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Abstract 

 

During the summer, a challenging thermal environment is known to cause a significant reduction 

in food intake, growth, milk production, reproduction and even death in cattle. In this study, we 

attempt to characterize the relationship of cattle body temperature with several environmental 

variables, such as air temperature, soil surface temperature, relative humidity, solar radiation, 

wind speed, incoming and outgoing short and long wave radiation. For these variables, the 

measurements taken over time are correlated. This places severe restrictions on the applicability 

of many conventional statistical methods that depend on the assumption of independent and 

identically distributed errors. In addition to these assumptions, there is serious collinearity among 

several weather variables and the variables are not stationary. Commonly used multiple 

regression models can be misleading when predictor variables are stochastic and issues of 

collinearity and non-stationary are ignored. In this paper, time series analysis is used as a tool to 

investigate the adequacy of classical regression models. Various aspects of dynamics of cattle 

body temperature and its relationship to environmental variables are discussed using the 

frequency and time domain analysis. Finally, we present a detailed approach for fitting cattle 

body temperature using a transfer function model with multiple environmental variables as 

inputs. 

 

1. Introduction 

 

Hot weather has negative effects on cattle welfare and performance. Economic
 
losses in the 

feedlot industry alone averaged between $10 million
 
to $20 million/year as a result of adverse 

climatic conditions (Mader, 2003). During hot weather, cattle not adapted to hot climates suffer 

from excessive heat load leading to heat stress (Gaughan et al., 2008).Reduction in food intake, 

growth and fertility and increase of respiratory and mortality rate are some of the animal 

responses to hot weather (Hahn & Mader, 1997). During this period, key environmental factors 

such as air temperature, soil surface temperature, relative humidity, and solar radiation are 

relatively high, causing heat waves that place cattle at risk and pose serious threats to 

performance, productivity and health of cattle during summer (Hahn, 1999, Hahn & Mader, 

1997). 

 

The general health status, animal comfort and thermal balance are often assessed by core body 

temperature (Finch, 1986; Mader et al., 2002; Mader et al., 2005). Body temperature of healthy 

adult cattle ranges between 37.7 and 40.2ºC (Lindley & Whitaker, 1996; Mader et al., 2002). 
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Study has shown that body temperature presents small circadian fluctuations during the day, 

which follow the same pattern of changes observed in some environmental variables (da Silva 

and Minomo, 1995, Feng et al., 2000). In order to prevent susceptibility to hyperthermia and 

improve overall summertime feedlot performance, management strategies designed to alter the 

peak and/or pattern of body temperature must be implemented (Davis et al. 2003). Knowledge of 

how cattle body temperature responses to hot weather is extremely important for management 

strategies. Modeling the dynamics of the dependency of cattle body temperature with composite 

effects of many environmental variables is crucial in this respect. However, the applicability of 

many conventional statistical methods that depend on the assumptions of independent and 

identically distributed errors is severely restricted due to the fact that measurements taken over 

time are correlated. Commonly used multiple regression models can be misleading when 

predictor variables are non-stationary and issues of collinearity are ignored. Therefore, the 

purpose of this study is to make a comparative study of time series and multiple regression for 

modeling dependence of cattle body temperature on environmental variables during heat stress. 

 

This paper is organized as follows. We describe data collection, statistical methods, statistical 

analysis and diagnostic procedures in section 2. In section 3.a, we discuss issue of 

multicollinearity among environment variables, inadequacy of classical regression models, and 

present results when variables are non-stationary and measurements are correlated over time.  In 

section 3.b, we perform spectral analysis to identify dominant signals that governed underlying 

processes of several variables of interest and discuss coherency between responses with several 

predictor variables. Transfer function models (also called lagged regression, Shumway & Stoffer, 

2006) with multiple environmental variables as input will be discussed thereafter. Finally, we 

present the conclusion in section 4., and in section 5., the summary of this study. 

 

2. Materials and Methods 

 

2. a.  Response and Environmental Variables 

 

The response variable for this study is tympanic temperature, an indicator of cattle core body 

temperature (Tb). The environmental variables included in the analysis are: air temperature (Ta), 

soil surface temperature (Tss), relative humidity (RH), temperature-humidity index (THI), wind 

speed (WS), net solar radiation (SNR), incoming shortwave solar radiation (SSWin), outgoing 

shortwave solar radiation (SSWout), incoming long wave solar radiation (SLWin), and outgoing 

long wave solar radiation (SLWout). 

 
2. b. Data Collection 

 

The dynamics of dependency of Tb on environmental variables is based on data collected during 

the summer of 2007. The experiment was conducted in the feedlot facilities of the Haskell 

Agricultural Laboratory in Concord, NE. One hundred and twelve steers (978.74± 83.1 lb) were 

used for this trial in order to assess the effects of the use of niacin when used as a depressant of 

heat stress in feedlot cattle. Steers were housed in two alleys (7head/pen). Two steers in each pen 

received a temperature data logger. Previous to the experimental period, cattle were implanted 
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(Revalor-S), vaccinated (Vision 7 and Vista Once), and ear tagged for individual identification. 

