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ABSTRACT 

Two of the most important broad classifications of phenotypes for successful dairy 

production are milk yield and fertility. The nature of the relationship between milk 

production and reproductive performance of dairy cows is uncertain due to conflicting 

results reported in many studies. A common deficiency in many such studies is an 

underappreciation of the dual dimension of the production-reproduction relationship, as 

defined by herd (random or u) level and cow (residual or e) level sources of (co)variation. 

Our overall hypothesis is that the e- and u- level relationships between milk production and 

reproduction in dairy cows are heterogeneous and depend upon various herd-related and 

management factors. Our objective is to develop hierarchical Bayesian extensions that 

capture heterogeneity in the relationships between traits by mixed effects modeling of u 

level and e level covariances between traits of interest. We specify a bivariate Bayesian 

model to jointly model two continuous traits and we apply a square-root free Cholesky 

decomposition to the variance-covariance matrices of the residuals (cow-level) and random 

effects (herd-level). As a result, the e- and u-level covariances among the traits are 

reparameterized into unconstrained and easily interpretable e- and u- regression parameters, 

respectively. These regression parameters specify the cow- and herd-level relationships, 

respectively, between the traits and can be easily modeled as functions of relevant fixed and 

random effects, thereby providing a mixed model extension of Pourahmadi’s method. We 

validate our method using a simulation study and apply it to data on 305-day milk yield and 

calving interval of Michigan dairy cows.   

KEYWORDS:  dairy cow, milk production, reproduction, cow- and herd-level 

relationships, bivariate Bayesian modeling, Cholesky decomposition.  

 

1. I�TRODUCTIO� 

Multivariate mixed effects models have been routinely used to investigate the 

architecture of relationships between two or more traits at several different levels, 

specifically (co)variance matrices for different sets of random (u) effects and residual (e) 

effects.  We are specifically interested in the joint modeling of milk production and 

reproductive efficiency of dairy cows. These two classes of phenotypes help define the 

necessary foundation for a successful dairy business.  Although antagonistic correlations 

(e.g., higher milk production leading to poorer fertility) have been generally reported, there 

are enough discrepancies across studies to suggest the need for modeling (co)variances as 

functions of covariates that characterize dairy management effects or herd environments 

(Laben et al., 1982; Lopez-Gatius et al., 2006; Lucy, 2001; Washburn et al., 2002).  We 

consider the relationship between two representative traits using u-level (co)variances 

between clusters, e.g., herds, and e-level (co)variances between measurement units, e.g., 
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cows within herds, hypothesizing that u-level and e-level (co)variance matrices are 

heterogeneous and depend upon systematic factors.   

Explicit structural modeling of covariance matrices as functions of covariates 

requires care because of necessary positive semi-definite constraints. To facilitate this issue 

at the e-level, Pourahmadi (1999) proposed a square root free Cholesky reparameterization 

of the (co)variance matrix for time ordered responses (e.g., longitudinal data) such that 

(co)variances are reparameterized as generalized autoregressive parameters (GARP) and 

innovation variances, as labeled by Pourahmadi (1999).  We further extend this work by 

modeling sources of heterogeneity on these parameters at both the u-level and e-level, 

recognizing that (co)variance matrices between observed phenotypes (i.e., at the y-level) on 

two or more traits could be separately affected by each of the two components. We also 

propose that the e-level GARP be modeled not only as functions of systematic (i.e., fixed) 

effects, but also of exchangeable cluster-specific random effects that can be characterized by 

a distribution.  This mixed model specification of reparameterized covariance components 

should facilitate efficient shrinkage estimation for clusters, e.g. herds, characterized by many 

levels, each with a relatively limited number of measurement units or subjects, e.g., cows.  

The objectives of our study are 1) to develop a hierarchical Bayesian extension to 

classical bivariate mixed effects modeling of residual (e) and random (u) covariance 

matrices for the joint analysis of two phenotypes, 2)  to further validate the properties of our 

method implemented using Markov Chain Monte Carlo (MCMC) based on a simulation 

study, and 3) to apply our method by jointly modeling heterogeneity in the u-level and e-

level covariances between milk production and reproduction of first-lactation dairy cows in 

Michigan. We strive to choose prior density specifications that are conditionally conjugate 

(Gelman, 2006) in order to expedite Gibbs sampling steps in our MCMC algorithm (Gelfand 

and Smith, 1990)   

 

2. METHODS 

2.1. Hierarchical Bayesian Model Construction  

The conventional linear mixed model.  We start with the conventional bivariate linear mixed 

model 

( )1
' 'x β z uij i j i ijijy e= + +       (1) 

where yij is the observation for trait i (i=1, 2) on subject j (j=1,…,n), βi  is a ( )1
ip x 1 vector 

of unknown fixed location parameters for factors (e.g., parity, year, calving season, etc.) 

unique to trait i; ui is a q x 1 vector of unknown classical random effects (e.g., herd or 

contemporary group, etc.) unique to trait i and eij is the corresponding residual.  Also, 
( )1

xij  

and 'z j are known incidence row vectors for subject j.   For pedagogical reasons, we assume 

the same single random effects factor of clusters, e.g. herds, is common to both traits and for 

all subsequent random effects modeling presented thereafter.   

