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HIERARCHICAL BAYESIAN METHODS
TO MODEL HETEROGENEITY IN COW- AND HERD-LEVEL RELATIONSHIPS
BETWEEN MILK PRODUCTION AND REPRODUCTION IN DAIRY COWS

Nora M. Bello', Juan P. Steibel " and Robert J. Tempelman”
Department of Animal Science, Michigan State University, East Lansing.
" Department of Fisheries and Wildlife, Michigan State University, East Lansing.

ABSTRACT

Two of the most important broad classifications of phenotypes for successful dairy
production are milk yield and fertility. The nature of the relationship between milk
production and reproductive performance of dairy cows is uncertain due to conflicting
results reported in many studies. A common deficiency in many such studies is an
underappreciation of the dual dimension of the production-reproduction relationship, as
defined by herd (random or u) level and cow (residual or e) level sources of (co)variation.
Our overall hypothesis is that the e- and u- level relationships between milk production and
reproduction in dairy cows are heterogeneous and depend upon various herd-related and
management factors. Our objective is to develop hierarchical Bayesian extensions that
capture heterogeneity in the relationships between traits by mixed effects modeling of u
level and e level covariances between traits of interest. We specify a bivariate Bayesian
model to jointly model two continuous traits and we apply a square-root free Cholesky
decomposition to the variance-covariance matrices of the residuals (cow-level) and random
effects (herd-level). As a result, the e- and u-level covariances among the traits are
reparameterized into unconstrained and easily interpretable e- and u- regression parameters,
respectively. These regression parameters specify the cow- and herd-level relationships,
respectively, between the traits and can be easily modeled as functions of relevant fixed and
random effects, thereby providing a mixed model extension of Pourahmadi’s method. We
validate our method using a simulation study and apply it to data on 305-day milk yield and
calving interval of Michigan dairy cows.

KEYWORDS: dairy cow, milk production, reproduction, cow- and herd-level
relationships, bivariate Bayesian modeling, Cholesky decomposition.

1. INTRODUCTION

Multivariate mixed effects models have been routinely used to investigate the
architecture of relationships between two or more traits at several different levels,
specifically (co)variance matrices for different sets of random (u) effects and residual (e)
effects. We are specifically interested in the joint modeling of milk production and
reproductive efficiency of dairy cows. These two classes of phenotypes help define the
necessary foundation for a successful dairy business. Although antagonistic correlations
(e.g., higher milk production leading to poorer fertility) have been generally reported, there
are enough discrepancies across studies to suggest the need for modeling (co)variances as
functions of covariates that characterize dairy management effects or herd environments
(Laben et al., 1982; Lopez-Gatius et al., 2006; Lucy, 2001; Washburn et al., 2002). We
consider the relationship between two representative traits using u-level (co)variances
between clusters, e.g., herds, and e-level (co)variances between measurement units, e.g.,
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cows within herds, hypothesizing that u-level and e-level (co)variance matrices are
heterogeneous and depend upon systematic factors.

Explicit structural modeling of covariance matrices as functions of covariates
requires care because of necessary positive semi-definite constraints. To facilitate this issue
at the e-level, Pourahmadi (1999) proposed a square root free Cholesky reparameterization
of the (co)variance matrix for time ordered responses (e.g., longitudinal data) such that
(co)variances are reparameterized as generalized autoregressive parameters (GARP) and
innovation variances, as labeled by Pourahmadi (1999). We further extend this work by
modeling sources of heterogeneity on these parameters at both the u-level and e-level,
recognizing that (co)variance matrices between observed phenotypes (i.e., at the y-level) on
two or more traits could be separately affected by each of the two components. We also
propose that the e-level GARP be modeled not only as functions of systematic (i.e., fixed)
effects, but also of exchangeable cluster-specific random effects that can be characterized by
a distribution. This mixed model specification of reparameterized covariance components
should facilitate efficient shrinkage estimation for clusters, e.g. herds, characterized by many
levels, each with a relatively limited number of measurement units or subjects, e.g., cows.

