
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2008 - 20th Annual Conference Proceedings 

TESTING VARIANCE COMPONENTS BY TWO JACKKNIFE TESTING VARIANCE COMPONENTS BY TWO JACKKNIFE 

METHODS METHODS 

Jixiang Wu 

Johnie N. Jenkins 

Jack C. McCarty 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Wu, Jixiang; Jenkins, Johnie N.; and McCarty, Jack C. (2008). "TESTING VARIANCE COMPONENTS BY 
TWO JACKKNIFE METHODS," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/
2475-7772.1093 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kansas State University

https://core.ac.uk/display/267195772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2008
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2008%2Fproceedings%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2008%2Fproceedings%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2008%2Fproceedings%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1093
https://doi.org/10.4148/2475-7772.1093
mailto:cads@k-state.edu


Testing Variance Components by Two Jackknife Methods 

Jixiang Wu, Johnie N. Jenkins, and Jack C. McCarty 
J. Wu, Department of Plant and Soil Sciences, Mississippi State University, Mississippi 
State, MS 39762; , J.N. Jenkins and J. C. McCarty, USDA-ARS, Crop Science Research 
Lab, Mississippi State, MS 39762. 
 
Corresponding authors: 
Jixiang Wu 
Department of Plant and Soil Sciences 
Mississippi State University 
P.O. Box 5367 
Mississippi State, MS 39762 
Email: Jixiang.wu@ars.usda.gov 
Phone: 662-320-7425 
Fax:     662-320-7528 
Or Johnie N. Jenkins 
USDA, ARS, 810 Highway 12 East 
P.O. Box 5367 
Mississippi State, MS 39762, USA 
Email: johnie.jenkins@ars.usda.gov 
Phone: 662-320-7386 
Fax:     662-320-7528 
 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2008/proceedings/2



ABSTRACT 
  
 The jackknife method, a resampling technique, has been widely used for 
statistical tests for years. The pseudo value based jackknife method (defined as pseudo 
jackknife method) is commonly used to reduce the bias for an estimate; however, 
sometimes it could result in large variation for an estimate and thus reduce the power for 
parameters of interest. In this study, a non-pseudo value based jackknife method (defined 
as non-pseudo jackknife method) was used for testing variance components under mixed 
linear models. We compared this non-pseudo value based jackknife method and the 
pseudo value based method by simulation regarding their biases, Type I errors, and 
powers. Our simulated results showed that biases obtained by the two jackknife methods 
are very similar; however, the non-pseudo value based method had higher testing powers 
than the pseudo value based method while the non-pseudo value based method had lower 
Type I error rates than the preset nomial probability values. Thus, we concluded that the 
non-pseudo value based jackknife method is superior to the pseudo value based method 
for testing variance components under a general mixed linear model. 
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1. INTRODUCTION 
  
 In statistical applications involving the point estimation of an unknown parameter 
θ, one needs to estimate the accuracy of θ̂  as an estimator of θ by an appropriate 
statistical test. The variance, the bias, and the mean squared error are commonly used to 
describe the accuracy of an estimate. However, many statistical tests are based on the 
assumption that the data follow particular distributions (i.e. normal distribution, binomial 
distribution, etc.). On the other hand, statistical tests for some parameters can not be 
easily derived. For example, covariance, proportion, and the ranked correlation 
coefficient are difficult to be statistically tested by parametric methods. The jackknife 
(Quenouille, 1949, 1956; Tukey, 1958; Miller 1964, 1968; Gray et al., 1972; Gray and 
Schucany, 1972; Shao, 1988; Shao and Tu, 1995) and the bootstrap (Efron, 1979; 
Davison and Hinkley, 1997) are two extensively used resampling methods not only for 
bias reduction but also for the development of nonparametric statistical tests for various 
types of parameters. The jackknife technique was initially introduced by Quenouille 
(1949) as a method for bias reduction and was later proposed as a method for robust 
interval estimation by Tukey (1958). Miller (1974a) gave a detailed review for this 
technique and also proved that the jackknife estimates of regression parameters in a linear 
regression model were asymptotically normally distributed under conditions that were not 
normally distributed (Miller, 1974b).  
  
