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STATISTICAL ISSUES IN NEXT-GENERATION SEQUENCING  

 

Paul L. Auer and R.W. Doerge 

Department of Statistics, Purdue University, West Lafayette, IN 47907-2066 

 

 

Abstract 

 

High throughput deep-sequencing or next-generation sequencing has emerged as an exciting new 

tool in a great number of applications (e.g., variant discovery, profiling of histone modifications, 

identifying transcription factor binding sites, resequencing, and transcriptome characterization).  

Even though this technology has generated unprecedented amounts of data in the scientific 

community few studies have looked carefully at its inherent variability.  Recent studies of 

mRNA expression levels found little appreciable technical variation in Illumina’s Solexa 

sequencing platform (a next-generation sequencing device).  Although these results are 

encouraging, they are limited to a specific platform and application, and have been made without 

any attention to experimental design.  This paper provides an overview of some key issues in 

data management and experimental design related to Illumina’s Solexa Genome Analyzer 

technology.     

 

Keywords:  next-generation sequencing, RNA-Seq, experimental design 

 

1. Introduction 

 

Over the last two years there has been an increasing need for statistical assistance (i.e., 

consulting projects) in dealing with next-generation sequencing (NGS) data. We do not expect 

this trend to ease. Given that applications of NGS, in the Statistics, Genomics, and 

Bioinformatics literature grew by a factor of ten [1] from 2007 to 2008, it is not surprising that a 

commonly expressed opinion holds that NGS will replace microarrays within the next few years 

[2].  If NGS is indeed the future of science, then it is incumbent upon statisticians who regularly 

consult with biologists to familiarize themselves with NGS technology, the questions that 

scientists are asking, and data that arise. 

 

In order to understand NGS and its applications, it is imperative to gain an appreciation of the 

history and goals of DNA sequencing.  Every cell in every living organism contains instructions 

for its function and development via its genetic code (called its genome).  A genome is made up 

of a sequence of four nucleic acids, adenine, guanine, cytosine, and thymine (i.e., A, G, C, and T, 

respectively).  In the 1970’s new biochemical techniques, known as “traditional” or “Sanger” 

sequencing, were developed [3, 4] to rapidly identify the DNA code from a sample of an 

organism’s genome (i.e., the sequence of A’s, T’s, C’s, and G’s that comprise the genome).  

Sanger sequencing enjoyed a near monopoly in the biological community until just after the 

completion of the Human Genome Project (HGP) earlier this decade, and it continues to be the 

most reliable technique for DNA sequencing.  However, because of time and cost constraints, 

newer NGS technologies have entered the market.  Currently, there are three commercially 
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available NGS technologies, the Genome Sequencer FLX system (GS FLX) produced by 454 

Sequencing, Illumina’s Solexa Genome Analyzer, and Applied Biosystem’s SOLiD platform.  In 

contrast to The Human Genome Project, which was a multi-million dollar, decade long 

collaborative effort that sequenced the human genome using Sanger sequencing [5], sequencing 

of the Neandertal genome (similar in size, structure and complexity to the human genome) took 

less than three years at a fraction of the cost [6] using NGS technologies in a single laboratory.  

In fact, right now (June 2009) third generation (“next-next” or “next
2
”) sequencing technology is 

on the horizon and is focused on the $1000 human genome (i.e., sequencing individual human 

genomes in a few days for less than $1000 US).  The impact of sequencing individuals is 

revolutionizing personalized medicine [7]. 

 

Historically, DNA sequencing has been used in a variety of applications to answer diverse 

biological questions.  NGS has followed this path, having been successfully employed in 

experiments mapping epigenetic modifications [8, 9], characterizing transcriptomes [10], and 

assessing differential expression [11].  One popular application is called RNA-Sequencing 

(RNA-Seq), which uses NGS technologies to characterize and quantify the collection of 

transcripts in a cell.   

 

2. Overview of RNA-Seq using the Illumina Genome Analyzer 

 

One of the most important cellular functions of DNA is the production of proteins, the primary 

determinants of biological form and function [12].  A protein consists of a chain of one or more 

amino acids, which in turn are encoded in codons, or triplets of nucleotides in a DNA sequence 

[12].  DNA is transcribed into ribonucleic acid (RNA) which is then translated into protein.  This 

information transfer from DNA to protein is known as the “Central Dogma of Molecular 

Biology” (Figure 1) [13]. 