The objectives of our study are 1) to develop a hierarchical Bayesian extension to
classical bivariate mixed effects modeling of residual (e) and random (u) covariance
matrices for the joint analysis of two phenotypes, 2) to further validate the properties of our
method implemented using Markov Chain Monte Carlo (MCMC) based on a simulation
study, and 3) to apply our method by jointly modeling heterogeneity in the u-level and e-
level covariances between milk production and reproduction of first-lactation dairy cows in
Michigan. We strive to choose prior density specifications that are conditionally conjugate
(Gelman, 2006) in order to expedite Gibbs sampling steps in our MCMC algorithm (Gelfand
and Smith, 1990)

2. METHODS

2.1. Hierarchical Bayesian Model Construction

The conventional linear mixed model. We start with the conventional bivariate linear mixed
model

1), '

where y;; is the observation for trait i (i=1, 2) on subjectj (j=1,...,n), B, is a pl(l)x 1 vector

of unknown fixed location parameters for factors (e.g., parity, year, calving season, etc.)
unique to trait i; u; is a ¢ x 1 vector of unknown classical random effects (e.g., herd or

contemporary group, etc.) unique to trait i and e;; is the corresponding residual. Also, xl(.jl)

and z ; "are known incidence row vectors for subjectj. For pedagogical reasons, we assume
the same single random effects factor of clusters, e.g. herds, is common to both traits and for

all subsequent random effects modeling presented thereafter.
From a Bayesian perspective, the elements of P, are typically considered to be
classical fixed effects (Sorensen and Gianola, 2002) whose elements would not be

considered to be exchangeable random variables. Hence, we might specify subjective
multivariate normal prior densities on fixed location parameters for each trait:
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1 1

B, |B?,V.(B) ~N (B?,VA(B)), with hyperparameters B, and Vl.(B ) being specified as known.

Bounded uniform priors are also commonly considered (Sorensen and Gianola, 2002) as,
typically, enough data is available to infer upon elements of B; with any reasonable
noninformative prior distribution in large field studies (Gelman, 2006).

Denote u,; = [“1,k “z,k]' where u; ; denotes element k of u; and is the random effect

of cluster k (1<k<q) for trait i. We specify independent structural bivariate normal prior
densities on each u; with E(u ) = 0 and var(u ;) = Gy such that:

2
Ouk Ou.k
1> 12>
G, = . Q)

2
O-Mlz,k O-u2 ,k
Independent bivariate normal densities are assumed for each subject-specific pair of

residuals e ; = [el’j ez’j:l' on the two traits with E(e.j) =0 and var (e.j) =R ;where

2
o, ; O :
e,J €,/
R;= O 3
Oep.j Fey.j

Note that R; specifies a within-subject covariance structure between traits at the residual (e)
level but conditional independence is assumed between subjects.

Reparameterization of variance-covariance matrices. We implement a square-root-free
Cholesky decomposition (Pourahmadi, 1999) to diagonalize each R; and G; (co)variance
matrix. For the pair of residuals on subject j, this decomposition is based on the following

relationship:
e e 0 e,
ej:[ f}: © :{ }05."){ J] )
2] |e, ;e ey, | L4 €, j

Here (/)5;) represents the subject-specific e-level regression coefficient of e, ; on

e j, such that ey ; is the conditional residual of subject j for trait 2 given trait 1.

Furthermore, e,; ; is independent of ¢, ; with ey; ; ~N (O,O'QZMJ ) Hence, we rewrite R; in

Equation (2) as:

2 2
O-el ’j wg.e)o-el ’j
R. = . 5
Pl (o) 2 2 ©)

o, : O, P+ (e) ’ 02
Pj Oej Oeyj T\P) enJ

Similarly, we specify the following relationship for the pair of random effects on

cluster k:
ul,k ul,k 0 ul,k
u; = Lt } = () _ { }(pl(cu) +[ } . (6)
2.k ul,k(”k + ”2|1,k ul,k u2|l,k
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(u)

Here ¢, ’represents the cluster-specific u-level regression coefficient of u,; on

uy ;. , such that uy; ; is the conditional random effect on trait 2 given trait 1 corresponding to

cluster &, and is independent of u;; with uy; , ~N (O, alelk ) Hence, we rewrite Gy in

Equation (3) as:

2 2
O-ul ,k ¢]Eu)0u1 ,k
G, = 7
(Dk O-ul ,k O-MZH ,k + wk O-ul ,k

Using the conventions established by Pourahmadi (1999) and Daniels and

Pourahmadi (2002), 052“ . and 0622“ } might be referred to as the random effect and residual

innovation variances on trait ;=2 specific to cluster k£ and subject j, respectively. However,
we prefer to use the term conditional variances rather than innovation variances for reasons
that are hopefully obvious from Equations (5) and (7). With these reparameterizations,
Equation (1) does not change for trait i = 1 since it is specified as the first trait, and hence its
random or residual effects are not conditioned upon those of any other trait. However, for
trait i = 2, Equation (1) would be rewritten as:

1), '
V2= X(z)] By +z, (T(u)“l +uy; ) * ‘pS‘e)el,j e, ®

where uy; = {”2|1,k }Zil is a g x 1 vector of random effects on trait 2 conditional on trait 1 and

v s a diagonal matrix with diagonal elements (p(”) :[gol(”) goé”) got(lu)]. It should

(u)

(u) _ Tua, ' '
. Thatis, ¢, ’can be interpreted as the

O .
then be apparent that ¢, =2_k and ¢Se) _ elzz J
o k O-el’j

up,
conditional change in u, k(j) and hence iny, ;, for every unit change in u K j)where k(@)
defines the cluster &k associated with subject j. Similarly, (/)E_e)
conditional change in e, ;, and hence in y, ;, for every unit change in ¢, ;. Hence, we refer
to parameters (p,@ and ¢Se)
for our two trait application, rather than as GARP as in Pourahmadi (1999). Note that R,

and Gy are guaranteed to be positive definite for any respective values of (p@ and (p,(cu)

(Pourahmadi, 1999), thereby facilitating their specification as a linear function of covariates
and/or random effects
Heterogeneous (co)variance modeling. We specify a linear mixed effects model on each

can be interpreted as the

as the u-level and e-level regression coefficients, respectively,

subject-specific ¢)§~e) :

¢S-e):xg.2)'ye+zj'm. 9)
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Here, vy, represents a p(z) x 1 vector of unknown fixed effects whereas m represents
a g x 1 vector of unknown cluster-specific random effects as before but such that

m~N (0,1631) . Furthermore, x(jz) " is a known row incidence vector. Note that the effects

considered in 7y, do not necessarily need to mirror those considered for location parameters
bt e it 2),_ (1), S
B, ; that is, it is not necessary that xg ) —xl-j) for either i =1 or i = 2.

We similarly specify a linear model on each cluster-specific (0]({14) :

o) =xy, (10)

where vy, represents a p(3)X 1 vector of unknown fixed effects with xgj)' being the

associated known row incidence vector.

We also accommodate heterogeneity of conditional variances at the e-level, namely

(7621 y and 0'622“’.1, , and at the u-level, namely 031,/‘ and 0'52“’],, following methodology

previously described by Cardoso et al. (2005) and Kizilkaya and Tempelman (2005).

Remaining prior density specifications: In all remaining specifications, we treat all
hyperparameters as known, striving to choose priors that are conditionally conjugate to
facilitate Gibbs sampling. First we adopt subjectively-specified normal prior densities on
the fixed effects influencing heterogeneity of the e-level and u-level regression coefficients,

ie, y,~N (pg,e),Vy(e)) s Yy~ N (u(y”),V;”)), although again bounded uniform priors could

be specified as well. We further specify an inverse gamma prior distribution /G( 4, fm) On
631 . Prior specification of parameters that characterize conditional heteroskedasticity

defined at the e-level and u-level was as previously described by Cardoso et al. (2005) and
Kizilkaya and Tempelman (2005).
2.2. Inference

We base our inference for the proposed hierarchical Bayesian model using MCMC.
The joint posterior distribution of all unknowns as well as the FCD for these unknowns are
derived and presented in the Appendix. It is further important to note that identifiability

constraints are required on all fixed effects parameters, namely By, B,.v.,v,» Ty Tey > Tuy 0

and Tuy o in order to remove hypersensitivity to prior specifications. We thereby

recommend and adapt the corner parameterization (Clayton, 1996; Kizilkaya and
Tempelman, 2005), also known as set-to-zero restriction (Milliken and Johnson, 2009),
whereby an overall intercept is always specified and the effect corresponding to one
arbitrarily chose level of each fixed effects factor is “zeroed out” or removed.