Tympanic temperature was collected for the period of July 5–12, 2007 at one-hour intervals. 

Environmental variables were collected at one-hour intervals for seven days from two weather 

stations, one for each alley. Both weather stations are located in the pens, thereby representing 

the micro-climate at the animal level. Soil surface temperature was recorded using a laser 

infrared gun located approximately at 1.85 m height, which was attached to the weather station. 

Incoming and outgoing shortwave solar radiation were collected using two precision spectral 

pyranometers (Eppley Lab. Inc., Newport, RI), whereas incoming and outgoing long wave 

radiation were collected using two precision infrared radiometers (Eppley Lab. Inc., Newport, 

RI). Simultaneously, net solar radiation was also collected using a REBS Net Radiometer model 

Q-7.1 (Radiation and Energy Balance Systems, Inc., Seattle, WA). All radiation measurements 

were collected hourly in an adjacent empty pen in the feedlot. For the purpose of this study, we 

present detailed analysis of one steer from each group (Drug and Control) and only general 

results were presented for other steers. 

 

2. c. Selection of Environmental Variables 

 

Regression analysis assumes no linear dependence among predictor variables. Serious 

collinearity among variables makes parameter estimates extremely unstable and strongly 

influences regression results. We examined redundancy among environmental predictor variables 

by performing collinearity analysis. Collinearity among the environmental variables was done by 

calculating the condition index (CI) and variation inflation factor (VIF) using SAS REG 

procedure. Environmental variables with mild collinearity (VIF < 30, CI < 15) were included in 

the reduced model. A scatter plot matrix of all ten variables was used to facilitate variable 

selection process. 

 

2. d. Multiple Regression (MR) and Regression with Autocorrelated Errors (MRAE)  

 

The classical multiple regression model (MR) is frequently used to characterize the dependency 

of a response variable on several predictor variables. Such models are based on the classical 

assumptions
2iidN(0,σ ) . However, an uncorrelated error structure is not always plausible when 

the data are recorded over time. We need to modify the classical approach to take error structure 

into account. A multiple regression model with autocorrelated error (MRAE) is often used for 

this purpose. A MRAE model for p input variables 
1 2 px ,x ,....,x is expressed by the equation 

                                       2

t 1 1,t p p,t t t

θ(B)
y = μ+δ x +...+δ x + , iidN(0,σ )

(B)
 


          

 

where 
1 pδ ,.....,δ  are regression coefficients and 

t t

θ(B)
ξ  = 

(B)



 is ARMA model for error term. In 

time series, we assume a stationary covariance structure for the error process that corresponds to 

a linear process and find an ARMA representation for the errors. 
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Predictor variables chosen after performing collinearity analysis were used to model Tb for the 

steer in each group. We checked the adequacy of MR model for time series data by examining 

the residuals for validity of model assumptions of iidN (0, σ
2
). Normality of residuals was 

checked by the Shapiro-Wilk test. We also inspected the sample autocorrelation function (ACF) 

of the MR residuals to check the validity of the assumptions of uncorrelated errors. We then 

proceeded to fit MRAE model for correlated error. The sample ACF and partial ACF were used 

to identify an appropriate ARMA model for residuals. The ARIMA commands in R were used to 

estimate the parameters for MRAE. Similar diagnostics of residuals of the MRAE models were 

performed to check model assumptions. The goodness of fit for MR and MRAE were compared 

using MSE and two information criterions (AIC and SBC). 

 

2. e. Spectral and Cross-Spectral Analysis 

 

Many time series are composed of periodic components. Any stationary time series that has 

periodic components is considered as the random superposition of sines and cosines oscillating at 

various frequencies (Wei, 1990). The spectral density function, interpreted as a variance of time 

series over given frequency bands, helps the researcher explain the physical and biological 

meaning of underlying process. The spectral density function is the analogue of the probability 

density function, which expresses information in terms of cycles. Such cycles can be discovered 

in a time series using the periodogram. To identify the dominant signal of the response as well as 

of each of environmental variables, we used the SPEC.PRGAM command in R to calculate and 

graph the raw periodogram. Given time series
1 2 px ,x ,....,x , the periodogram is defined to be  

j

2

j j

n
-2πiω t-1/2

j t j

t=1

                                                         I(ω ) = |d(ω )| ,  j = 0,1,2,..,n-1.

where discrete Fourier transform is d(ω ) =  n x e , and the fundamental frequency ω = j/n.