             

Both RNA and DNA are nucleic acids.  RNA is typically single-stranded, has ribose sugar in its 

nucleotides (rather than deoxyribose), contains the nucleotide uracil (U) instead of thymine, and 

unlike DNA has the ability to catalyze biological reactions [12].  There are two general classes of 

RNAs, those that encode proteins (called messenger RNA, mRNA) and those that are functional 

as RNA.  Interestingly, RNA can be isolated and measured to infer both the expression of genetic 

material (i.e., genes) into protein (mRNA), as well as the function of cellular processes.   

 

RNA-Seq experiments begin by isolating RNA from cells.  Each RNA strand can be hundreds to 

thousands of bases long and is fragmented at random positions and copied into complementary 

DNA (cDNA).  In preparation for sequencing, adapters are attached to the ends of the cDNA 

fragments.  Fragments meeting a certain size specification (e.g., 200-300 bases long) are retained 

for amplification using Polymerase Chain Reaction (PCR).  After amplification the cDNA 

sample is sequenced using any one of a number of NGS technologies.  A more detailed overview 

of this process can be found in [14, 10].   

 

The Illumina Genome Analyzer is a sequencing technology that consists of a flow-cell (a glass 

slide) containing eight vertical lanes, each of which is capable of sequencing independent 
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genomic samples.  The Illumina technology sequences cDNA fragments one base at a time until 

it reaches the 36
th

 base (as of June 2009, Illumina read lengths have increased from 36 bases and 

are approaching 100 bases).  In this way, the first 36 bases of millions of template molecules are 

sequenced in parallel on a single flow-cell lane.  The raw sequencing data from a single lane 

contain sequencing reads of fixed length with quality scores for each base.  The quality scores 

reflect the confidence with which the Illumina machine assigned a base call to a sequence 

position.  Taken alone, the raw data are somewhat meaningless because the genomic location of 

each sequence is not known.  In order to connect the reads to the genome it is necessary to map 

them to their location in the genome.  Mapping raw sequencing reads constitutes a major 

computational challenge that currently dominates a sizable portion of the Bioinformatics 

literature.       

 

3. RNA-Seq Data Processing and Normalization 

 

A “reference genome” represents the current state of knowledge regarding a particular species’ 

genome.  In a sense, a reference genome is a continually evolving entity that accumulates 

information as more individuals from the same species are sequenced.  It is, more or less, the 

consensus genome of all published sequences of individuals in a given species.  The reference 

genome provides the context in which to interpret sequencing reads from an RNA-Seq 

experiment.  To do so, the raw sequencing data are “aligned” to the reference genome by parsing 

the entire genome for regions that match the sequencing reads.  Sequencing reads that match 

multiple genomic regions are rendered ambiguous.  Occasionally, a sequencing read will fail to 

match any region in the reference genome implying either a mistake in the reference or 

inaccurate base calls in the sequencing read.  Given the size of the sequencing libraries (tens of 

millions of reads) and the size of reference genomes (tens of millions to billions of bases) the 

computational challenges involved in alignment seem almost insurmountable.  Fortunately the 

Bioinformatics literature is rich with fast and accurate alignment tools such as ELAND (Illumina 

product), MAQ [15], and SOAP [16] among others.  However, the success of any alignment 

algorithm is entirely dependent on the available knowledge of a particular species’ genome (i.e., 

its reference genome).  For instance, the Arabidopsis Thaliana (AT) genome is relatively small 

and very well characterized.  The reference sequence is “complete” in some sense, whereas the 

Triticum (wheat) genome is relatively large, highly repetitive, and poorly characterized.  It stands 

to reason that sequencing reads taken from an AT sample will align to the AT reference at a much 

higher rate than reads taken from a Triticum sample and aligned to the Triticum reference.  

Alignment affects all downstream analyses, so it is important to note that the inferences from an 

analysis are dependent upon and limited by the available knowledge of an organisms’ genome.    

