooth the original periodogram of the transformed stationary 
series in Figure 3.  Finally L=7 with the corresponding bandwidth was chosen to smooth the 
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periodogram in Figure 4.  The predominant peaks appeared at =0.1167ω  and =0.0417ω .  When 
=0.1167ω , the cycle of evaporation rate was 0.1167 cycles/10 seconds, which means the period 

of evaporation was about 86 seconds (about 1.4 minutes).  When =0.0417ω , the cycle of 
evaporation rate was 0.0417 cycles/10 seconds, which means the period of evaporation was 
about 240 seconds (4 minutes). 
 
Figure 3. Three Bandwidths used to smooth              Figure 4. Prolonged Periodogram with lower 
                Prolonged Periodogram                                              95% Confidence Baseline  

 
 
 
3.2. Time Domain 
 
3.2.a. Onset Treatment  
To analyze evaporation rate series of cow 5651 in time domain, we begin with the time series 
plot.  Visual inspection of the onset time series plot, displayed in Figure 5, does not show an 
obvious trend.  Simple linear regression of evaporation rate ( tx ) on time (t) is not significant 
(p=0.63).  Thus the onset series is stationary in the mean.  The Box-Cox Power test for constant 
variance shows that the series is stationary in the variance.  The original data without any power 
transformation (p=0.076) are used directly and fit with an ARMA model.  A grid search is 
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performed and the AIC values of ARMA(p,q) models are shown in Table 1, where the maximum 
p=4 and the maximum q=3. 
 
Figure 5. Onset Evaporation Rate Time Plot                          Table 1. Onset AIC values for                           
                                                                                                              ARMA(p,q)model                                         

  
The ARMA(1,0) model has the smallest AIC and its statistics are presented in Table 2. The AR1 
coefficient is significant and the model is causal.  
 
Table 2. Onset Parameter estimates for ARMA(1,0) model 

Coefficient Estimate P-value SE 
ar1 0.372 2.08e-05 0.0838 
Intercept 325.058 0.00e+00 20.7343 

 
Shapiro-Wilk test indicates the residuals are normally distributed (p=0.263).  Figure 6 shows a 
time plot of the standardized residuals (top), an ACF plot of the standardized residuals (middle), 
and a Portmanteau-statistic plot (bottom). Standardized residuals of the model are within 3  
 
Figure 6. Onset Standardized Residuals                       Figure 7. Onset Q-Q Plot and Histogram of        
       Time Plot, ACF, Portmanteau statistics                                Residuals for AR(1)      

                                                   

                        

AIC 
      q  
    p 0 1 2 3 

0 0 1403.63 1400.26 1402.22
1 1399.09 1399.47 1401.35 1403.16
2 1399.75 1401.52 1403.39 1404.4 
3 1401.74 1403.33 1404.97 1405.76
4 1400.82 1402.78 1399.99 1401.52
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standard deviations; the ACF of residuals shows no apparent departure from model assumptions; 
the Portmanteau statistics are not significant except at lag 2.  Figure 7 shows a normal Q-Q plot 
of the residuals (top), and a histogram of the residuals (bottom).  The residuals are close to 
normality except for a few extreme values in the tails (Figure 7).  Therefore, we fit an 
ARMA(1,0) model to evaporation rate as 
                           1325.058 0.372t t ty y w−= + +                                                                                (3)      
Where, ty  is the evaporation rate at time(every 10 seconds); tw  is the white noise and it follows 
a normal distribution with mean zero and variance 2

wσ . 
 
3.2.b. Prolonged Treatment  
For the prolonged series, unlike the onset series, we observe an upward trend in the time series 
plot shown in Figure 8.  Simple linear regression of evaporation rate ( ty ) on time (t) is 
significant (p=0.01).  Therefore removing the trend to make the series stationary in the mean is 
required.         
                           y 308.26 0.459t tt ε= + +                                                                                       (4) 
Removing the trend from the evaporation series results in a residual series, call it tε .    
                           y 308.26 0.459t t tε = − −                                                                                       (5) 
In this case, tε  is stationary in the mean.  Stationarity of tε  in the variance is also checked.  Box-
Cox power test shows that tε  series is constant in variance (p=0.07).  A table of the AIC values 
to identify possible ARMA models for tε  series is shown in Table 3. 
 
Figure 8. Prolonged Evaporation Rate Time Plot            Table 3. Prolonged AIC values for    
                                                                                                        ARMA(p,q) model 

  
The ARMA(2,2) model gives the smallest AIC, Table 3, and this model has significant  p-values 
for all AR and MA coefficients, Table 4.  Since the p-value of intercept is not significant, the 
intercept is excluded from the model. The assumed ARMA(2,2) model for the detrended 
evaporation series is as follows: 
               1 2 1 2    1.07 0.74 0.93 0.81t t t t t tw w wε ε ε− − − −= − + − +                                                          (6) 
This model can also be written as  
               2

1 2(1 1.07 0.74 ) 0.93 0.81t t t tB B w w wε − −− + = − +                                                              (7) 