 

 

When there is a wide spread around dominant peaks, the raw periodogram is a mediocre 

estimator of the spectral density function due to large variability. Smoothing the periodogram 

reduces the variance and highlights the dominant signals (Shumway & Stoffer, 2006). A 

smoothed periodogram is defined as an average of periodogram values over the frequency band 

B of L << n contiguous fundamental frequencies centered around ωj=j/n that are close to 

frequency of interest ω (Shumway & Stoffer, 2006). The band B is given as 

                                                 B = 
j j

m m
ω:ω ω ω ,  L= 2m+1

n n

 
    

 
  

The value of spectral density f (ω) is fairly constant in the band B and is estimated well by the 

smoothed spectra defined by  

                                               
m_

j

-m

1 k
 f(ω)  = ( I(ω + ) for k = - m,...,0,...,m

L n
                                                         

Fluctuations and the power spread around the dominant peaks were smoothed using the Daniell 

kernel over the frequency band B. The 95% confidence interval for the spectrum f(ω) 
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corresponding to peaks at the given frequency was calculated for response as well as 

environmental variables. Cross spectral analysis was then carried out between response and 

environmental variables to find associations among their periodic components. A measure of the 

strength of such an association between two time series is the square coherence function, which 

is defined as, 

 

                                                   

2

yx2

y.x

xx yy

|f (ω)|
ρ (ω) = 

f (ω)f (ω)
                                             

where 
xx yy yx f , f ,f are individual spectra of tx  and ty  series and the cross spectra of tx  and ty , 

respectively. The coherency function is used as a tool for relating common periodic behaviors of 

time series. Strong coherence between series will help extend classical regression to the analysis 

of lagged regression or transfer function models (Shumway & Stoffer, 2006).  

 

2. f. Fitting Transfer Function Model (TRF) 

 

MRAE takes autocorrelated errors into account but is not a plausible approach if the predictor 

variables are non-stationary and stochastic. The classical regression approach assumes complete 

independence over time. We use regression analysis assuming that each input series is a fixed 

unknown function of time. But if an input series is a non-stationary stochastic process, we should 

consider a transfer function model (TRF). The transfer function model for p input 

series
1 2 px ,x ,....,x can be written as 

                                                   
p

t i j i t-j t

j=0 i=1

y = (α ) (x ) + η


                             (1) 

We assume that each input process ix , i = 1,.., p, and  the noise series tη are each stationary and 

mutually independent. The coefficients i 1 i 2(α ) ,(α ) ,....... given in (1) describe weights assigned to 

past values of the input variables that are used in predicting the response ty . Often, we observe 

systematic patterns in these coefficients. Equation (1) can be written in the form of a rational 

function model which is given by 

                                 
1

p1
t 1,t-d p,t-dp t

1 p

δ (B)δ (B) θ(B)
y  = μ+ x +...+ x +              (2)

ω (B) ω (B) υ(B)
  

Each term in this rational function model includes a small number of coefficients and a specific 

delay or shift parameter d i . The numerator and denominator of each term of the rational function 

are given by τ2

0 1 τδ(B) = δ +δ B +...+δ B and 2 s

1 2 dω(B) = 1- ω B- ω B -...- ω B respectively. In addition, 

θ(B)  and υ(B) are autoregressive and moving average operators of the error process tη . The 

goal of transfer function modeling is to determine a parsimonious model involving simple forms 

of δ (B) and ω (B) in equation (2) and estimate all parameters. 

 

When identifying TRF model with multiple input variables, the cross-correlation functions may 

be misleading if the input series are autocorrelated. One solution to this problem is to prewhiten 
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the input series. The SAS ARIMA procedure was used to prewhiten the input series and fit a 

TRF model as follows: 

 

1. Detrend the response and all environmental variables to be used in the model 

2. Fit ARMA model to each of the input series to obtain 
1 p 1 qυ ....υ ,θ ....θ  in t tυ(B)x  =  θ(B)  

3. Apply the operator from step 2 to get the transformed output series 
~

ty ,
~

t tυ(B) y θ(B) y
 

  

4. Use the cross-correlation function between transformed output and prewhitened input to 

suggest form for components polynomial ratio and estimated time delay
dδ(B)B

α(B) = 
ω(B)

. 

5. Obtain estimates of 1 τ 0 sβ = (ω ,..,ω ,δ ,..,δ ) for each of input variables by fitting linear 

regression and retain estimates of residuals tu :              
τ s

t k t-k k t-d-k t

k=1 k=0

y = ω y + δ x + u  . 

6. Apply the MA transformation t tu = ω(B)η  to the estimated residual in step 5 to estimate 

the noise tη  and fit ARMA model to the estimated noise 
~

tη  to get estimates of the 

coefficients for 
~

nυ (B) and 
~

nθ (B)  where 
~

nυ (B)  and 
~

nθ (B) are autoregressive and moving 

average parts of noise.  

 

2. g. Variable and Model Selection for TRF 

 

First, all six environmental variables were included in the model. Insignificant variables were 

removed sequentially from the model. We repeated this process until all included variables were 

significant. After identifying the set of significant variables, we used MSE and information 

criteria (smallest AIC, SBC) to choose the best model. The final TRF model was the one that 

included significant variables and had the smallest AIC, SBC and MSE. In this way, we 

identified the most important variables to be included in the TRF model. 