 Little information has been reported for testing variance components under a 
general linear model using the jackknife method. For simple mixed linear models with 
balanced data under the normal distribution, the F-test can be used for a ratio of functions 
of variance components based on expected mean squares. The X2 value can also be used 
to test the significance of a variance component for a complicated mixed linear model or 
an irregular data structure for large sample size (Searle et al., 1992). However, the power 
by the X2 test is relatively low (Zhu, 1998). Thus, the jackknife was first applied to 
calculate the standard error for each point estimator through removal of one genotype or 
one replication each time (Zhu, 1998). The resampling method used by Zhu was the 
pseudo jackknife method which utilizes the pseudo values to determine a point estimator 
(i.e. mean) and its corresponding standard error (Tukey, 1958; Quenouille, 1956; Miller, 
19974a, b). Then, an approximate t-test can be used to test the significance of a parameter 
(Miller, 1974a).  
 
 For a given sample size n with g subgroups, g pseudo values can be calculated 
accordingly (Miller, 1974b) and a pseudo jackknife estimate is obtained by averaging the 
g pseudo values. The number of pseudo value is called the number of jackknife times and 
is related to the number of subgroups g. For an experiment with replications or repeated 
plots, then g is the total number of replications or blocks, otherwise, it should be equal to 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

, where n is the total observations and r (1 ~ n-1) is the number of individual 

observations to be deleted at each time. It is easy to see that the number of jackknife 
times varies and can be very large when n is large. As we will show in Section 2, the 
pseudo values can be very sensitive and be out of reasonable ranges with increases in the 
number of jackknife times. For example, negative variances and out-of-range correlation 
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coefficients could be resulted. In addition, such sensitivity will definitely cause large 
variation for a pseudo value based estimate and low testing power accordingly. Thus, it 
will be helpful to develop a new resampling method which is reliable regardless of 
resampling time. 
 
 The objective of this study was to propose and evaluate a non-pseudo jackknife 
method by Monte Carlo simulation. The paper is organized as follows. In section 2 we 
briefly give an overview of the pseudo jackknife method and describe the non-pseudo 
jackknife method. In section 3, Monte Carlo simulation procedure for these two jackknife 
methods applied to two commonly used genetic models is described and the simulated 
results are reported. An actual example that included two cotton agronomic traits is 
analyzed by these two jackknife methods in Section 4. Some discussion and concluding 
points are presented in Section 5.  
 

2. A BRIEF OVERVIEW OF JACKKNIFE METHODS 
  
 Let θ̂  be an estimator of the parameter θ  based on the complete sample of size n 
with g subgroups. Let i−θ̂ be the corresponding estimator based on the sample at the ith 
deletion. Define  

ii gg −−−= θθθ ˆ)1(ˆ~     (i=1,…, g)                                                                                    (1) 
The ith deletion of the total could be one individual observation or several observations 
(Quenouolle, 1956; Miller, 1974a,b; Wu et al., 2006). The latter case is called group- or 
block-based jackknife if one replication or one block observations are deleted (Miller, 
1974b; Wu et al., 2006). In equation (1) estimation iθ

~ is called the ith pseudo value and 
the estimator in equation (2) is the jackknife estimator for the parameter θ , where θ  can 
be a variance component, covariance component, correlation coefficient, or any other 
parameter of interest.  

∑∑
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1 ˆ)1(ˆ~~ θθθθ                                                                                 (2) 

We call θ~ in equation (2) a pseudo jackknife estimate. Then a t-test can be used to test 
significant deviation from a given parameter value, 0θ  with the degrees of freedom g-1 
(Miller, 1974b). The equation (1) can be rewritten as follows,  

)ˆˆ)(1(ˆˆ)1(ˆ~
iii ggg −− −−+=−−= θθθθθθ   (i=1,….g)                                            (3) 

Thus, it is obvious that pseudo value iθ
~  in equation (3) is related to choices for g. When g 

is large, slight differences between θ̂  and i−θ̂  will cause unfavorable values. More 
importantly, it will potentially cause a large standard error for an estimate and thus 
decrease the power for the parameter being tested.  
 