From a Bayesian perspective, the elements of βi  are typically considered to be 

classical fixed effects (Sorensen and Gianola, 2002) whose elements would not be 

considered to be exchangeable random variables.  Hence, we might specify subjective 

multivariate normal prior densities on fixed location parameters for each trait: 
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( ) ( )( )| , ~ ,
0 0β β

β β V Vβi i i i i, , with hyperparameters βi  and 
( )β

Vi  being specified as known.  

Bounded uniform priors are also commonly considered (Sorensen and Gianola, 2002) as, 

typically, enough data is available to infer upon elements of βi  with any reasonable 

noninformative prior distribution in large field studies (Gelman, 2006).   

Denote . 1, 2, 'u k k ku u=     where ,i ku denotes element k of ui and is the random effect 

of cluster k (1≤k≤q) for trait i.  We specify independent structural bivariate normal prior 

densities on each u.k with E(u.k) = 0 and var(u.k) = Gk such that: 

1 12

12 2

2
, ,

2
, ,

G
u k u k

k

u k u k

σ σ

σ σ

 
 =
 
 

.      (2) 

Independent bivariate normal densities are assumed for each subject-specific pair of 

residuals . 1, 2, 'e j j je e=     on the two traits with ( ).E e 0j =  and ( ).var e Rj j= where 

1 12

12 2

2
, ,

2
, ,

R
e j e j

j

e j e j

σ σ

σ σ

 
 =
 
 

.       (3) 

Note that Rj specifies a within-subject covariance structure between traits at the residual (e) 

level but conditional independence is assumed between subjects. 

 

Reparameterization of variance-covariance matrices. We implement a square-root-free 

Cholesky decomposition (Pourahmadi, 1999) to diagonalize each Rj and Gk (co)variance 

matrix.  For the pair of residuals on subject j, this decomposition is based on the following 

relationship: 

( )
( )1,1, 1,

2, 1, 2|1,1, 2|1,

0
e

jj je
j je

j j jj jj

ee e

e e ee e
ϕ

ϕ

      
= = = +      

+       
.  (4) 

Here 
( )e
jϕ represents the subject-specific e-level regression coefficient of 2, je  on 

1, je , such that 2|1, je  is the conditional residual of subject j for trait 2 given trait 1. 

Furthermore, 2|1, je  is independent of 1, je  with ( )2|1,

2
2|1, ~ 0,

jj ee , σ .  Hence, we rewrite Rj in 

Equation (2) as: 

( )

( ) ( )( )
1 1

1 2|1 1

2 2
, ,

2
2 2 2

, , ,

R

e
e j e jj

j
e e

e j e j e jj j

σ ϕ σ

ϕ σ σ ϕ σ

 
 

=  
+ 

 

.    (5) 

Similarly, we specify the following relationship for the pair of random effects on 

cluster k: 

( )
( )1, 1,1,

.
2|1,2, 1,1, 2|1,

0
u

k kk u
k ku

kk kk kk

u uu

uu uu u
ϕ

ϕ

      
= = = +      

+       
.  (6) 
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Here 
( )u

kϕ represents the cluster-specific u-level regression coefficient of 2,ku  on 

1,ku , such that 2|1,ku  is the conditional random effect on trait 2 given trait 1 corresponding to 

cluster k, and is independent of 1,ku with ( )2|1,

2
2|1, ~ 0,

kk uu , σ .  Hence, we rewrite Gk in 

Equation (3) as: 

( )

( ) ( )( )
1 1

1 2|1 1

2 2
, ,

2
2 2 2

, , ,

G

u
u k u kk

k
u u

u k u k u kk k

σ ϕ σ

ϕ σ σ ϕ σ

 
 

=  
+ 

 

.    (7) 

Using the conventions established by Pourahmadi (1999) and Daniels and 

Pourahmadi (2002), 
2|1,

2

kuσ and 
2|1,

2

jeσ  might be referred to as the random effect and residual 

innovation variances on trait i=2 specific to cluster k and subject j, respectively.  However, 

we prefer to use the term conditional variances rather than innovation variances for reasons 

that are hopefully obvious from Equations (5) and (7). With these reparameterizations, 

Equation (1) does not change for trait i = 1 since it is specified as the first trait, and hence its 

random or residual effects are not conditioned upon those of any other trait.  However, for 

trait i = 2, Equation (1) would be rewritten as:  