 

3. Results and Discussion 

 

3. a. i. Multicollinearity among Environmental Variables 

 

There was severe collinearity among the environmental variables (Table 1). The variance 

inflation factors indicated that the parameter estimates for Ta, THI, SNR, SSWin, SSWout, and 

SLWout were seriously affected by near-singularity in correlation matrix. Tests of collinearity by 

condition number also indicated that there was extreme collinearity among environment 

variables when all variables were included in the model since the maximum condition number > 

100. 
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Table 1 Variation inflation factor and condition indices for the full model 

 

    Variation Inflation Factor        Condition Index 

Variable Parameter Estimate VIF  Eigenvalue CI 

Intercept 31.35 0 1 7.5 1 

Ta -0.03 126.36 2 1.4 2.32 

RH 0.004 9.34 3 0.55 3.69 

THI -0.06 85.89 4 0.4 4.32 

Tss 0.02 31.93 5 0.78 9.77 

SNR -0.009 1384 6 0.027 13.83 

WS 0.00055 3.09 7 0.015 22.64 

SSWin 0.01 2151.9 8 0.0067 32.71 

SSWout -0.02 669.2 9 0.001 85.04 

SLWin 0.011 10.78 10 0.00029 158.03 

SLWout 0.016 71.23    

 

Multiple regression models can be misleading when issues of collinearity are ignored. The 

scatter plot matrix shows that SSWin and SSWout are almost perfectly correlated with SNR, 

SLWin is highly correlated with SLWout and Ta has strong positive linear relationship with THI 

(Figure 1). Thus, we removed SSWin, SSWout, SLWout and THI from the analysis. 

 

Figure 1 Scatter plot matrix showing plausible relation between environmental variables 
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There was little collinearity among the remaining six environmental variables Ta, Tss, RH, 

SNR,WS and SLWin as shown by the smaller variation inflation factors and condition indices 

(Table 2). 

 

Table 2 Variation inflation factor and condition number among six environmental variables 

 

Variation Inflation Factor                  Condition Index 

Variable Parameter  VIF     Eigenvalue CI 

Intercept 35.94 0   1 4.43 1 

Ta -0.02 19.63   2 0.69 2.53 

Tss 0.06 24.54   3 0.53 2.9 

RH -0.007 4.04   4 0.28 3.98 

SNR -0.0007 9.06   5 0.05 9.23 

WS -0.03 2.45   6 0.02 13.56 

SLWin 0.007 8.12        

 

 

3. a. ii. Multiple Regression Model (MR) 

 

For the fitted MR model, the squared correlation coefficient (R
2
) was higher for the steer in the 

drug group than the steer in the control group (0.82 vs. 0.67). The Ta was insignificant for both 

groups but SNR was significant only for the steer in the control group (Table 3).  

 

Table 3 Parameter estimates for multiple regression (MR) model of Tb vs. six environmental 

variables 

 

Steer/Drug   Steer/Control  

Coefficient Estimate Std Error P-value  Coefficient Estimate Std Error P-value 

Intercept 35.94 0.4 <0.0001  Intercept 38.29 0.44 <0.0001 

Ta -0.02 0.2 0.33  Ta -0.009 0.02 0.65 

Tss 0.06 0.01 <0.0001  Tss 0.04 0.01 0.003 

RH -0.007 0.003 0.01  RH -0.02 0.003 <0.0001 

WS -0.03 0.011 0.014  WS -0.09 0.012 <0.0001 

SNR -0.0006 0.0003 0.07  SNR -0.0009 0.0004 0.02 

SLwin 0.007 0.002 0.0002  SLwin 0.005 0.002 0.018 

 

However, the applicability of this model was severely restricted due to the fact that this model 

violated the underlying assumptions of 
2iidN(0,σ ) for error. Plots of the sample ACF and PACF 

(Figure 2) for the residuals for both steers indicated the AR (1) model would fit the residuals. 

The residuals of the models also deviated from the normality assumption for both the steers 
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(Shapiro-Wilk normality test, p=0.12 (Steer/Drug), p=0.0008 (Steer/Control). This suggested 

fitting MRAE model for Tb. 

 

Figure 2 ACF of residuals from multiple regressions (MR) model 

 

  
3. a. iii. Multiple Regression with Autocorrelated Errors (MRAE) 

 

Even after removing the issue of collinearity from the models, the applicability of the MR model 

is restricted because the residuals of the fitted model do not satisfy the classical assumptions 

about independent residuals. Thus, we fitted the MRAE model. Table 4 shows that after taking 

AR (1) error structure into account, the significance of the predictor variables changed. Ta for 

the steer in both groups and SNR for the steer in the drug group were significant in the MRAE 

model whereas they were not significant in the MR model. On the other hand, WS and SLWin 

were not significant in the MRAE model for both steers. Therefore, Ta , Tss and SNR were the 

most important variables to model Tb during heat stress. These results are consistent with results 

from Rodrigo, 2008. Rodrigo reports that Ta, Tss and SNR are important predictor variables to 

model Tb during heat stress. 

 

Inspection of the plot of the sample ACF for residuals showed no apparent departure from the 

model assumption of uncorrelated error structure. The Q-Q plot of residuals (Figure 3) indicates 

no departures from normality (Shapiro-wilk, p = 0.33 for Steer/Drug and p = 0.12 for 

Steer/Control). 