 

3.1 Aligned Sequencing Data 

 

Table 1 illustrates the first few lines (of about 5 million lines total) from an ELAND aligned data 

file.  The first field in the first row shows the sequence of the first 36 bases of a random fragment 

from the genomic sample.  The code “R1” indicates that this sequence mapped to several 

different locations on the reference genome.  The next fields indicate that the sequence mapped 

nowhere perfectly (i.e., 0), at 32 different places with a one base discrepancy and at 255 different 
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places with a two base discrepancy.  The next row shows the sequence of the first 36 bases of a 

different random fragment from the same genomic sample. The code “U0” indicates that the 

sequence mapped perfectly to exactly one location on the reference genome.  That location is 

90,577,824 bases from the 3' end of chromosome 14.  The next line is a third sequencing read 

from the same genomic sample.  The code “NM” indicates that this sequence matches nowhere 

on the reference genome using a two base discrepancy tolerance.  The final line (Table 1) 

provides a read with the code “U1,” which indicates that this sequence matches exactly one spot 

on the reference genome with a one base discrepancy.  That location is 45,758,959 bases from 

the 3' end of chromosome 1.  The discrepancy occurs at base position 32 and appears as a “G” in 

the reference genome. 

 

Once the results from an alignment program are in hand, gene expression is quantified relative to 

the annotation of the reference genome.  Typically, reference genomes are annotated with known 

functional elements (e.g., genes and promoter regions).  This annotation, especially for a gene, 

occupies a specific region in the reference genome. Therefore it is possible, for each gene, to 

count the number of times a sequencing read from the alignment file falls within that gene’s 

annotated region.  Using this counting approach gene expression is quantified for every gene in 

the reference genome.   

 

3.2 Data Reduction 

 

Recall that the lanes on the Solexa sequencing platform are independent and that independent 

genomic samples are loaded into the different lanes.  Each lane produces a file of raw sequencing 

reads and each of these files is aligned to a reference genome, independently, as just described.  

In a typical RNA-Seq experiment, the files from the alignment occupy approximately 1GB of 

disk-space per sample (or per lane) and can become unwieldy since most experiments have at 

least six independent samples (i.e., using at least 6GB).  While the alignment file may require 

1GB per sample, the file summarizing the per gene expression quantification requires 10MB or 

less of disk-space making it easy to work with on a laptop or PC with standard statistical 

software (e.g., R or SAS).  The process of translating the aligned sequence reads (per gene) to a 

manageable data file is easily accomplished with the following UNIX command line: 

 

awk '{print($4);}' alignmentfile | sort -n | uniq -c | awk '{print($2,$1);}'  > table.txt 
 

This code assumes that the “alignmentfile” is in the format of Table 2.  The output (Table 3) 

from the code, “table.txt,” appears as a single column summarizing the gene expression counts 

into a gene expression matrix.  Notice that Table 3 adheres to the standard format for a typical 

gene expression analysis from a microarray experiment.  Of course, by reducing the alignment 

files into a gene expression matrix an enormous amount of information is discarded or ignored 

(e.g., allele specific expression, alternative splicing, unknown transcription events, and exon 

level expression).  Specifically, reads mapping to multiple locations are removed and may reduce 

the data file up to 40% [10, 11]. Fortunately, RNA-Seq experiments are focused solely on testing 

differential expression, therefore only the gene expression matrix is required for the statistical 

analysis.      
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3.3 Normalizing RNA-Seq Data  

 

Similar to microarray based gene expression experiments, the “parameter being measured is 

many steps removed from the parameter being inferred” [17].  Recall that in a typical RNA-Seq 

experiment, cells are isolated, RNA is harvested, randomly fragmented, copied into cDNA, 

amplified, loaded into a sequencing device which in turn amplifies the sample again, and the 

sequencing device then uses laser excitation along with fluorescently labeled nucleotides to 

decode the sequence.  The sequence is then analyzed with an alignment program which 

effectively labels the sequencing reads with annotation from a reference genome.  From this 

point a frequency table summarizing the annotated sequencing reads represents a measure of 

gene expression for any gene present in the reference database.  Clearly, with so many steps 

involved, experimental errors and computational assumptions accumulate, all of which affect the 

accuracy of the gene expression quantification.  For RNA-Seq experiments these distortions 

occur on a per-sample (or lane) basis making it necessary to rely on normalization methods to 

make samples comparable.   