( ) ( )( ) ( )1
2 2 1 2|1 1, 2|1,2, ' 'x β z Ψ u u

u e
j j j jjjy e eϕ= + + + + .   (8) 

where { }2|1 2|1, 1
u

q

k k
u

=
= is a q x 1 vector of random effects on trait 2 conditional on trait 1 and 

( )
Ψ

u
 is a diagonal matrix with diagonal elements ( ) ( ) ( ) ( )

1 2 'φ
u u u u

qϕ ϕ ϕ =  … .  It should 

then be apparent that 
( ) 12

1

,

2
,

u ku

k
u k

σ
ϕ

σ
=  and 

( ) 12

1

,

2
,

e je
j

e j

σ
ϕ

σ
= .  That is, 

( )u

kϕ can be interpreted as the 

conditional change in ( )2,k ju , and hence in 2, jy , for every unit change in ( )1,k ju where  k(j) 

defines the cluster k associated with subject j.  Similarly, 
( )e
jϕ can be interpreted as the 

conditional change in 2, je , and hence in 2, jy , for every unit change in 1, je .  Hence, we refer 

to parameters 
( )u

kϕ  and 
( )e
jϕ as the u-level and e-level regression coefficients, respectively, 

for our two trait application, rather than as GARP as in Pourahmadi (1999).  Note that Rj 

and Gk are guaranteed to be positive definite for any respective values of 
( )e
jϕ  and 

( )u

kϕ  

(Pourahmadi, 1999), thereby facilitating their specification as a linear function of covariates 

and/or random effects 

Heterogeneous (co)variance modeling. We specify a linear mixed effects model on each 

subject-specific 
( )e
jϕ : 

( ) ( )2
' 'x γ z m

e
e jj jϕ = + .       (9) 
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Here, γe  represents a 
( )2

p  x 1 vector of unknown fixed effects whereas m represents 

a q x 1 vector of unknown cluster-specific random effects as before but such that 

( )2~ ,m 0 I m, σ . Furthermore, 
( )2

'x j  is a known row incidence vector.  Note that the effects 

considered in γe  do not necessarily need to mirror those considered for location parameters 

βi ; that is, it is not necessary that 
( )2

'x j =
( )1

'xij  for either i =1 or i = 2. 

We similarly specify a linear model on each cluster-specific 
( )u

kϕ : 

( ) ( )3
'x γ

u
uk kϕ =         (10) 

where γu  represents a 
( )3

p x 1 vector of unknown fixed effects with 
( )3

'xk  being the 

associated known row incidence vector. 

We also accommodate heterogeneity of conditional variances at the e-level, namely 

1,

2

jeσ and 
2|1,

2

jeσ  , and at the u-level, namely 
1,

2

juσ and 
2|1,

2

juσ , following methodology 

previously described by Cardoso et al. (2005) and Kizilkaya and Tempelman (2005).  

Remaining prior density specifications:  In all remaining specifications, we treat all 

hyperparameters as known, striving to choose priors that are conditionally conjugate to 

facilitate Gibbs sampling.  First we adopt subjectively-specified normal prior densities on 

the fixed effects influencing heterogeneity of the e-level and u-level regression coefficients, 

i.e., ( )( ) ( )~ ,e e
e , γ γγ µ V , ( )( ) ( )~ ,u u

u , γ γγ µ V , although again bounded uniform priors could 

be specified as well. We further specify an inverse gamma prior distribution IG(αm, βm) on 
2
mσ . Prior specification of parameters that characterize conditional heteroskedasticity 

defined at the e-level and u-level was as previously described by Cardoso et al. (2005) and 

Kizilkaya and Tempelman (2005).    

2.2. Inference 

We base our inference for the proposed hierarchical Bayesian model using MCMC. 

The joint posterior distribution of all unknowns as well as the FCD for these unknowns are 

derived and presented in the Appendix.  It is further important to note that identifiability 

constraints are required on all fixed effects parameters, namely 1β , 2β , eγγγγ , uγγγγ , 
1e

ττττ ,
2|1eττττ ,

1uττττ , 

and 
2|1uττττ , in order to remove hypersensitivity to prior specifications.  We thereby 

recommend and adapt the corner parameterization (Clayton, 1996; Kizilkaya and 

Tempelman, 2005), also known as set-to-zero restriction (Milliken and Johnson, 2009), 

whereby an overall intercept is always specified and the effect corresponding to one 

arbitrarily chose level of each fixed effects factor is “zeroed out” or removed.   