 

A comparison between MR and MRAE (Table 5) shows that MRAE is a better approach to 

modeling Tb because AIC and MSE of MRAE are much smaller than for MR and the fitted 

residuals of MRAE satisfy the 
2iidN(0,σ ) assumptions. 
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Table 4 Parameter estimates for multiple regression with autocorrelated errors (MRAE) model 

  

Steer/Drug  Steer/Control 

Coefficient Estimate 

Std 

error P > |t|   Coefficient Estimate Std error P > |t| 

Intercept 36.75 0.59 <0.0001  Intercept 37.53 0.62 <0.0001 

Ta 0.05 0.016 0.002  Ta 0.07 0.015 <0.0001 

Tss 0.023 0.005 0.0001  SST 0.006 0.006 0.02 

SNR 0.0003 0.0003 0.03  SNR -0.0005 0.0003 0.007 

WS 0.002 0.007 0.77  WS -0.0035 0.007 0.06 

SLWin 0.001 0.002 0.44  SLWin 0.0003 0.002 0.07 

AR(1) 0.87 0.04 <0.0001  AR(1) 0.94 0.028 <0.0001 

                  

 

Table 5 Comparison between multiple regressions (MR) and multiple regressions with 

autocorrelated errors (MRAR) models 

 

Steer/Drug Steer/Control 

Model AIC MSE Normality Error Type AIC MSE Normality Error Type 

MR 86 0.09 Normal AR(1) 111 0.1 

Non-

Normal AR(1) 

MRAE -98 0.03 Normal 

White 

Noise -110 0.03 Normal 

White 

Noise 

 

Figure 3 ACF and Q-Q plots of residuals for multiple regression with autocorrelated error 

(MRAE) model 
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3. b. i. Spectral Estimation with Nonparametric Smoothing 

 

We noticed a major peak at the frequency ω ≈ 1/24 and a minor peak at ω ≈ 1/12 in the raw 

periodogram of Tb (Figure 4). Those two peaks suggest that dynamic of Tb is governed by 

periodic oscillations and cycles correspond to 24 and 12 hours periodic variation in Tb. 

 

Figure 4 Raw periodgram of Tb, n = 165 showing peaks at ω ≈ 1/24 and ω ≈ 1/12 cycles/hour 

with 10% tapering (top). Average periodogram ordinates plotted on log10 scale displaying a 

generic 95% confidence interval in the upper right- hand corner (bottom) 

  
 

The estimated periodogram of the Tb was bI (1/24)  = 19.34 for the Steer/Drug and 9.34 for the 

Steer/Control at the frequency of 24 hours per cycle (Also, bI (1/12)  = 0.77 for the Steer/Drug 

and 0.4 for the Steer/Control at the frequency of 12 hours per cycle). The approximate 95% 

confidence intervals for the spectrum b bf (1/24) and f (1/12)  were too wide to be of much use for 

the steer in both groups (Table 6).  

 

Table 6 Confidence intervals for the spectrum bf (ω) of Tb 

 

        Steer/Drug Steer/Control 

  Series ω ≈ 

Period 

≈ Ib Lower Upper Ib Lower Upper 

Raw Periodogram 

Tb 1/24  24 hr 19.3 5.25 765 9.3 2.53 369.12 

   Tb 1/12  12 hr 0.77 2.1 30.3 0.4 0.11 16.36 

Smooth Periodogram Tb 1/24  24 hr 7.14 3.29 25.65 3.6 1.64 12.79 
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We noticed that there were fluctuations and some power spread around the dominant peak which 

indicates that the raw periodogram could be improved by smoothing the periodogram. Different 

trials lead to the choice L = 5 as a reasonable value to smooth the periodogram. Using Danielle 

nonparametric smoothing kernel (Shumway & Stoffer, 2006) with L = 5, the smoothed data had 

only one periodic component with an oscillation of roughly 24 hours (Figure 5). The peak at ω ≈ 

1/12 disappeared. This indicated that ω ≈ 1/24 was the dominant frequency that governed the 

process.  

 

The 95% confidence intervals for the smoothed periodogram were relatively narrow (Table 6) 

for the steers in both groups. In addition to the response Tb, a similar smoothing technique was 

applied to all six environmental variables. After smoothing  using the  Danielle kernel (Shumway 

& Stoffer, 2006), peaks at ω ≈ 1/24 remained but disappeared at ω ≈ 1/12 for Ta, Tss and RH. 

For SNR, WS and SLWin, there were peaks at ω ≈ 1/24 and 1/12.                     

 

Figure 5 Smoothed periodogram of Tb, n = 165 showing peaks at ω ≈ 1/24 and ω ≈ 1/12 

cycles/hour with 10% tapering (top). Average periodogram ordinates plotted on log10 scale 

displaying a generic 95% confidence interval in the upper right- hand corner (bottom) 

 
 

3. b. ii. Coherency 

 

Spectral analysis showed that the response as well as all predictor variables, exhibited periodic 

oscillation behavior. In such cases, the classical approach of measuring association between 

variables via Pearson correlation is not appropriate. Coherency measures association when the 

variables have periodic components. The square coherency between Tb and Ta is illustrated in 

Figure 6. 
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The square coherency between Tb with Ta, Tss, SNR, WS and SLWin was significant but not 

significant for RH. Table 7 shows that there was coherency between Tb and Ta, Tss, WS, SNR 

and SLWin within a small neighborhood of the dominant frequency ω ≈ 1/24 except WS. For 

both groups, the coherence confidence intervals were wider for Ta, Tss, and SNR than for WS 

and SLWin. Significant coherency suggested an extension of classical regression to the transfer 

function model (Shumway & Stoffer, 2006). 