 If we assume that the estimate i−θ̂  in equation (1) for the ith deletion is unbiased, 

then it is easy to prove that −θ̂  in equation (4) is unbiased too. It is often true if θ̂  is an 
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unbiased estimate of θ , then i−θ̂ will be unbiased after a few individuals in the original 
data are deleted. 

g

g

i i∑= −
− =

1
ˆ

ˆ θ
θ                      (4) 

We call −θ̂  in equation (4) a non-pseudo jackknife estimate of the parameter θ . For each 

non-normally distributed variable, based on the Central Limit Theorem, −θ̂  is 
approximately normally distributed when g is large (Wackerly et al., 1996). Thus, an 
approximate z-test can be used when g is large or t-test can be used to test significant 
deviation from a given parameter value, 0θ ,  with the degrees of freedom g-1 (Daniel, 
1995). 
 Considering the fact that the estimates i−θ̂  for the ith deletion are related to each 
other, a large Type I error can result. So it is necessary to adjust the Type I error as 
follows. Denote α  to be a nominal value to be used for testing the significance of the 
parameterθ . Under a null hypothesis H0: 0θθ = , if the null hypothesis is rejected, then 
we will make a Type I error. Under an alternative hypothesis H1: 0θθ ≠ , if we accept the 
null hypothesis, then we will make a Type II error. A high type I error indicates a null 
hypothesis is likely to be falsely rejected, while a high Type II error indicates a low 
power when an alternative hypothesis holds. 
 
 The probability for θ  being falsely rejected under a null hypothesis (Type I error 
is approximately as indicated in equation (5). 

gραα )1(1* −−=              (5) 
where, ρ  in equation (5) is data similarity between any two deletion sets,  g is the 
resampling times, α  is the Type I error for each test, and α * is the Type I error caused 
by the non-pseudo jackknife method. To achieve 0* αα =  ( 0α  can be 0.05, 0.01, or 
0.001), then equation (6) can be used to control the Type I error. 

)/(1
0 )1(1 gραα −−=          (6) 

For example, an original data set includes R replications, each time we remove one 
replication from the original data set, it is easy to derive that g is equal to R and ρ  is 
equal to R

21−  ( 3≥R ). 
 
 So far, we have described two types of jackknife methods: pseudo and non-
pseudo methods. These two methods will be evaluated by the simulation data and real 
data using a mixed linear model approach. However, our emphasis is to use Monte Carlo 
simulation to compare these two jackknife methods regarding Type I errors and powers 
for variance components estimation through Monte Carlo simulation for two mixed linear 
model situations. 
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3. SIMULATION 
 
3.1. Genetic models and experimental designs 
  
 For simplicity, in this study, two simple but widely used genetic models 
(genotype model and additive-dominance genetic model), where both include G×E 
effects, were chosen for simulation. To simplify, we call these two models genotype 
model and AD model, respectively. According to mixed linear model theory and genetic 
structure, these genetic models can be extended to complicated genetic models. The 
mixed linear model for the genotype model including G×E interaction effect is expressed 
as:  

hijhjhiihhij eBGEGEy +++++= )(µ              (7) 
Environmental effects (Eh) and the population mean (µ) in this model are considered as 
fixed effects, while the remaining effects are considered random.  
The other genetic model, AD model, is a little more complicated. The data structure can 
involve parents and F1 hybrids, parents and F2 hybrids, or parents and F3 hybrids. In this 
study, we only considered parents and F2 hybrids to generate simulated data sets under 
multiple environments with a RCB design. So, the linear model for parents and F2 
hybrids are expressed as follows: 
Parent: 

hiikhkhiihiiiihPhiik eBDEAEDAEy +++++++= )()( 22µ                                                 (8) 
F2: 
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                         (9) 

Here µ, the population mean, is a fixed effect; Eh, the environment effect, may be either 
random or fixed (but considered fixed in this study); iA  (or jA ) is the additive effect 
from parent i (or j ); iiD , jjD , or ijD is the dominance effect; hiAE  (or hjAE ) is additive 
× environment interaction effect; hiiDE , hjjDE , or hijDE is the dominance × environment 
interaction effect; )(hkB  is the k-th block effect within environment h; and hijke  is the 
random error. All genetic effects, including the G×E effects, are assumed to be random.   
 