 

3. SIMULATIO� STUDY 

We validate our proposed model using a simulation study for which our focus was inference 

on γe , γu , and 2
mσ . Two correlated response variables were simulated to mimic milk yield 

and calving interval for approximately 50,000 subjects (e.g., cows) distributed across 200 

clusters (e.g., herds) within each replicated dataset. The number of subjects per cluster was 
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drawn from a gamma distribution based on the mean and variance of herd sizes observed 

from an actual dataset to be described later. The size of the simulated dataset was chosen to 

mirror that of the actual dataset (see later) and to allow for powerful inference across the 

highly hierarchical structure of the model. We considered three different broad scenarios or 

correlation architectures between traits that might be plausible for a number of disparate 

applications.  These 3 scenarios differed in terms of general sign of the e-level and u-level 

regression coefficients, namely: A) same sign: positive u-level and e-level coefficients; B) 

opposite sign: negative u-level and positive e-level coefficients; C) zero correlation: zero u-

level and e-level coefficients. We also considered 4 different values for the variance 

component 2
mσ : I) 2

mσ = 0; II) 2
mσ = 0.1; III) 2

mσ  = 1; and IV) 2
mσ = 10.  Ten replicate 

datasets were simulated for each of the 12 possible populations as defined by the factorial of 

3 different correlation architectures with 4 different values of 2
mσ .  The same two levels of a 

single fixed effects factor were considered, where applicable, for all location parameters, 

conditional residual and random effects variance components, and e-level and u-level 

regression coefficients.  In other words, the corresponding incidence row vectors for all 

fixed effects terms were identical such that all covariates were cluster-specific; i.e., 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )
( )

( )1 1 2 3 4 4 5 5

1 2 1 2 1, 2,
' ' ' ' ' ' ' 'x x x x x x x xjj j j jk j k j k j
= = = = = = = , with the first element set equal 

to 1 to specify an intercept and the second element being a Bernoulli (0,1) random draw with 

probability of 0.25 to partially mimic an unbalanced design structure as based on a corner 

parameterization.  We used arbitrary 2 x 1 specifications for 
1 2

'γe e eγ γ =    and 

1 2
'γu u uγ γ =    from Equations (9) and (10) to create the intended correlation architectures 

such that γ γ 0e u= =  in scenario C; these specifications are provided in Table 1.  We also 

set [ ]
1 1 1,1 ,2 176 220 'τe e eτ τ = =   and [ ]

2|1 2|1 2|1,1 ,2 9,100 13,000 'τe e eτ τ = =
 

 per 

Equation (11) and [ ]
1 1 1,1 ,2 150 100 'τu u uτ τ = =   and [ ]

2|1 2|1 2|1,1 ,2 900 600 'τu u uτ τ = =
 

 

per Equation (13) for all simulated datasets.  The values for 
1 12|1
, ,τ τ τue e and 

2|1
τu  used in 

the simulation were arbitrarily chosen among a set of plausible values based on the subject-

matter literature and a preliminary evaluation of the actual dataset to be described later. 

Similarly, the same hyperparameter values 
1

8eη =  and 
2|1

4eη =  were used for all 

datasets to specify the degree of heterogeneity in conditional residual variances across 

clusters for traits 1 and 2, respectively.   In all cases, flat unbounded priors were specified on 

γe , γu , and 2
mσ , as well as for βi , i = 1, 2 and for τ

iu  and τ
ie , i = 1, 2|1.  

For the analysis of each of the 120 simulated datasets, the length of the MCMC chain 

was 100,000 cycles after a burn-in period of 1,000 cycles. Convergence diagnostics was 

monitored graphically and following Raftery and Lewis (1992).  For all elements of γe , 

γu , and 2
mσ , we assessed frequentist properties based on the equal-tailed 95% posterior 

probability interval (PPI); i.e. the 2.5
th

 and 97.5
th

 percentiles of the corresponding posterior 

density. 
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We wished to validate the Deviance Information Criteria (DIC) (Spiegelhalter et al., 

2002) as a means to test for the importance of 2
mσ .  Two competing models were evaluated: 

a full model (M1) that included cluster-specific e-level regressions (i.e., 2
mσ  > 0) and a null 

model (M0) that did not (i.e., 2
mσ  = 0).  The difference between the two corresponding DIC 

values, respectively DIC1 and DIC0, were used to draw conclusions on the importance of 
2
mσ . Smaller values of DIC are indicative of improved model fit, such that positive values 

of (DIC0 - DIC1) would suggest M1 to be the better fitting model and thus indicate evidence 

of non-zero 2
mσ . Generally, DIC differences exceeding 7 are believed to indicate a decisive 

difference in model fit (Spiegelhalter et al., 2002).  

For all 90 replicated datasets in which 2
mσ  > 0, values of (DIC0 - DIC1) were all 

greater than +7, thereby always correctly selecting the full model. Moreover, as expected, 

the value of (DIC0 - DIC1) increased with greater values of 2
mσ  and showed no pattern 

between the different correlation architectures.  Ranges of (DIC0 - DIC1) values were [11, 

98] for 2
mσ = 0.1; [522, 1378] for 2

mσ = 1.0; and [4658, 14175] for 2
mσ  =10.   For 29 of the 

30 replicated datasets where 2
mσ = 0, the absolute values of (DIC0 - DIC1) were less than 7, 

with the range being [-3.9, 5.1].   The remaining dataset had a DIC difference of 9, thereby 

incorrectly choosing the full model, at least based on the rule of thumb provided by 

Spiegelhalter et al. (2002).  We then believe these results validate DIC and Spiegelhalter’s 

rule as a reliable model choice criterion for a decision rule on 2
mσ . 