Figure 6 Squared coherence between Tb and Ta, L = 5, n = 165, reference line at alpha = 0.01 

(Steer/Drug (left); Steer/Control (right)) 

 

  
 

Table 7 Squared coherency confidence interval between Tb and other environmental variables, 

with Danielle smoothing L = 5, alpha = 0.01 

 

Variable Steer/Drug Steer/Control 

Ta (0.038 0.58) (0.032 0.06) 

Tss (0.029  0.058) (0.026 0.058) 

SNR (0.02 0.056) (0.026  0.058) 

WS (0.044  0.06) (0.044 0.05) 

SLWin (0.04  0.056) (0.034  0.056) 

 

 

3. c. Transfer Function Model (TRF) 

 

Regression of environmental variables with time (Table 8) showed that many predictor variables 

were non-stationary. The environment variables Ta, Tss and SLWin have a downward trend over 

time (p < 0.0001). This indicates that both MR and MRAE models that are based on static input 

is unrealistic although MRAE satisfied all model assumptions about error. When input series are 
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stochastic and non-stationary, the transfer function model (i.e. lagged regression models) is more 

appropriate. The suitability of TRF was also suggested by spectral and coherency analysis.  

 

Table 8 Stationarity check for the response and environmental variables 

 

Raw Data   Detrended Data 

Variable Slope P-value   Variable Slope P-value 

Tb/Drug -0.05 <0.0001   Tb/Drug -4E-08 0.99 

Tb/Control -0.04  <0.0001   Tb/Control 0.00003  0.48  

Ta -0.06 <0.0001   Ta -0.0001 0.66 

Tss -0.07 <0.0001   Tss -0.0008 0.88 

RH -0.01 0.64   RH 0.003 0.78 

SNR -0.4 0.23   SNR 0.01 0.9 

WS -0.008 0.12   WS -0.001 0.71 

SLwin -0.4 <0.0001   SLwin -0.007 0.64 

 

All the non-stationary series were detrended before fitting the TRF model. Detrended series were 

stationary (Table 8) and the variance was stable over time for each variable (p < 0.0001, B-C 

transformation). Therefore, the detrended series were used to fit TRF.  

 

Table 9 Comparison of transfer function (TRF) models 

 

Seven Steer/Drug Models   Five Steer/Control Models 

Input Variable AIC SBC MSE   Input Variable AIC SBC MSE 

Ta, Tss, SLWin -110 -97 0.028   Ta, Tss -118 -108 0.027 

Ta, Tss -105 -95 0.03   Tss, SNR -111 -102 0.028 

Tss, SLWin -101 -92 0.033   Ta -115 -109 0.028 

Ta, SLWin -89 -80 0.03   Tss -81 -75 0.034 

Ta -85 -78 0.034   SNR -99 -92 0.031 

Tss -86 -80 0.033           

SLWin -34 -28 0.046           

 

Among several competing models, TRF with Ta, Tss and SLWin as input had smaller AIC, SBC 

and MSE for the Steer/Drug.  The TRF with Ta and Tss as input had a smaller AIC, SBC and 

MSE for the Steer/Control (Table 9). In each case, the cross-correlation function between 

response and predictor variables contained only a finite numbers of impulses leading to TRF 

with only numerators terms in equation (3). Correlations between response and predictor 

variables were highest at zero lag for Ta and Tss and at lag 2 for SLWin for steer in the drug 

group (Appendix, Table 14, 15 & 16). For the steer in the control group, correlations were 

highest at lag one for Ta and at lag zero for Tss (Appendix, Table 18 & 19). The ACF plot of 
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residuals of the fitted TRF for the steer in both groups is white noise (Appendix, Table 17 & 20). 

Parameter estimates for the final TRF models are given in Table 10 and 11. 

 

Table 10 Parameter estimates for transfer regression function (TRF) model (Steer/Drug) 

 

                                      Standard                 Approx 

Parameter      Estimate     Error      t Value    Pr > |t|       Lag    Variable        Shift 

AR1,1             0.849        0.042       20.27      <.0001        1    Tb_detrend           0 

NUM1            0.045        0.014         3.26      0.0011        0     Ta_detrend           0 

NUM2            0.027        0.005         4.98      <.0001        0    Tss_detrend           0 

NUM3            0.005        0.002         2.90      0.0038        0   SLWin_detrend      2 

 

 

Table 11 Parameter estimates for transfer regression function (TRF) model (Steer/Control) 

 

                                             Standard                  Approx 

     Parameter      Estimate       Error       t Value     Pr > |t|       Lag     Variable        Shift 