 

If we let ygi denote the gene expression quantification for the g
th

 gene in the i
th 

sample then, as 

reasoned by Sebastiani et al. [17], the observed gene expression ygi masks the true expression 

level giy  had all samples been conducted under the exact same experimental conditions.  Thus, 

( )gi giy f y  ,      (1) 

and normalization consists of estimating ( )f  for the purpose of recovering 
1( )gi giy f y .     (2) 

 

Currently, there are two standard normalization techniques in the RNA-Seq literature, quantile 

normalization [18] and “Reads Per Kilobase of exon model per Million” (RPKM) [10] mapped 

reads.  The quantile normalization method [19] gained popularity for the analysis of microarray 

data because it is computationally fast, it is easy to understand, and it is effective.  The goal of 

quantile normalization is to make the distribution of gene expression measurements the same 

across samples by substituting the respective quantile means, for each of G genes, for the 

original data.  By forcing the tails of the distributions to be the same across samples, gene 

expression values on the endpoints of the range are made identical across samples.  As such, 

quantile normalization can be problematic when working in the tails of the distribution [19] if the 

data do not warrant this sort of adjustment.  In fact, with respect to RNA-Seq data, it is not wise 

to use quantile normalization because these data enjoy a characteristic called “dynamic range.”  

Specifically, there is no background noise in RNA-Seq data, so genes with very low expression 

values (0-10) and genes with very high expression values (1,000 or more) provide reliable data 

that can all be used to test differential expression.  If the tails of the distributions were forced to 

be the same across samples the gene expression values on the endpoints of the range would be 

identical across samples, thus robbing RNA-Seq data of one of its most advantageous features, 

sensitivity at the endpoints of the data range (i.e., “dynamic range”).      
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RPKM was introduced specifically for normalizing RNA-Seq data. It adjusts/divides each cell in 

the gene expression matrix (Table 3) by both the corresponding column total and gene size 

which allows for inter-gene and inter-sample comparisons.  “Sequencing depth” represents the 

redundancy with which a single fragment is sequenced and is often different both within and 

between samples. Dividing each cell (Table 3) by the column total corrects for differential 

sequencing depth between samples.  Because the isolated RNA is randomly sheared (early in the 

process), it is expected that longer strands of RNA will produce a greater number of random 

fragments than smaller strands of RNA.  Therefore, in order to make accurate inter-gene 

comparisons, the RPKM technique divides each cell by the corresponding gene size.  Although 

this last step is necessary for inter-gene comparisons, the column total is a poor substitute for an 

accurate per fragment estimate of depth.  To date there is no consensus on how to estimate 

fragment level depth, and it is still not clear that counting redundant fragments adds accuracy to 

the measure of gene expression, since there is very small probability that a random shearing 

mechanism would cut two strands of RNA in the identical position. 

 

4. Statistical Design and Analysis 

 

In any experimental design the experimental unit constitutes the fundamental quantity for 

analysis.  In an RNA-Seq experiment, independent genomic samples are loaded in different lanes 

of the flow-cell, thus lane can be considered the experimental unit.  Consider a situation where 

RNA-Seq data have been collected from two treatment groups A and B for the purpose of testing 

differential expression.  Suppose that each treatment group contains four independent biological 

replicates.  Then a reasonable experimental design would randomly assign each of the 8 samples 

to a lane (experimental unit) on the flow-cell (Table 4).  Randomizing and replicating across 

lanes provides the best protection against systematic lane effects.  Of course with such a simple 

design, the statistical analysis is straightforward and uses the model  

( ) ( )ijk i j ij ijkf Y T G TG       

2(0, )ijk N  ,            (3) 

where ijkY is the normalized gene expression measure from the k
th

 biological replicate of the j
th

 

gene from the i
th

 treatment group, i=1,2, j=1,...g, and k=1,…,4.  T is the treatment effect, G is the 

gene effect, and TG is the treatment by gene interaction.  The function f is generally a variance 

stabilizing transformation and ijk is the random unexplained variation.  One can either assume 

constant variance across genes, or a per gene variance, the former is rarely true and the latter 

lacks statistical power.  There are methods that find a compromise between these two approaches 

[20].  Nevertheless, the null hypothesis testing differential expression of gene j between 

treatment groups [21] is 

0 1 1 2 2: ( ) ( )j j jH T TG T TG   .    (4) 