AIC 
      q    
    p 0 1 2 3 

0 0 1337.24 1331.31 1333.26
1 1336.12 1336.03 1333.23 1335.23
2 1332.35 1333.76 1331.10 1332.78
3 1333.28 1334.19 1332.69 1333.44
4 1334.17 1335.78 1334.14 1335.44
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Table 4. Parameter estimates of ARMA(2,2) model 
Coefficient Estimate P-value SE 
ar1 1.06508 9.71E-11 0.1492    
ar2 -0.7395 2.48E-06 0.1490    
ma1 -0.92543 1.98E-09 0.1418 
ma2 0.814642 7.81E-10 0.1213     
intercept 0.155992 9.92E-01 14.8257 
 
Diagnostics are performed on the residuals of the ARMA(2,2) model for the detrended prolonged 
series.  The Shapiro-Wilk test indicates the residuals are normally distributed (p=0.08).  Figure 9 
shows a time plot of the standardized residuals (top), an ACF plot of the standardized residuals 
(middle), and a Portmanteau-statistic plot (bottom).  Standardized residuals of the model are 
within 3 standard deviations; the ACF of residuals shows no apparent departure from model 
assumptions; the Portmanteau statistics are not significant.  Figure 10 shows a normal Q-Q plot 
of the residuals (top), and a histogram of the residuals (bottom).  The residuals are close to 
normality except for a few extreme values in the tails (Figure 10).  
 
Figure 9.  Prolonged Standardized Residuals          Figure 10. Prolonged Q-Q Plot and Histogram 
            Time Plot, ACF, Portmanteau statistics                        of Residuals for ARMA(2,2)                                   
 

                                                                                          
 
 
 
Therefore, for prolonged treatment, we fit an ARMA(2,2) model to the detrended evaporation 
series as equation (7).   
                                                                            
Using equations (5) and (7), and simplifying yields 

1 2 1 2206.53 1.07 0.74 0.459 0.491( 1) 0.34( 2) 0.93 0.81t t t t t ty y y t t t w w w− − − −= + − + − − + − + − +  
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Where, ty  is the prolonged evaporation rate at time (every 10 seconds); tw  is the white noise, 
also called random noise. 
 
3.2.c  Theoretical ACF’s to Describe Dynamics of Model  
Estimates from the ARMA model are used to generate theoretical ACF’s.  The theoretical 
models describe the dynamics of the series.  Comparing the theoretical autocorrelations between 
onset series and prolonged series provides more information about how past values of 
evaporation rate influence the current value. 
 
For onset data, the AR(1) model fit the series well using =0.372φ .  For prolonged data, the AR 
part of the fitted ARMA model was investigated since the influence of past values on current 
value is of interest.  Coefficients for AR part are  1 2= 1.07 = -0.74 φ φ， and 

2( ) 1 1.07 0.74z z zφ = − +  has a pair of complex conjugate roots.  The theoretical ACF of onset 
series (top) and theoretical ACF of AR part of prolonged series (bottom) are shown in Figure 11. 
 
Figure 11. Theoretical ACFs of AR(1)  
                 Onset series (top) and AR(2)  
               part of Prolonged series (bottom) 

 
For the onset series, autocorrelation 

between past values and current value 
decreased to zero exponentially as h →∞ . 
A specific past value had little impact on 
the current value after 3 lags; in this case, 
30 seconds or 0.5 min. 
 
 
For the prolonged series, autocorrelation 
dampened to zero exponentially as h →∞ , 
but it did so in a sinusoidal fashion. 
Moreover, it took longer for the impact to 
disappear than in the onset series.  After 
about 15 lags, the past values had little 
impact on the current value; in this case, it 
was 150 seconds or 2.5min. 
 
 

 
4. CONCLUSIONS 
 
Cow 5651 sweats in a cyclic pattern rather than at a constant rate.  In the frequency domain, the 
nonparametric spectral analysis for each treatment shows a cyclic pattern.  For solar onset, the 
period is 5.2 min, while for the prolonged solar exposure there are two significant periods, 1.4 
min or 4 min. The additional period for the prolonged solar exposure indicates an additional 
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physiological process is needed.  Panting is an additional process which would help the cow 
dissipate body heat. 
 
Cow 5651 responded differently to solar heat stress at the onset compared to prolonged exposure.  
At the onset, the solar effect decayed exponentially to zero in approximately ½ min.  However, 
after prolonged exposure, the solar effect decayed sinusoidally to zero in approximately 2½ min.  
The longer solar effect on the cow after prolonged solar exposure indicates possible 
physiological fatigue of the cow. 
 
The sinusoidal nature of the decline in impact of a previous reading along with additional cycle 
suggests the cow needs to work harder to dissipate body heat during prolonged exposure. 
 
Time series techniques in the frequency domain, such as calculating the nonparametric spectral 
analysis, are useful in identifying the existence of cyclic patterns of sweat rates in cows.  While, 
time series techniques in the time domain, such as estimating ARMA models and exploring 
theoretical ACF’s are useful in describing the differences in the dynamics of the onset and 
prolonged treatments. 
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