 Practically, a data set could involve unequal block numbers across environments 
or various types of data structures. On the other hand, when k individual observations (or 
one replication) are removed at each time, each new data set is unbalanced. The analysis 
of variance (ANOVA) or general linear model (GLM) approaches are fast but only 
applicable to balanced data or simple linear models. Thus, the mixed linear model 
approaches, which provide more flexibility for unbalanced data situations than the 
ANOVA or GLM approaches, are suggested. However, in this study, only one of several 
mixed linear model approaches, the minimum norm quadratic unbiased estimation 
(MINQUE) approach (Rao, 1971; Zhu, 1989), is employed for data analyses, including 
variance component estimation and random effect prediction. The two jackknife methods 
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previously discussed were used, where we removed one replication (block) observations 
from each original simulated data set at each time. 
 
 
 
3.2. Simulation schemes 
 
 Two environments with four replications each with a RCB design structure were 
used for both models. Though simulations for various different sample sizes and preset 
parameters were conducted, since conclusions were similar, we only reported the results 
from the following configurations. For the genotype model, 20 genotypes were utilized. 
For the AD model, we used two females crossed with six male parents, containing a total 
of 20 entries (eight parents and 12 F2 hybrids) were used. Two types of distributions, the 
normal distribution and uniform distribution were also used to generate the simulated 
data for analysis. The power was calculated through presetting all variance components at 
20 for both models and the Type I error by presetting all variance components at 0 except 
the random error (set at 20) for these two genetic models. The two jackknife methods, 
pseudo-value and non-pseudo value based methods, as mentioned in Section 2, were then 
applied. Five hundred simulations were conducted for each scenario. The biases, powers, 
and Type I errors were obtained. All data analyses were conducted by computer programs 
developed by the authors of this manuscript using C++. 
 
3.3. Simulation Results 
 
 The biases and Type I errors for the two different distributions by the two 
jackknife methods for each genetic model are summarized in Tables 1 and 2, respectively. 
There are no differences in bias between the two jackknife methods for either model 
(Tables 1 and 2), indicating that both jackknife methods were equally unbiased for the 
estimation of variance components. The pseudo jackknife method had lower Type I 
errors than non-pseudo jackknife method for both models. However, with few exceptions, 
the Type I errors obtained by the non-pseudo method were generally smaller than the 
three preset nominal probability values.  
 
 On the other hand, the biases and powers for the two models determined from the 
two different distributions are summarized in Tables 3 and 4. Again, the biases between 
the two jackknife methods were almost identical for the two genetic models by each 
distribution. However, the power for the non-pseudo method was much higher than that 
for the pseudo method. 
 
 In summary, our simulation results showed that the non-pseudo jackknife method 
had consistently higher power than the pseudo jackknife method with acceptable Type I 
errors for the different genetic models with different distributions.  
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4. APPLICATION 
 
4.1. Materials and experiments 
 
 Eleven parental lines were selected from different breeding programs for use in 
this study. These lines were Acala Ultima ( defined as parent 1, P1), Tamcot Prymaid 
(P2), Coker 315 (P3), Stoneville 825 (P4), FiberMax 966 (P5), M240RNR (P6), 
Paymaster HS26 (P7), Deltapine 90 (P8), Suregrow 747 (P9), PSC 355 (P10) and 
Stoneville 474 (ST474, P11) (Table 10). In 2004, these 11 parental lines were grown in 
two fields (Environments 1 and 2, respectively) at Mississippi State (33° 4' N, 88° 8' W).  
In 2005, the same lines were planted in one field (Environment 3) at Mississippi State. In 
each environment, a RCB design with four blocks was applied. Plot size was a single row 
12 m in length with row spacing of 0.97 m. The planting was a solid row pattern. The 
stand density consisted of single plants spaced approximately 10 cm apart. Planting dates 
for environments 1, 2, and 3 were May 11, 2004; May 25, 2004; and May 13, 2005, 
respectively. Harvest dates for environments 1 and 2 were November 1, 2004 and for 
environment 3 October 17, 2005. Normal field practices were followed during the season.  
Prior to machine harvest, a twenty-five boll sample for each plot was hand harvested to 
determine lint percentage (LP, %). The amount of seed cotton per plot was obtained by 
machine picking and converted into lint yield per hectare (LY, kgha-1) accordingly. 
 