Posterior Inference on Random Regression Parameters: Table 1 presents the minimum and 

maximum values for each of the 2.5
th

 and 97.5
th

 percentiles of the posterior distribution for 

1e
γ , 

2eγ , 
1uγ , 

2uγ , and 2
mσ  across the 10 replicates for each of the 12 simulation 

populations considered.  Coverage probabilities for the e- and u-regression parameters 

across the entire simulation study was near frequentist expectation as the replicate-specific 

95% PPI included the true parameter value in 541 out of 570 cases (based on 120 replicated 

datasets times 4 fixed effects parameters, namely 
1e

γ , 
2eγ , 

1uγ , and 
2uγ ; plus 90 cases on 

2
mσ  for datasets involving non-zero 2

mσ ).   

For each simulated population, posterior means (not shown) of 
1e

γ , 
2eγ , 2

mσ , 
1uγ , 

and 
2uγ , were evaluated for bias with respect to their true values using a one-sample non-

parametric Wilcoxon Rank Sum Test and a one-sample t-test assuming normality. Based on 

a Type I error rate of 5% for each parameter, these tests did not support biased estimation of 

posterior means for any regression parameters for any of the simulated populations (not 

shown). As expected, posterior means of 
1uγ  and 

2uγ , were more variable and their 95% 

PPI were wider than for 
1e

γ  and 
2eγ , as there is typically greater uncertainty for inferences 

on dispersion parameters characterizing random effects as opposed to those for residuals. 

Furthermore, Table 1 illustrates that increasing values of 2
mσ  had a detrimental effect on the 
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precision of inference on 
1e

γ  and 
2eγ . Nevertheless, the correlation architecture, as 

manifested by the three different combinations of values for 
1e

γ , 
2eγ ,

1uγ  and 
2uγ , did not 

seem to influence the width of the 95% PPI for any of those parameters. 

 

4. APPLICATIO� TO DAIRY DATA  

4.1. Data Description 

The two traits of interest were milk yield (kg. x 100) adjusted to 305 day lactation 

lengths and calving interval (days) defined as the interval from the first calving to second 

calving in primiparous dairy cows.  Data on 49,789 first-lactation cow records from 578 

Michigan dairy herds from 2005 to 2007 were provided by the National Dairy Herd 

Improvement Association (DHIA, Raleigh, NC). Random clusters were characterized by 

1,408 herd-years or contemporary groups, being defined as the cluster of animals managed 

within the same herd and year.  All subsequent random effects modeling for this example is 

based on this cluster definition.  

Classical fixed effects (ββββ1111, ββββ2 2 2 2 ) factors considered for both traits included the effects of 

4 calving seasons (Winter: December to February; Spring: March to May; Summer: June to 

August; and Fall: September to November) and 3 years (2005, 2006, 2007). Additionally for 

1β (i.e., milk production), we considered the fixed effects of 3 levels of bovine somatotropin 

(bST) supplementation:  non-users (0% of the herd enrolled), intermediate users (>0-50% of 

the herd enrolled), and committed users (≥50% of the herd enrolled), as well as the fixed 

effect of 2 different levels of milking frequency (2 times per day or 2X, versus 3 or more 

times per day or 3
+
X).  Both of these factors are only recorded at the herd level and reflect 

potentially different herd management strategies 

We used an ad-hoc approach (Bello et al., 2009) to select candidate sources of 

systematic heterogeneity to model on the e-level and u-level relationships (i.e., γe , γu ) 

between milk production and reproductive performance although we emphasize that the 

chosen factors are not intended to represent a comprehensive list. We modeled 
( )e
jϕ as a 

function of the fixed effects ( γe ) of milking frequency in the herd whereas 
( )u

kϕ was 

modeled as a function of the fixed effects ( γu ) of bST supplementation. To be consistent 

with these specifications, the fixed effects specifications for the conditional variances were 

mirrored accordingly.  That is, the fixed effects for the conditional residual variances were 

based on the herd milking frequency factor whereas the fixed effects for the conditional 

random effects variances were based on level of bST supplementation. Furthermore, random 

cluster effects were also modeled for e-level conditional variances. Results on modeling of 

heterogeneous conditional residual variances and conditional random effects variances and 

not shown herein due to space constraints. Prior densities for all remaining parameters were 

specified as indicated previously for the simulation study. Also as with the simulation study, 

two competing models were fitted to the data: a full model fitting herd-year as a random 

cluster-specific source of e-level heterogeneity (m) with m ~ ,(0, I
2
mσ ) and a reduced 

model ignoring this source of heterogeneity.  For each of the two competing models we ran 

one long MCMC chain (100,000 saved cycles after 1,000 cycles of burn-in), using the same 
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convergence diagnostics as described in the simulation study. For each parameter of interest, 

we describe the posterior density using posterior means, posterior standard deviations and 

95% equal-tailed PPI. In addition, we report the effective sample size (ESS) as a measure of 

the number of effectively independent samples amongst the 100,000 dependent samples 

(Sorensen et al., 1995). 