3. SIMULATION STUDY
We validate our proposed model using a simulation study for which our focus was inference

on v,, v,,and U,%l . Two correlated response variables were simulated to mimic milk yield

and calving interval for approximately 50,000 subjects (e.g., cows) distributed across 200
clusters (e.g., herds) within each replicated dataset. The number of subjects per cluster was
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drawn from a gamma distribution based on the mean and variance of herd sizes observed
from an actual dataset to be described later. The size of the simulated dataset was chosen to
mirror that of the actual dataset (see later) and to allow for powerful inference across the
highly hierarchical structure of the model. We considered three different broad scenarios or
correlation architectures between traits that might be plausible for a number of disparate
applications. These 3 scenarios differed in terms of general sign of the e-level and u-level
regression coefficients, namely: A) same sign: positive u-level and e-level coefficients; B)
opposite sign: negative u-level and positive e-level coefficients; C) zero correlation: zero u-
level and e-level coefficients. We also considered 4 different values for the variance

component Cfil I) (731: 0; II) a,f,z 0.1; III) 0,2,, = 1; and 1V) (731: 10. Ten replicate
datasets were simulated for each of the 12 possible populations as defined by the factorial of
3 different correlation architectures with 4 different values of 0',2,, . The same two levels of a

single fixed effects factor were considered, where applicable, for all location parameters,
conditional residual and random effects variance components, and e-level and u-level
regression coefficients. In other words, the corresponding incidence row vectors for all
fixed effects terms were identical such that all covariates were cluster-specific; i.e.,

xglj) '= x(zlj). '= ng) '= ch3()]') '= xgj) '= x(;;) '= ka)(j) '= X(Zs,l)c(j) ', with the first element set equal

to 1 to specify an intercept and the second element being a Bernoulli (0,1) random draw with
probability of 0.25 to partially mimic an unbalanced design structure as based on a corner

parameterization. We used arbitrary 2 x 1 specifications for vy, =[7€1 762]' and

Yu = [ Yu, Vuy ] from Equations (9) and (10) to create the intended correlation architectures

such that y, =v, =0 in scenario C; these specifications are provided in Table 1. We also

set 1, =7, 742 ]|=[176 220]' and 162“:[2'62“’1 162“,2}[9,100 13,000]' per

Equation (11) and T, =[z‘u1,1 TL‘1’2:|=[150 100]" and Tuy =[z‘u2“,1 7, }=[900 600]'

20152

T and T used in

per Equation (13) for all simulated datasets. The values for 7, Ty Tuy -

the simulation were arbitrarily chosen among a set of plausible values based on the subject-
matter literature and a preliminary evaluation of the actual dataset to be described later.

Similarly, the same hyperparameter values M, = 8 and Ty, =4 were used for all
datasets to specify the degree of heterogeneity in conditional residual variances across
clusters for traits 1 and 2, respectively. In all cases, flat unbounded priors were specified on
e i=1,2|L
For the analysis of each of the 120 simulated datasets, the length of the MCMC chain

was 100,000 cycles after a burn-in period of 1,000 cycles. Convergence diagnostics was
monitored graphically and following Raftery and Lewis (1992). For all elements of vy,,

Ye> Yu»and 0',2,1, as well as for ;,7=1,2and for 7, and 7

Y., and 0',31, we assessed frequentist properties based on the equal-tailed 95% posterior

probability interval (PPI); i.e. the 2.5™ and 97.5™ percentiles of the corresponding posterior
density.
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We wished to validate the Deviance Information Criteria (DIC) (Spiegelhalter et al.,
2002) as a means to test for the importance of 2. Two competing models were evaluated:

a full model (M,) that included cluster-specific e-level regressions (i.e., a,%, > 0) and a null

model (M) that did not (i.e., O',Zn =0). The difference between the two corresponding DIC
values, respectively DIC; and DIC,, were used to draw conclusions on the importance of
0',%,. Smaller values of DIC are indicative of improved model fit, such that positive values
of (DIC - DIC;) would suggest M, to be the better fitting model and thus indicate evidence
of non-zero o . Generally, DIC differences exceeding 7 are believed to indicate a decisive
difference in model fit (Spiegelhalter et al., 2002).