 Variance components were estimated for two agronomic traits by the MINQE 
approach (Rao, 1971; Zhu, 1989). The genotypic effects for two agronomic traits were 
predicted by the adjusted unbiased prediction method (Zhu, 1993). Two jackknife 
methods were employed to calculate the standard error for each parameter by removal of 
one replication (block) within each environment from the original data. An approximate 
t-test was used to test significance of each parameter (Miller, 1974b). 
 
4.2. Results 
 
 Results in Table 5 showed that variance components for both traits calculated by 
both jackknife methods were similar. This agrees with our simulation results. 
Significance levels were higher for the non-pseudo value based jackknife method than for 
the pseudo value based jackknife method. 
 
 Predicted genotypic values for both agronomic traits by the two jackknife 
methods are summarized in Table 6.  Predicted genotypic effects for the 11 parents by the 
two jackknife methods were very close, while non-pseudo value based method had higher 
significance levels than pseudo value based method. For example, genotypic effects of P3 
and P8 for lint yield predicted by the pseudo value based method were not significant at 
probability 0.05 while the genotypic effects by the non-pseudo value based method for 
the same two parents were significant at 0.001. 
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5. CONCLUSION AND DISCUSSION 
 
 The jackknife approach is a powerful technique for bias reduction and interval 
tests for parameters of interest and its value has been recognized for decades. Usually the 
pseudo-values are used to calculate the jackknife estimates of a specific parameter 
(Quenouille, 1956; Miller, 1974a,b). However, with an increase in the number of 
jackknife times, the pseudo jackknife estimates of the parameters often are beyond the 
theoretical ranges, particularly for a variance component or a correlation coefficient. On 
the other hand, when some constrains for some pseudo values are applied, either over- or 
under-estimations could result. For example, if negative pseudo-values for a variance 
component are justified to zero, then this variance component could be overestimated. In 
addition, it could increase the Type I errors. 
 
 In this study, we compared two jackknife methods regarding the biases, Type I 
errors, and powers for variance components estimation. Our simulation results 
demonstrated that (1) the biases resulted of both jackknife methods are similar; (2) Type I 
errors for the non-pseudo jackknife method are less than the preset nominal probability 
levels with a few exceptions; and (3) powers for the non-pseudo jackknife method is 
higher than for the pseudo jackknife method. The results from an actual data set of two 
agronomic traits for cotton cultivars also supported the above conclusions. Additional 
simulations were also conducted for several other mixed linear models and the results 
were consistent (the results not shown). Therefore, we conclude that the non-pseudo 
jackknife method is more preferable than the pseudo method regarding variance 
components estimation and test.  
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Table 1. Biases and Type I errors at three preset probability levels for three variance 
components for the genotype model by two jackknife methods under two distributions 

Normal distribution 
 Pseudo 
 True value Bias Type I error 
   0.001† 0.010† 0.050† 

GV  0.000 0.410 0.000 0.000 0.004 
GEV  0.000 0.674 0.000 0.000 0.002 
BV  0.000 0.247 0.000 0.000 0.000 

 Non-pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

GV  0.000 0.410 0.004 0.010 0.022 
GEV  0.000 0.674 0.000 0.002 0.012 
BV  0.000 0.247 0.000 0.000 0.006 

Uniform distribution 
 Pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

GV  0.000 0.494 0.000 0.002 0.008 
GEV  0.000 0.693 0.000 0.000 0.004 
BV  0.000 0.242 0.000 0.000 0.000 

 Non-pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

GV  0.000 0.494 0.004 0.010 0.040 
GEV  0.000 0.693 0.000 0.006 0.024 
BV  0.000 0.242 0.000 0.000 0.004 

†:  Preset nominal probability level 
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Table 2. Biases and Type I error rates for five variance components at three different 
probability levels for the AD model by two jackknife methods under two distributions. 
 Normal distribution 
 Pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

AV  0.000 0.180 0.000 0.000 0.000 
DV  0.000 1.438 0.000 0.000 0.002 
AEV  0.000 0.275 0.000 0.002 0.014 
DEV  0.000 2.299 0.000 0.000 0.004 
BV  0.000 0.136 0.000 0.000 0.000 