 

4.1 Experimental Design and Reproducibility of RNA-Seq Results 

 

Results from any analysis are only scientifically valuable if they are reproducible.  Evaluating 

the reproducibility of RNA-Seq results entails a comprehensive study of the technical variation 
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in the experimental process that produced the data.  There has been some preliminary work on 

technical variation in RNA-Seq data [11] as well as comparisons of results between microarrays 

and NGS [22].  To date, virtually no attention has been paid to the design of RNA-Seq 

experiments.  This is disappointing when one considers the significant contributions that proper 

statistical design lent to microarray experiments [23, 24]. The cost constraints associated with 

RNA-Seq almost certainly play a role, especially considering that a single NGS run using a 

single lane of an Illumina sequencer costs approximately $1,500 (after the machine has been 

purchased).  Nevertheless, in anticipation of cheaper sequencing runs and to illustrate how such 

an experiment should be designed, we continue with our previous example.  

 

Suppose that for each of the 8 biological samples, each sample is replicated 4 times, giving a 

total of 32 samples (8 biological replicates, each with 4 technical replicates).  When deciding on 

an experimental design, the decision is often based on optimizing an objective function of the 

design space.  D-optimality [25] is often used as a criterion, where the D-optimal design utilizes 

the design matrix X and maximizes the determinant of the X'X matrix.  For the example under 

consideration, Table 5 illustrates a D-optimal design.  Experimental designs utilizing technical 

replicates can be thought of as repeated measures designs where the order of the repeated 

measure is inconsequential, thus making it a split-plot design.  When dealing with a split-plot 

design there are two different experimental units, the whole-plot experimental unit (the 

biological sample) and the sub-plot experimental unit (the technical replicate).  Reorganizing 

Table 5 illustrates (Figure 2) the advantages of this D-optimal design.  Specifically, the flow-cell 

itself forms the whole-plot block allowing one to account for the variation between flow-cells (or 

between sequencing runs). Using this D-optimal design (Table 5) and testing per-gene 

differential expression can be accomplished with the following model 

( ) ( )ijk i j ij k ik ijkf Y T R L TL          

2(0, )ij N    

2(0, )ijk N   ,       (5) 

where ijkY is the observed gene expression in the k
th

 technical replicate of sequencing run j, in 

treatment group i, i=1,2, j=1,...,4, and k=1,...,4. T is the whole plot factor (treatment effect), R is 

the whole plot block (sequencing run or flow-cell), is the whole plot error, L (lane) is the sub-

plot factor (technical replicate), and is the sub-plot error.  Table 6 shows the ANOVA table for 

this design (Table 5) with appropriate degrees of freedom (df) and expected mean squares 

(EMS).  Differential expression can be tested using 

0 1 2:H T T  

 
1,3

( )

( )

MS T
F

MS 
 .      (6) 

 Lane effect (i.e., technical variation) can be tested using 

0 1 2 3 4:H L L L L    

3,18

( )

( )

MS L
F

MS 
 .       (7) 
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Although this is a hypothetical example that simultaneously studies differential expression and 

technical reproducibility, it illustrates some of the statistical issues involved. 

  

5. Discussion  

 

NGS technology continues to provide statisticians with yet another unique opportunity to 

contribute to science.  While this paper focuses on one specific application of NGS (RNA-Seq) 

using one specific sequencing device (Illumina’s Solexa sequencer) much of what is presented 

and discussed generalizes to other applications and technologies.  

 

NGS technologies were initially developed to make resequencing projects faster and less 

expensive.  Resequencing has led to the continual updating of reference genomes (across the 

taxonomy of life) by focusing on the accuracy of sequencing reads and their alignment to the 

reference (unlike RNA-Seq which focuses on the abundance of particular DNA fragments).  

NGS applications in epigenomics using the Chromatin Immunoprecipitation Sequencing (ChIP-

Seq) technique to investigate epigenetic events (e.g., histone modifications and DNA 

methylation) are also quite common [8, 9].  Although both ChIP-Seq and RNA-Seq rely on NGS 

to quantify DNA fragments, these data emanate from two entirely different biological processes 

making the respective normalization methods and statistical analyses distinct.  Even though these 

applications are vastly different, issues that are central to technical variation and reproducibility 

are entirely relevant to all three (resequencing, RNA-Seq, ChIP-Seq) yet need to be addressed 

individually.   