For all 90 replicated datasets in which 0',31 > (0, values of (DICy - DIC,) were all
greater than +7, thereby always correctly selecting the full model. Moreover, as expected,

the value of (DICy - DIC)) increased with greater values of o2

-, and showed no pattern

between the different correlation architectures. Ranges of (DIC, - DIC,) values were [11,
98] for o2 =0.1; [522, 1378] for o= 1.0; and [4658, 14175] for o2 =10. For 29 of the

30 replicated datasets where (7,%1: 0, the absolute values of (DIC, - DIC;) were less than 7,

with the range being [-3.9, 5.1]. The remaining dataset had a DIC difference of 9, thereby
incorrectly choosing the full model, at least based on the rule of thumb provided by
Spiegelhalter et al. (2002). We then believe these results validate DIC and Spiegelhalter’s
rule as a reliable model choice criterion for a decision rule on (7,%, .

Posterior Inference on Random Regression Parameters: Table 1 presents the minimum and
maximum values for each of the 2.5™ and 97.5" percentiles of the posterior distribution for

Veis Vey» Vuy» Vuy» and 6,2,, across the 10 replicates for each of the 12 simulation

populations considered. Coverage probabilities for the e- and u-regression parameters
across the entire simulation study was near frequentist expectation as the replicate-specific
95% PPI included the true parameter value in 541 out of 570 cases (based on 120 replicated
datasets times 4 fixed effects parameters, namely Veys Vey> Vuy and Yuy 5 plus 90 cases on

2 - - 2
o, for datasets involving non-zero o7, ).

For each simulated population, posterior means (not shown) of 7, , 7, , 631 o Yy >

and y, , were evaluated for bias with respect to their true values using a one-sample non-

parametric Wilcoxon Rank Sum Test and a one-sample t-test assuming normality. Based on
a Type I error rate of 5% for each parameter, these tests did not support biased estimation of
posterior means for any regression parameters for any of the simulated populations (not
shown). As expected, posterior means of y, and y, , were more variable and their 95%
PPI were wider than for y, and y, , as there is typically greater uncertainty for inferences
on dispersion parameters characterizing random effects as opposed to those for residuals.

Furthermore, Table 1 illustrates that increasing values of 0',31 had a detrimental effect on the
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precision of inference on Ve and Ve, - Nevertheless, the correlation architecture, as
manifested by the three different combinations of values for y, , 7., .7, and y, , did not

seem to influence the width of the 95% PPI for any of those parameters.

4. APPLICATION TO DAIRY DATA
4.1. Data Description

The two traits of interest were milk yield (kg. x 100) adjusted to 305 day lactation
lengths and calving interval (days) defined as the interval from the first calving to second
calving in primiparous dairy cows. Data on 49,789 first-lactation cow records from 578
Michigan dairy herds from 2005 to 2007 were provided by the National Dairy Herd
Improvement Association (DHIA, Raleigh, NC). Random clusters were characterized by
1,408 herd-years or contemporary groups, being defined as the cluster of animals managed
within the same herd and year. All subsequent random effects modeling for this example is
based on this cluster definition.

Classical fixed effects (B1, B2 ) factors considered for both traits included the effects of
4 calving seasons (Winter: December to February; Spring: March to May; Summer: June to
August; and Fall: September to November) and 3 years (2005, 2006, 2007). Additionally for
B, (i.e., milk production), we considered the fixed effects of 3 levels of bovine somatotropin

(bST) supplementation: non-users (0% of the herd enrolled), intermediate users (>0-50% of
the herd enrolled), and committed users (>50% of the herd enrolled), as well as the fixed
effect of 2 different levels of milking frequency (2 times per day or 2X, versus 3 or more
times per day or 3'X). Both of these factors are only recorded at the herd level and reflect
potentially different herd management strategies

We used an ad-hoc approach (Bello et al., 2009) to select candidate sources of

systematic heterogeneity to model on the e-level and u-level relationships (i.e., y., v,)
between milk production and reproductive performance although we emphasize that the

chosen factors are not intended to represent a comprehensive list. We modeled (/)E-e)