 

4.2. Modeling the relationship between milk production and reproduction in dairy 

cows: Results 

Model choice: The DIC for the full model was 36.2 units less than that for the reduced 

model, implying that 2
mσ  or variation in cluster or herd-year effects on the e-level 

relationship between 305-d milk yield and calving interval among first parity cows is 

significant.  Hence, we base all of our subsequent inference on a full model that includes a 

mixed model specification for each subject-specific 
( )e
jϕ . 

Inferences on residual (e) and random (u) regression coefficients: Posterior means, 

posterior standard deviations, 95% PPI and effective number of independent samples for 

MCMC inference on e-level ( eγ ) and u-level ( uγ ) regression parameters are summarized in 

Table 2. The ESS indicated sufficient number of MCMC iterations although mixing for 2
mσ  

appeared to be substantially hampered relative to the other parameters. It appears that, in 

general, the e-level relationship between 305-d milk yield and projected calving interval 

differed substantially in magnitude from the u-level relationship. The average e-level 

relationship, based on the posterior mean of 
( )

1

1
'e

n

ej

j
n

ϕ

=
∑x γ , was of 0.55 d longer projected 

calving interval per 100 kg increase in 305-d milk yield and appeared to be significantly 

different from zero (95% PPI = [0.49, 0.62]). In contrast, the posterior mean of 

( )

1

1
'u

q

uk
k

q

ϕ

=
∑ x γ  indicated the average u-level relationship did not depart significantly from 

zero (95% PPI = [-0.06, 0.37]).  Hence cows with higher milk yields tended to have poorer 

reproductive efficiency than cows with lower milk yields, but there was no strong evidence 

that higher producing herds had better or worse reproductive performance than lower 

producing herds. 

 At the e-level, the estimated relationship [ ]
,3

1 0 γee X
γ + =  for cows in 3

+
X milking 

herds between the two traits was 0.45±0.05 d/100kg compared to the estimate 0.66±0.04 

d/100 kg for [ ],2 1 1 γe X eγ =  for cows in 2X milking herds, with estimates based on 

posterior means ± posterior standard deviations. A 95% PPI on their difference 

(
,2 ,3e X e X

γ γ +− ) was [0.08, 0.33], thereby indicating a more favorable relationship between 

305-d milk yield and calving interval for cows with more frequent milking.  However, at the 

u-level, the data did not support any evidence of bST usage influencing the relationship 

between the two traits, as the 95% PPI of all pairwise differences between the three levels 

overlapped with zero (results not shown).  As also seen in the simulation study, uncertainty 

in inference was greater for parameters determining the between-trait correlation for random 
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(u) effects than that for residual (e) effects, as illustrated by the differences in width of the 

95% PPI (Table 2).  

 Assuming that m is multivariate normal and that 2
mσ  is equal to its posterior mean of 

0.09, one might anticipate a range of ± 2 09.0 = 1.2 d per 100 kg between the most extreme 

herd-year effects, using the Empirical Rule (Ott and Longnecker, 2001). Therefore, centered 

on an overall posterior mean of 0.55 d/100 kg as described earlier, we expect different 

clusters to range from -0.05 to 1.15 d of calving interval for every 100 kg increase of 305-d 

milk yield. Hence, it is possible for some herds to have no overall e-level relationship 

between the two traits, whereas other herds may have highly unfavorable relationships. 

 

5. DISCUSSIO�:   

In this study, we present a hierarchical Bayesian extension to classical bivariate 

mixed effects modeling that provides a general framework for investigating sources of 

heterogeneity for residual or subject level (e) and random or cluster level (u) (co)variances 

between two traits of interest. Using simulation, we validated the proposed hierarchical 

Bayesian model which is based on a recently developed (co)variance matrix 

reparameterization (Pourahmadi et al., 1999).  We also validated the use of the DIC to 

choose between models that differ by the specification of cluster-specific random effects on 

the residual relationships between two traits. We then applied the model to a currently 

critical dairy cattle management issue as it pertains to investigating the nature of the 

covariance matrix architecture between milk production and reproductive fitness, 

specifically how herd management and environmental covariates may influence the random 

(i.e., herd) and residual (i.e., cow) level (co)variances.   