 

SOLiD sequencing technology [26] is similar in many respects to Illumina’s Solexa technology.  

Both technologies are flow-cell based, rely on eight lanes per flow-cell, and produce sequencing 

reads of similar length (30-60 bases) that give rise to about 1GB of data per lane [18].  Although 

the experimental protocols and details of the sequencing reactions are quite different between the 

two platforms, from an analysis perspective both Solexa and SOLiD data are similar in 

alignment, normalization, and analysis. A third technology based on a completely different 

biochemical approach, is the 454 GS FLX sequencing platform [26].  It stands alone in many 

respects.  The 454 sequencing reaction uses a technique called “pyro-sequencing,” and the 

device itself does not have lanes or flow-cells per-se.  Furthermore, each sequencing run 

produces a magnitude less data (100MB) and read lengths are much longer (200 bases or longer) 

[26].  The corresponding alignment of 454 reads is therefore more trustworthy than those 

obtained from a Solexa or SOLiD sequencing run.  Read length notwithstanding, the Solexa and 

SOLiD platforms produce much higher average depth of coverage per input fragment, and thus 

enjoy a decided advantage over 454 data in sensitivity (i.e., dynamic range).          

 

Regardless of the application or choice of NGS platform, there are several realities that both 

scientists and statisticians must accept.  First, although the cost of sequencing has dropped 

dramatically over the past decade, sequencing is still quite expensive ($1,500 US for a single 

lane on a Solexa machine) and replication is often considered an unaffordable luxury.  R.A. 

Fisher [27] offers articulate advice that has withstood the test of time.  Namely, without 

appropriate replication “perhaps these should not be called experiments at all, but be added 
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merely to the body of experience on which, for lack of anything better, we may have to base our 

opinions”.  Second, even though NGS is replacing microarrays as the preferred platform in high-

throughput biology, there is no consensus as to the magnitude of technical variation in NGS 

devices.  Mostly because the expense of doing these experiments, in biologists' opinions, 

outweighs the worth of the information gained.  Finally, the shear magnitude of the raw data 

provided from NGS platforms requires considerable computational and bioinformatic finesse and 

may overwhelm any unprepared analyst.  Specifically, a laptop or personal computer simply 

cannot provide the computing requirements (memory or RAM) necessary for the bioinformatics 

and statistical analyses.  Moreover, statistical software packages (e.g., SAS, R, and STATA) are 

ineffective tools for carrying out the necessary bioinformatics.  We have found that a 64-bit 

Linux server with 32GB of RAM and 500GB of disk-space along with a working knowledge of 

Perl and UNIX is a reasonable place to start. 

 

Some resources are available for statisticians that want to become involved in this new and fast 

paced world of NGS.  Developers of Bioconductor [28], at the R-project [29], are developing 

infrastructure for dealing with NGS data (e.g., “chipseq” and “shortread” libraries).  

Furthermore, there is currently an effort to establish a Minimum Information for Sequencing 

Experiments (MINSEQE) [30] standard (similar to MIAME [31]) which will undoubtedly play a 

role in determining the format of publicly available sequencing datasets.  Lastly, the journal 

Bioinformatics has set up a repository for published journal articles that deal with NGS [1].             

 

6. Glossary of Sequencing Terms 
 

Base Call - The process by which an image (fluorescence) from a sequencing device is 

interpreted as one of four nucleotides (A, T, C, or G).  This is usually accomplished by image 

recognition software that is part of the sequencing platform.   

 

Chromatin Immunoprecipitation Sequencing (ChIP-Seq) - An experimental method which uses 

NGS to sequence, map, and quantify a ChIP product. This is a useful technique for identifying 

transcription factor binding sites.  ChIP-seq is a recent alternative to ChIP-chip which uses 

microarrays to study epigenetic events.     

 

Flow-cell - A glass slide onto which genomic samples are attached.  Both Solexa and SOLiD 

employ these glass slides with their respective sequencing technologies.   

 

Human Genome Project - A collaborative effort, spanning more than a decade, culminating in a 

draft sequence of the human genome in 2004.  