(u)

function of the fixed effects (y,) of milking frequency in the herd whereas ¢ ' was

as a

modeled as a function of the fixed effects (y, ) of bST supplementation. To be consistent

with these specifications, the fixed effects specifications for the conditional variances were
mirrored accordingly. That is, the fixed effects for the conditional residual variances were
based on the herd milking frequency factor whereas the fixed effects for the conditional
random effects variances were based on level of bST supplementation. Furthermore, random
cluster effects were also modeled for e-level conditional variances. Results on modeling of
heterogeneous conditional residual variances and conditional random effects variances and
not shown herein due to space constraints. Prior densities for all remaining parameters were
specified as indicated previously for the simulation study. Also as with the simulation study,
two competing models were fitted to the data: a full model fitting herd-year as a random

cluster-specific source of e-level heterogeneity (m) with m ~ N(0, IO',%,) and a reduced

model ignoring this source of heterogeneity. For each of the two competing models we ran
one long MCMC chain (100,000 saved cycles after 1,000 cycles of burn-in), using the same
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convergence diagnostics as described in the simulation study. For each parameter of interest,
we describe the posterior density using posterior means, posterior standard deviations and
95% equal-tailed PPI. In addition, we report the effective sample size (ESS) as a measure of
the number of effectively independent samples amongst the 100,000 dependent samples
(Sorensen et al., 1995).

4.2. Modeling the relationship between milk production and reproduction in dairy
cows: Results
Model choice: The DIC for the full model was 36.2 units less than that for the reduced

model, implying that a,i or variation in cluster or herd-year effects on the e-level

relationship between 305-d milk yield and calving interval among first parity cows is
significant. Hence, we base all of our subsequent inference on a full model that includes a

mixed model specification for each subject-specific gog-e) .

Inferences on_residual (e) and random (u) regression coefficients: Posterior means,
posterior standard deviations, 95% PPI and effective number of independent samples for
MCMC inference on e-level (y,) and u-level (y,, ) regression parameters are summarized in

Table 2. The ESS indicated sufficient number of MCMC iterations although mixing for o-,i

appeared to be substantially hampered relative to the other parameters. It appears that, in
general, the e-level relationship between 305-d milk yield and projected calving interval
differed substantially in magnitude from the u-level relationship. The average e-level

n
relationship, based on the posterior mean of lZX(j(p") Y., was of 0.55 d longer projected

j=l1
calving interval per 100 kg increase in 305-d milk yield and appeared to be significantly
different from zero (95% PPI = [0.49, 0.62]). In contrast, the posterior mean of

q
legfl‘) 'y, 1indicated the average u-level relationship did not depart significantly from
9 k=1

zero (95% PPI = [-0.06, 0.37]). Hence cows with higher milk yields tended to have poorer
reproductive efficiency than cows with lower milk yields, but there was no strong evidence
that higher producing herds had better or worse reproductive performance than lower
producing herds.

At the e-level, the estimated relationship Y,y y = [1 0]7 . for cows in 3"X milking

herds between the two traits was 0.454+0.05 d/100kg compared to the estimate 0.66+0.04
d/100 kg for y,,yx =[1 1]y, for cows in 2X milking herds, with estimates based on

posterior means =+ posterior standard deviations. A 95% PPI on their difference
()/e 5y TV X) was [0.08, 0.33], thereby indicating a more favorable relationship between

305-d milk yield and calving interval for cows with more frequent milking. However, at the
u-level, the data did not support any evidence of bST usage influencing the relationship
between the two traits, as the 95% PPI of all pairwise differences between the three levels
overlapped with zero (results not shown). As also seen in the simulation study, uncertainty
in inference was greater for parameters determining the between-trait correlation for random
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(u) effects than that for residual (e) effects, as illustrated by the differences in width of the
95% PPI (Table 2).

Assuming that m is multivariate normal and that a,%l is equal to its posterior mean of

0.09, one might anticipate a range of + 2/0.09 = 1.2 d per 100 kg between the most extreme
herd-year effects, using the Empirical Rule (Ott and Longnecker, 2001). Therefore, centered
on an overall posterior mean of 0.55 d/100 kg as described earlier, we expect different
clusters to range from -0.05 to 1.15 d of calving interval for every 100 kg increase of 305-d
milk yield. Hence, it is possible for some herds to have no overall e-level relationship
between the two traits, whereas other herds may have highly unfavorable relationships.