     AR1,1             0.936         0.0275       34.10        <.0001       1    Tb_detrend         0 

     NUM1            0.068         0.010           6.59        <.0001        0    Ta_detrend         1 

     NUM2            0.008         0.004           1.96        0.0499        0    Tss_detrend        0                                   

 

The Comparison of all three approaches to fit Tb is given in Tables 12 and 13. The superiority of 

TRF over MR and MRAE is consistent for all steers in both groups. However, input variables to 

be included in TRF are different for steer 3 from the drug group and the steers 2 and 4 from the 

control group. For the steer 3 in drug group, TRF with Ta and Tss has smaller AIC, SBC and 

MSE. The TRF with Ta, Tss and SLWin as input better fits data for steers 2 and 4 in the control 

group. This indicates that Ta, Tss and SLWin are the most important variables that affect Tb in 

heat stressed cattle. 

 

Table 12 Model comparisons for the steers in the drug group 

 

  Steer/Drug 

Model Steer1** Steer2 Steer3 Steer4 

  AIC MSE AIC MSE AIC MSE AIC MSE 

MR 86 0.09 50 0.07 149 0.13 88 0.1 

MRAE -98 0.03 -89 0.03 -70 0.04 -53 0.04 

TRF -110 0.03 -93 0.03 -79 0.03 -97 0.03 
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Table 13 Model comparisons for the steers in the control group 

 

  Steer/Control 

Model Steer1** Steer2 Steer3 Steer 4 

  AIC MSE AIC MSE AIC MSE AIC MSE 

MR 111 0.1 95 0.09 96 0.1 89 0.09 

MRAE -101 0.03 -89 0.03 -12 0.1 -54 0.04 

TRF -118 0.03 -104 0.03 -16 0.1 -74 0.04 

 

Steer1**: Detailed analysis of the steer 1 from both groups was presented in result section 

above. 

Based on the parameter estimates (Tables and 10 and 11), we propose the following TRF models 

for the steers in each group. 

 

TRF for the steer in the control group 

 

t

~ ~ ~

t tt-1

~ ~ ~ ~ ~ ~

t t tt-1 t-1 t-2 t-1

(1- 0.94B)

which is equivalent to 

Tb = 0.068*Ta + 0.008*Tss +

Tb = 0.94*Tb + 0.068*Ta - 0.064*Ta + 0.008*Tss - 0.0075*Tss + 





 

 

TRF for the steer in the drug group 

 
~ ~ ~ ~

t
t t t t-2

~ ~ ~ ~

t t-1 t t-1

~ ~ ~ ~

t t-1 t-2 t-3 t

Tb = 0.045*Ta + 0.027*Tss + 0.005*SLWin +
(1- 0.85B)

which is equivalent to 

Tb = 0.85*Tb + 0.045*Ta - 0.038*Ta

      + 0.027*Tss - 0.023*Tss  + 0.005*SLWin - 0.004*SLWin +

  




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4. Conclusion 

 

Cattle body temperatures measured repeatedly over time are neither independent nor stationary. 

In addition to correlated errors, there was serious collinearity among the predictors, which were 

non-stationary and stochastic. Classical multiple regression models developed for the static case 

are inadequate for explaining all the interesting dynamics of cattle body temperature. Instead, 

time series analysis provides better insight of the underlying biological processes. Spectral 

analysis of the response, as well as, the predictor variables shows that all variables exhibit 

periodic oscillation that repeats roughly in every 24 hours and there is strong coherence between 

cattle body temperature with all environmental variables except relative humidity. In this case, 

transfer function (lagged regression) models fit the data better than the classical regression 

approach, even with adjustment for correlated errors. Among several environmental variables, air 

temperature, soil surface temperature and incoming long wave solar radiation and their lag 

variables are the most important predictor variables in modeling cattle body temperature during 

heat stress. For the steer in the control group, current cattle body temperature depends on its own 

previous value at lag1, air temperature at lag 1 and 2, current soil surface temperature and soil 

surface temperature at lag1. Similarly, for the steer in the drug group, current cattle body 

temperature depends on its own previous value at lag1, current air temperature, air temperature at 

lag1, current soil surface temperature, soil temperature at lag 1 and the incoming long wave solar 

radiation at lag 2 and 3. 

 

5. Summary 

 

In an attempt to model cattle body temperature, several points need to be considered. Among 

these, periodic and non-stationary behaviors over time are of fundamental importance that draws 

a line between classical regression and the time series approach. Contrary to the previous 

research in agriculture science where solar radiation, wind speed and relative humidity are 

important variables (Rodrigo, 2008), these variables do not show up in our final transfer function 

models. Study shows that air and soil surface temperature and incoming long wave solar 

radiation and their lags up to certain order (Model 1 and 2 above) are the most important variable 

for modeling summer cattle body temperature. These results are consistent with several other 

studies in this research area. However, there are certain limitations to the current study. First, we 

only analyzed data recorded in a summer of 2007. Studies show that solar radiation flux densities 

vary across the region and such changes may be due to season, year, time of day, and different 

geographical and environmental condition (Rodrigo, 2008). More research is needed to 

generalize the conclusions of this study in practice. 
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Appendix 