The Cholesky-based reparameterization proposed by Pourahmadi (1999) alleviates 

the concern for checking positive definiteness constraints and, based on desirable 

orthogonality properties of the transformation (Pourahmadi, 2007), facilitates independent 

hierarchical modeling for each of the resulting parameters. From a multivariate applications 

standpoint, factors influencing 
( )e
jϕ  and 

( )u

kϕ may be of greatest interest because they 

determine the subject and cluster specific relationships, respectively, between traits in an 

unconstrained and easily interpretable manner. As previously noted by Pourahmadi (1999) 

these two sets of parameters imply a temporal order among response variables, such that 

inference on the constituent fixed effects (γγγγε and γγγγυ) and random effects (m) is also 

inherently order-dependent.  We believe the temporal argument holds for our application 

based on the sequence of physiological events in a dairy cow. In a dairy production system, 

cows are already milking at the time reproductive management is implemented (Ensminger, 

1993), thus implying milk production to be a factor potentially influencing reproductive 

performance. Conceptually, our model can be extended to t > 2 traits for more standard 

longitudinal data analysis applications as in Pourahmadi (1999); however, the number of 

different linear model components will increase to 3t + t(t-1) from the 8 different linear 

models (i.e., on  y1j,  y2j,
1,

2

jeσ ,
2|1,

2

jeσ
1,

2

kuσ ,
2|1,

2

kuσ , 
( )e
jϕ , and 

( )u

kϕ ) considered within this 

paper.    

The results from our dairy cattle application were very intuitive.  However, up until 

this point, we knew of no formal method to infer upon factors systematically affecting the 
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relationships between two traits, and, more specifically, how this relationship is 

differentially driven by cluster-specific random versus residual effects and their component 

covariate effects. Our application suggested that the antagonistic relationship (high milk 

production associated with poorer reproductive performance) is primarily driven at the 

residual or cow level, but that the degree of this relationship depended upon daily milking 

frequency.  Specifically, 3
+
X milking, compared to 2X milking, is a dairy management 

practice that appears to be associated with less antagonism between the two traits.  The 

additional mixed model extension on modeling variability ( 2
mσ ) in this relationship implied 

further that the residual relationship between the two traits is significantly heterogeneous 

across herds such that some herds may not have an antagonistic relationship between the 

two traits. These results warrant further investigation of other management practices and 

herd-related factors to unveil other potential sources of heterogeneity in the production-

reproduction relationship across herds.  Herds with inferences unusually distal to zero for 

their respective elements in m might be investigated retrospectively to explore any 

potentially new important management and environmental factors that affect 
( )e
jϕ .  As our 

analysis did not consider a comprehensive set of factors, our estimates of 2
mσ  are likely to be 

somewhat inflated because of other potentially important covariates that were not modeled.  

A more comprehensive analysis based on a larger dataset and simultaneous fitting of several 

fixed effects is forthcoming in future animal science publications.  

 

6. SUMMARY 

Linear mixed effects modeling of (co)variances, and thus of relationships between 

traits of interest are possible for both random and residual effects based on a recently 

popularized covariance matrix decomposition.  Hence, researchers should be able to further 

fine-tune inference on the architecture of correlations between traits by modeling 

(co)variances as functions of additional fixed and random effects.  Using MCMC 

techniques, we validate the proposed methodology with a simulation study and demonstrate 

its applicability by addressing the question of heterogeneous relationships between milk 

production and reproductive performance of dairy cows. 
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8. APPE�DIX: Full Conditional Densities 

Write the data for the two traits on subject j as 1 2 'y y yj j =    such that the entire data vector is 

[ ]1 2 3' ' ' ... ' 'y y y y yn= .  Furthermore, write fixed and random design matrices for the two traits 

specific to animal j, respectively as 
( )

( )

( )

1 '

11

1 '

2

x 0
X

0 x

j

j

j

 
 =  
  

  and 
'

'

z 0
Z

0 z

j
j

j

 
=  

 
; j = 1,2,…n.  Hence, the 
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corresponding overall design matrices can be written as 
( ) ( ) ( ) ( )

1 2

1 1 1 1
...' ' ' 'X X X X

n
=  

 
 and 

1 2
...' ' ' '

n
=   Z Z Z Z  linking y to 

' '
1 2 ' =  β β β  and 

' '
1 2 ' =  u u u , respectively.  We also specify 

( )
1

var e Σ R
n

e j
j=

= = ⊕  where [ ]1 2 3' ' ' ... ' 'e e e e en=  and ⊕  denotes the direct sum operator (Searle, 

1982) such that it should be readily noted that 1 1

1
Σ R

n

e j
j

− −

=
= ⊕ .  We similarly define ( )varΣ ug = noting that 

1
Σg

−
can be readily determined by rearranging elements of 

1

1
G

q

k
k

−

=
⊕  by animals within traits rather than by traits 

within animals.   It can then be noted using mixed model theory (Sorensen and Gianola, 2002) that the joint 

FCD of 
' '

' =  θ β u  is multivariate Gaussian:  