5. DISCUSSION:

In this study, we present a hierarchical Bayesian extension to classical bivariate
mixed effects modeling that provides a general framework for investigating sources of
heterogeneity for residual or subject level (e) and random or cluster level (u) (co)variances
between two traits of interest. Using simulation, we validated the proposed hierarchical
Bayesian model which is based on a recently developed (co)variance matrix
reparameterization (Pourahmadi et al., 1999). We also validated the use of the DIC to
choose between models that differ by the specification of cluster-specific random effects on
the residual relationships between two traits. We then applied the model to a currently
critical dairy cattle management issue as it pertains to investigating the nature of the
covariance matrix architecture between milk production and reproductive fitness,
specifically how herd management and environmental covariates may influence the random
(i.e., herd) and residual (i.e., cow) level (co)variances.

The Cholesky-based reparameterization proposed by Pourahmadi (1999) alleviates
the concern for checking positive definiteness constraints and, based on desirable
orthogonality properties of the transformation (Pourahmadi, 2007), facilitates independent
hierarchical modeling for each of the resulting parameters. From a multivariate applications

(u)

standpoint, factors influencing gog-e) and ¢, 'may be of greatest interest because they

determine the subject and cluster specific relationships, respectively, between traits in an
unconstrained and easily interpretable manner. As previously noted by Pourahmadi (1999)
these two sets of parameters imply a temporal order among response variables, such that
inference on the constituent fixed effects (y. and 7,) and random effects (m) is also
inherently order-dependent. We believe the temporal argument holds for our application
based on the sequence of physiological events in a dairy cow. In a dairy production system,
cows are already milking at the time reproductive management is implemented (Ensminger,
1993), thus implying milk production to be a factor potentially influencing reproductive
performance. Conceptually, our model can be extended to ¢ > 2 traits for more standard
longitudinal data analysis applications as in Pourahmadi (1999); however, the number of
different linear model components will increase to 3¢ + #(¢-1) from the 8 different linear

models (i.e., on yyj, y2j,o'ezlj 52 o2 o2 (e)

(u) : e
sOey; Oy Ouuyyy o P , and ¢, ) considered within this

paper.
The results from our dairy cattle application were very intuitive. However, up until
this point, we knew of no formal method to infer upon factors systematically affecting the
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relationships between two traits, and, more specifically, how this relationship 1is
differentially driven by cluster-specific random versus residual effects and their component
covariate effects. Our application suggested that the antagonistic relationship (high milk
production associated with poorer reproductive performance) is primarily driven at the
residual or cow level, but that the degree of this relationship depended upon daily milking
frequency. Specifically, 3"X milking, compared to 2X milking, is a dairy management
practice that appears to be associated with less antagonism between the two traits. The

additional mixed model extension on modeling variability (0,2,,) in this relationship implied

further that the residual relationship between the two traits is significantly heterogeneous
across herds such that some herds may not have an antagonistic relationship between the
two traits. These results warrant further investigation of other management practices and
herd-related factors to unveil other potential sources of heterogeneity in the production-
reproduction relationship across herds. Herds with inferences unusually distal to zero for
their respective elements in m might be investigated retrospectively to explore any

potentially new important management and environmental factors that affect (pge). As our

analysis did not consider a comprehensive set of factors, our estimates of O',i are likely to be

somewhat inflated because of other potentially important covariates that were not modeled.
A more comprehensive analysis based on a larger dataset and simultaneous fitting of several
fixed effects is forthcoming in future animal science publications.

6. SUMMARY

Linear mixed effects modeling of (co)variances, and thus of relationships between
traits of interest are possible for both random and residual effects based on a recently
popularized covariance matrix decomposition. Hence, researchers should be able to further
fine-tune inference on the architecture of correlations between traits by modeling
(co)variances as functions of additional fixed and random effects. Using MCMC
techniques, we validate the proposed methodology with a simulation study and demonstrate
its applicability by addressing the question of heterogeneous relationships between milk
production and reproductive performance of dairy cows.
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8. APPENDIX: Full Conditional Densities
Write the data for the two traits on subject j as y = [yl i Y2 ]}' such that the entire data vector is

y:[yl‘ Yo' ¥z o Y, ’]‘. Furthermore, write fixed and random design matrices for the two traits
. . . (1) Xglj) 0 z;'" 0
specific to animal j, respectively as Xy’ = and Z; = 0 |57 =12,...n. Hence, the
: z.
0 x5 J
2j
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corresponding overall design matrices can be written as X(1)=[X1(1)' Xgl)' X(l) 'J' and
Z:[Zl' Z, . Z, ’]’ linking y to ﬁ=[|31 Bé] and u=[u'1 u'2]’, respectively. We also specify

n
var(e)=X, = @le where e=[e;' e,' e; e,']' and @ denotes the direct sum operator (Searle,
=

n
1982) such that it should be readily noted that X;' = ® R}'. We similarly define X