 

Illumina Solexa Genome Analyzer - A NGS technology that is popular for RNA-Seq and ChIP-

Seq experiments.  It produces short sequencing reads (36 bases) from millions of DNA 

fragments.         

 

Next-Generation Sequencing (NGS) - Sequencing technologies developed since 2000 which 

sequence DNA in a highly parallel fashion. Read lengths are typically shorter than with Sanger 
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sequencing, but is much less expensive (per base) and much higher throughput (1,000-10,000 

times higher than Sanger sequencing). 

 

Sanger/Traditional Sequencing - The experimental method developed in the 1970’s that 

identifies the DNA code from a sample of an organism’s genome.  This method can sequence 

1,000 bases at a time and is highly accurate.  However, it is expensive and low throughput in the 

sense that it only processes at most 100 fragments in parallel. 

 

Reads Per Kilobase of exon model per Million mapped reads (RPKM) - Introduced in Mortazavi  

et al. [10], it is the most popular normalization technique for RNA-Seq data.  Essentially, it 

divides each gene count in each sample by the length of the gene and the number of reads that 

mapped back to the reference sequence in that sample 

 

Reference Genome - The consensus genome of all published sequences in a given species.  It is a 

continually evolving entity that accumulates information as more individuals from the same 

species are sequenced.   

 

RNA-Sequencing (RNA-Seq) - An experimental method which uses NGS to sequence, map, and 

quantify a sample of transcripts isolated from a cell.  It is a recent alternative to microarrays for 

studying differential expression.   

   

SOLiD - A NGS technology, produced by Applied Biosystems, similar in many respects to 

Solexa technology.  Read lengths and throughput are similar, but the biochemical techniques are 

quite different. 

 

454 GS FLX - A NGS technology, produced by Roche. It is somewhat different in technology 

than that  produced by SOLiD and/or Solexa.  It uses a biochemical technique called “pyro-

sequencing,” producing longer reads (500 bases) with lower throughput (100,000 reads).   

 

 

7. Summary 

 

Statistical consulting projects that involve the design and analysis of NGS experiments are 

quickly becoming commonplace.  Fortunately, because of similarities between NGS data and 

microarray data, the learning curve for statisticians, analysts, and bioinformaticans has been less 

steep than with microarrays.  However, NGS data ups the ante by increasing the data file size by 

at least an order of magnitude.  Even though the Bioinformatics and Biostatistics communities 

have risen to the challenge of dealing with the unprecedented amounts of data offered by 

microarray technology, NGS represents the next step in high-throughput biology and may prove 

to be more challenging.  As such, research pertaining to the experimental design, pre-processing, 

and analysis of NGS data must keep pace.  Here, we have only begun to briefly summarize the 

current state of NGS technology.  In order for NGS to efficiently revolutionize genomics and 

personalized medicine, statisticians, bioinformaticians, and analysts alike must remain actively 

involved in this fast paced and rapidly developing field.   
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10. Tables and Figures 

 

 

 

 
Figure 1:  The Central Dogma of Molecular Biology.  DNA is transcribed into RNA and then 

translated to protein.   
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Table 1:  Example of four lines from output of the ELAND alignment tool.  The first column 

shows the sequencing read, the second column displays a code denoting if and how the 

sequencing read aligns to the reference genome (R1=matches multiple positions in the reference 

genome, U0=matches one position in the reference genome perfectly, NM=no match in the 

reference genome, and U1=matches one position in the reference genome with a single base 

discrepancy).  Columns 3-5 show the frequency with which the read maps with no discrepancy, a 

one base discrepancy, and a two base discrepancy, respectively.  Column 6 shows the 

chromosome and position from its 3' end at which the sequencing read aligns.  The last column 

details the position of the base, in the sequencing read, at which a discrepancy exists and the 

corresponding base found in the reference.   
CAATAAAGAACCTACCAACCAAAAAATGCTCTGGAT R1 0 32 255   

GATCTGAAGTGAAGAAGATTGAGACACAAAAAAATT U0 1 0 0 chr14    90577824  

GATCTACTCATTCAGCATCTGCATCTCATCACATCC NM 0 0 0   

CGAGCAAAGTAATGAACATATCTGTCACCTGATGTA U1 0 1 0 chr1      45758959 32 G 

 