( ) ( ) ( )1 1
1 1 1 1 1 1

0~ ' ' , 'θ θ θθ W Σ W Σ W Σ y Σ θ W Σ W Σe e e,
− −− − − − − − 

+ + + 
 

     [A1] 

for (1)=  
 W X Z , ( )( ) ( )

1 2
β β

Σ V V Σgdiag=θθθθ , and ( )0 0
0 1 2 2 x1' ' 'qdiag=θ β β 0 ' .  There are a number 

of different alternative strategies for sampling from elements of θ , including single site or univariate Gibbs 

updates (Wang et al., 1994) and block sampling strategies (GarciaCortes and Sorensen, 1996) that exploit the 

sparsity (i.e., high frequency of zero elements) in ( ) 1
1 1

' θW Σ W Σe

−− −+ .   Note then that draws of 2|1u can then 

simply be determined as 
(((( ))))

2 1u u− Ψ− Ψ− Ψ− Ψ u
 whereas draws of 2|1e can be determined as a vector with elements 

(((( )))){{{{ }}}}1
e

2, j j , je e−−−− ϕ . 

 

Similar developments can be used to demonstrate that the FCD of [[[[ ]]]]'
' 'eγ m , is multivariate Gaussian except 

that one makes the following substitutions in [A1]: 
( ) ( ) ( )2 2 2

1 21 2 ... ' ... 'n n
    
      

x x x z z z  for W, 

2|1

2
,

2
1,

e j

j

diag
e

σ 
 
 
 

  for eΣ , 
( )( )2

,
e

mdiag σγV I  for Σθθθθ , ( )( )
x1' ' 'γµ 0

e
q  for 0θ , and a n x 1 vector with elements 

( ) ( )( ){ }1
2 2 1 2|12, ' 'x β z Ψ u +u

u
j jjy − −  for y.   Similarly, the FCD for uγγγγ is also multivariate Gaussian making the 

following substitution for terms in [A1]:  
( ) ( ) ( )3 3 3

1 2 ... 'n
 
  
x x x  for W, 

( )
2|1

2
,

2

1'z u

e j

j

diag
σ 

 
 
 
 

 for eΣ , 
( )

V
u

γγγγ for 

Σθθθθ , and 
( ) ( ){ }1

2 2 2|1 12, ' 'x β z u
e

j j jjjy eϕ− − −  for y.   The FCD for 2
mσ  can be readily demonstrated to be inverse 

gamma with parameters  
2

m

q
α+  and  

1
'

2
m m mβ+ .    

Conditional Variances: The FCD for parameters affecting the e-level and u-level variances was implemented 

as previously described (Cardoso et al., 2005; Kizilkaya and Tempelman, 2005).   
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Table 2. Posterior mean (PMEAN), posterior standard deviation (PSD), 95% posterior probability intervals (PPI) reported 

as [2.5th, 97.5th] posterior percentiles, and effective sample size (ESS) on residual (e) level (namely, eγ and 
2
mσ ) and 

random (u) level (namely, uγ ) regression parameters between milk yield at 305 days-in-lactation and calving interval in 

Michigan first lactation dairy cows.  

 

Regression parameters † PMEA� PSD PPI ESS 

,0%u bSTγ , d/100 kg 0.16 
x
 0.17 [-0.17, 0.49] 28 549 

, 0 50%u bSTγ > − , d/100 kg 0.17
 x
 0.20 [-0.22, 0.56] 28 959 

, 50%u bSTγ > , d/100 kg 0.15
 x
 0.19 [-0.22, 0.51] 28 409 

,2e Xγ , d/100 kg 0.66 
a
 0.04 [0.57, 0.74] 79 573 

,3e X
γ + , d/100 kg 0.45 

b
 0.05 [0.36, 0.54] 61 687 

2
mσ ,(d/100 kg)

2 0.09 0.03 [0.04,0.16] 612 

 
(x) and (a,b) Letters indicate significant differences (two-tailed Bayesian P-value < 0.05) between management practices 

within the u-level and e-level regression parameters, respectively, 

 

† [ ],0% 1 1 0u bST uγ = γ , [ ], 0 50% 1 0 1u bST uγ > − = γ  and [ ], 50% 1 0 0u bST uγ > = γ  are the random (u) level 

regression parameters between milk yield at 305 days-in-lactation and calving interval for herds that had 0%, >0 to 50% 

and >50% of their cows enrolled for supplementation with bovine somatotropin (bST), respectively.  

 

[ ],2 1 1e X eγ = γ  and [ ]
,3

1 0 γee X
γ + =  are the residual (e) level regression parameters between milk yield at 305 

days-in-lactation and calving interval for cows in herds with twice a day and three times a day (or greater) milking 

frequency, respectively.  

 

2
mσ is the parameter defining random between-herd heterogeneity among the e-level regression parameters. 
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