S = var(u) noting that
Pt

g

q
Z;,l can be readily determined by rearranging elements of @ G;] by animals within traits rather than by traits
k=1

within animals. It can then be noted using mixed model theory (Sorensen and Gianola, 2002) that the joint
FCD of 0= [B‘ u J' is multivariate Gaussian:

0~ N((W'ZZIW+29‘1)1 (W'E;‘y + 29_190),(W'2;1W+ Ty )7] j [A1]

for W=[X(l) Z], Z =diag(V1('3) Vz(ﬁ) Zg), and 0, =diag(B1 "By quxl')'. There are a number

of different alternative strategies for sampling from elements of 0, including single site or univariate Gibbs
updates (Wang et al., 1994) and block sampling strategies (GarciaCortes and Sorensen, 1996) that exploit the

-1
sparsity (i.e., high frequency of zero elements) in (W’EZIW + Ze_l) . Note then that draws of u, can then

simply be determined as u, —‘I—’(")ul whereas draws of ey can be determined as a vector with elements
e
{eZ’j _605 )el’j} .

Similar developments can be used to demonstrate that the FCD of [ Yo' m’] , s multivariate Gaussian except

that one makes the following substitutions in [Al]: ngz) X(22) ng)}’ [zl Z; .. zn]} for W,
ol

diag 2L for x,, diag(nge),Ia,i) for Xg, (ugf)' qul')' for 0, and a n x 1 vector with elements
4

o

{ Vo —x(zl)j "By -z; ‘(‘I’(u)ul +uy )} fory. Similarly, the FCD for vy, is also multivariate Gaussian making the

2
o-ezu »J

for T,, V;”)for

following substitution for terms in [Al]: [x@ x(23) XS?)}' for W, diag 3

1

Zjul

Xy, and {yzj - x(zl)j "Br—z; "y - gpge)elj} fory. The FCD for O',Z,I can be readily demonstrated to be inverse

. 1
gamma with parameters %+ a,, and Em'm + B

Conditional Variances: The FCD for parameters affecting the e-level and u-level variances was implemented
as previously described (Cardoso et al., 2005; Kizilkaya and Tempelman, 2005).
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Table 2. Posterior mean (PMEAN), posterior standard deviation (PSD), 95% posterior probability intervals (PPI) reported

as [2.5™, 97.5™ posterior percentiles, and effective sample size (ESS) on residual (e) level (namely, Y. and O',%,) and

random (u) level (namely, 7, ) regression parameters between milk yield at 305 days-in-lactation and calving interval in

Michigan first lactation dairy cows.

Regression parameters ¥ PMEAN PSD PPI ESS
Yu,0%bst » /100 kg 0.16* 0.17 [-0.17, 0.49] 28 549
Yu>0-50%bst » 4/100 kg 0.17% 0.20 [-0.22, 0.56] 28 959
Yu>50%bsT » 4/100 kg 0.15% 0.19 [-0.22, 0.51] 28 409
Yeox » /100 kg 0.66° 0.04 [0.57, 0.74] 79 573
Yozt x » 4/100 kg 0.45° 0.05 [0.36, 0.54] 61 687
o2 (d/100 kg)* 0.09 0.03 [0.04,0.16] 612

(*) and (*) Letters indicate significant differences (two-tailed Bayesian P-value < 0.05) between management practices

within the u-level and e-level regression parameters, respectively,

T Vuowest =[1 1 0]%ys Zuso-sowesr =[1 0 1]v, and 7, sosps7 =[1 O 0]y, are the random (u) level

regression parameters between milk yield at 305 days-in-lactation and calving interval for herds that had 0%, >0 to 50%
and >50% of their cows enrolled for supplementation with bovine somatotropin (bST), respectively.

Veox = [1 l]ye and Vostx = [1 0]'\{6 are the residual (e) level regression parameters between milk yield at 305

days-in-lactation and calving interval for cows in herds with twice a day and three times a day (or greater) milking

frequency, respectively.

0',2,, is the parameter defining random between-herd heterogeneity among the e-level regression parameters.
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