 

 

 

 

 

Table 2: Example of an annotated alignment file.  The first column shows the sequencing read, 

the second column displays a code denoting if and how the sequencing read aligns to the 

reference genome (R1=matches multiple positions in the reference genome, U0=matches one 

position in the reference genome perfectly, NM=no match in the reference genome, and 

U1=matches one position in the reference genome with a single base discrepancy). Column 3 

shows the chromosome and position from its 3' end at which the sequencing read aligns.  The 

last column shows the gene that resides on the chromosome and position in column 3.   
CAATAAAGAACCTACCAACCAAAAAATGCTCTGGAT 

GATCTGAAGTGAAGAAGATTGAGACACAAAAAAATT 

GATCTACTCATTCAGCATCTGCATCTCATCACATCC 

CGAGCAAAGTAATGAACATATCTGTCACCTGATGTA 

. 

. 

. 

. 

R1 

U0 

NM 

U1 

. 

. 

. 

. 

 

chr14    90577824 

 

chr1      45758959 

. 

. 

. 

. 

 

Gene 1 

 

Gene 99 

. 

. 

. 

. 
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Table 3:  Example of a gene expression matrix.  For each gene, the number of sequencing reads 

mapping to that gene is tabulated per lane along with the total gene size (last column).  The 

RPKM normalization technique divides each cell in the matrix by the corresponding column 

total (per 10
6
), and gene size (per 10

3
).  For instance, 100 is converted into

6 3100*10 *10

1256723*3250
.  

    Lane1                              Lanej Size(kbp) 

Gene1 

. 

. 

. 

Geneg 

  100                                         2 

       .                                          . 

       .                                          . 

       .                                          . 

   16                                    1,257 

3,250 

. 

. 

. 

163 

Total 1,256,723                    3,561,006  

 

 

 

Table 4:  A completely randomized design with treatment groups A and B with (four) biological 

replicates A1, …, A4, B1, … , B4, on a single flow-cell.  The eight samples are randomly assigned 

to the eight Lanes of a flow-cell.       

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 

A1 B4 B2 A2 B3 A4 B1 A3 

 

 

 

 

Table 5:  A D-optimal split plot design using four Illumina flow-cells (i.e., sequencing runs).  

There are two treatment groups A and B with (four) biological replicates A1, …, A4, B1, … , B4, 

and four technical replicates per biological replicate (technical replicates are randomly assigned 

to the eight Lanes in a flow-cell).  This design uses the flow-cell as the whole-plot block, the 

biological replicate as the whole-plot experimental unit, and the technical replicate as the sub-

plot experimental unit.     

Run Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 

1 A1 B1 B1 A1 B1 A1 B1 A1 

2 A2 B2 A2 A2 B2 B2 B2 A2 

3 B3 A3 B3 A3 A3 B3 A3 B3 

4 A4 B4 B4 B4 A4 A4 A4 B4 
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Figure 2:  A D-optimal split plot design illustrating whole-plot blocks over four Illumina flow-

cells (i.e., sequencing runs).  There are two treatment groups (A and B) with (four) biological 

replicates A1,...,A4 and B1,...,B4, and four technical replicates per biological replicate (technical 

replicates are randomly assigned to the eight Lanes in a flow-cell).  This design uses the flow-

cell as the whole-plot block, the biological replicate as the whole-plot experimental unit, and the 

technical replicate as the sub-plot experimental unit.     

 

 

 

 

 

Table 6:  The degrees of freedom (df) and Expected Mean Squares (EMS) for a D-optimal split 

plot design with two whole-plot treatment groups (T1, T2), four whole-plot blocks (R1,..., R4), 

whole-plot error δ, four sub-plot treatment groups (L1,..., L4), sub-plot treatment by whole-plot 

treatment interaction (TL), and sub-plot error ε.   

___________________  df   EMS_________________________ 

Wholeplot 

Ti     1   
2 24 16 ( )f T      

Rj     3   
2 2 24 8 R      

δij     3   
2 24    

Subplot 

Lk     3   
2 8 ( )f L   

(TL)ik     3   
2 4 ( )f TL   

εijk     18   
2

  

______________________________________________________________________________ 
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