 

Table 14 Cross correlation between detrended Tb and Ta for the steer in drug group 
            

            Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
            -3     0.0098834        0.04575    |                 .  |* .                 | 
            -2    -0.0062208        -.02880    |                 . *|  .                 | 
            -1      0.033118        0.15331    |                 .  |***                 | 
             0      0.044189        0.20456    |                 .  |****                | 
             1    -0.0030760        -.01424    |                 .  |  .                 | 
             2    0.00031104        0.00144    |                 .  |  .                 | 
             3     0.0010255        0.00475    |                 .  |  .                 | 

 
 

 

Table 15 Cross correlation between detrended Tb and soil surface temperature, Tss, for the steer 

in drug group 
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            Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
            -3      0.017628        0.02648    |                 .  |* .                 | 
            -2    -0.0065354        -.00982    |                 .  |  .                 | 
            -1      0.023555        0.03538    |                 .  |* .                 | 
             0      0.290235        0.43599    |                 .  |*********           | 
             1      0.100911        0.15159    |                 .  |***                 | 
             2     -0.012898        -.01938    |                 .  |  .                 | 
             3      0.063293        0.09508    |                 .  |**.                 | 

 

 

Table 16 Cross correlation between detrended Tb and incoming long wave solar radiation, 

SLWin,  for the steer in drug group 
            

           Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
            -3      0.196813        0.11511    |                 .  |**.                 | 
            -2      0.079695        0.04661    |                 .  |* .                 | 
            -1      0.288557        0.16876    |                 .  |***                 | 
             0      0.202691        0.11855    |                 .  |**.                 | 
             1      0.150468        0.08800    |                 .  |**.                 | 
             2      0.383664        0.22439    |                 .  |****                | 
             3     -0.122609        -.07171    |                 . *|  .                 | 

 

 

Table 17 ACF plot of the residuals from proposed Transfer Function, TRF, model for the steer in 

drug group 

 
    Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1      Std Error 
 
      0      0.028848        1.00000    |                    |********************|             0 
      1     0.0022078        0.07653    |                 .  |**.                 |      0.078326 
      2    -0.0015432        -.05349    |                 . *|  .                 |      0.078783 
      3     0.0040113        0.13905    |                 .  |***                 |      0.079006 
      4     0.0021390        0.07415    |                 .  |* .                 |      0.080493 
      5    -0.0002618        -.00908    |                 .  |  .                 |      0.080911 
      6    -0.0024915        -.08636    |                 .**|  .                 |      0.080918 

 

 

 

 

 

 

 

 

 

Table 18 Cross-correlation between detrended Tb and Ta for the steer in the control group 
           

 Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
            -3     -0.035119        -.16508    |                 ***|  .                 | 
            -2    -0.0060400        -.02839    |                 . *|  .                 | 
            -1      0.023200        0.10905    |                 .  |**.                 | 
             0     0.0084161        0.03956    |                 .  |* .                 | 
             1      0.034139        0.16047    |                 .  |***                 | 
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             2    -0.0038577        -.01813    |                 .  |  .                 | 
             3      0.019166        0.09009    |                 .  |**.                 | 

 

 

Table 19 Cross-correlation between detrended Tb and soil surface temperature, Tss, for the steer 

in control group 

 
             Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
            -3     -0.043676        -.07083    |                 . *|  .                 | 
            -2     -0.072365        -.11736    |                 .**|  .                 | 
            -1     -0.014178        -.02299    |                 .  |  .                 | 
             0      0.126858        0.20574    |                 .  |****                | 
             1      0.071970        0.11672    |                 .  |**.                 | 
             2      0.093208        0.15117    |                 .  |***                 | 
             3      0.095981        0.15566    |                 .  |***                 | 

 

 

Table 20 ACF of residuals from proposed Transfer Function, TRF, model for the steer in 

the control group 
 

    Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1      Std Error 
      0      0.027727        1.00000    |                    |********************|             0 
      1     0.0015072        0.05436    |                 .  |* .                 |      0.078087 
      2    -0.0009629        -.03473    |                 . *|  .                 |      0.078317 
      3    -0.0011249        -.04057    |                 . *|  .                 |      0.078411 
      4    -0.0006450        -.02326    |                 .  |  .                 |      0.078539 
      5    -0.0003751        -.01353    |                 .  |  .                 |      0.078581 
      6    -0.0021323        -.07690    |                 .**|  .                 |      0.078595 
      7    0.00021965        0.00792    |                 .  |  .                 |      0.079053 
      8    0.00026925        0.00971    |                 .  |  .                 |      0.079058 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2009/proceedings/7


	COMPARATIVE STUDY OF TIME SERIES AND MULTIPLE REGRESSION FOR MODELING DEPENDENCE OF CATTLE BODY TEMPERATURE ON ENVIRONMENTAL VARIABLES DURING HEAT STRESS
	Recommended Citation
	Author Information

	tmp.1443196805.pdf.O9m0t