 Non-pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

AV  0.000 0.170 0.000 0.006 0.020 
DV  0.000 1.420 0.000 0.006 0.022 
AEV  0.000 0.269 0.002 0.012 0.030 
DEV  0.000 2.183 0.000 0.004 0.008 
BV  0.000 0.136 0.000 0.002 0.010 

 Uniform distribution 
 Pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

AV  0.000 0.186 0.000 0.002 0.010 
DV  0.000 1.589 0.000 0.000 0.008 
AEV  0.000 0.289 0.000 0.002 0.008 
DEV  0.000 2.211 0.000 0.002 0.004 
BV  0.000 0.118 0.000 0.000 0.000 

 Non-pseudo 
  True value  Bias Type I error 
   0.001† 0.010† 0.050† 

AV  0.000 0.176 0.002 0.010 0.028 
DV  0.000 1.563 0.002 0.012 0.024 
AEV  0.000 0.291 0.002 0.010 0.038 
DEV  0.000 2.083 0.002 0.008 0.020 
BV  0.000 0.118 0.000 0.000 0.006 

†:  Preset nominal probability level 
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Table 3. Biases and powers at three different probability levels for four variance 
components for the genotype model by two jackknife methods under two distributions. 
 Normal distribution 
 Pseudo 
 True value  Bias Power 
   0.001† 0.010† 0.050† 

GV  20 0.277 0.300 0.558 0.736 
GEV  20 0.271 0.140 0.556 0.866 
BV  20 -0.044 0.000 0.000 0.096 
eV  20 0.142 0.810 0.994 1.000 

 Non-pseudo 
 True value  Bias Power 
   0.001† 0.010† 0.050† 

GV  20 0.277 0.636 0.794 0.864 
GEV  20 0.271 0.704 0.920 0.978 
BV  20 -0.044 0.012 0.204 0.610 
eV  20 0.142 1.000 1.000 1.000 

 Uniform distribution 
 Pseudo 
 True value  Bias Power 
   0.001† 0.010† 0.050† 

GV  20 1.177 0.312 0.632 0.826 
GEV  20 -0.404 0.126 0.504 0.882 
BV  20 -0.232 0.000 0.020 0.172 
eV  20 -0.119 0.952 1.000 1.000 

 Non-pseudo 
 True value  Bias Power 
   0.001† 0.010† 0.050† 

GV  20 1.177 0.736 0.872 0.930 
GEV  20 -0.404 0.692 0.950 0.990 
BV  20 -0.232 0.054 0.342 0.786 
eV  20 -0.119 1.00 1.000 1.000 
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Table 4. Biases and powers at three different probability levels for six variance 
components for the AD model by two jackknife methods under two distributions. 
 Normal distribution 
 Pseudo 
  True value  Bias Power 
   0.001† 0.010† 0.050† 

AV  20.000 1.903 0.512 0.656 0.738 
DV  20.000 0.975 0.052 0.174 0.420 
AEV  20.000 -0.018 0.524 0.796 0.896 
DEV  20.000 0.603 0.002 0.074 0.256 
BV  20.000 -0.700 0.000 0.004 0.126 
eV  20.000 0.051 0.994 1.000 1.000 

 Non-pseudo 
  True value  Bias Power 
   0.001† 0.010† 0.050† 

AV  20.000 1.772 0.680 0.760 0.808 
DV  20.000 0.925 0.250 0.502 0.680 
AEV  20.000 -0.024 0.842 0.936 0.970 
DEV  20.000 0.739 0.116 0.346 0.596 
BV  20.000 -0.700 0.022 0.236 0.708 
eV  20.000 0.057 1.000 1.000 1.000 

 Uniform distribution 
 Pseudo 
  True value  Bias Power 
   0.001† 0.010† 0.050† 

AV  20.000 0.675 0.500 0.652 0.752 
DV  20.000 0.154 0.042 0.186 0.394 
AEV  20.000 0.099 0.542 0.840 0.936 
DEV  20.000 0.172 0.008 0.056 0.250 
BV  20.000 0.398 0.004 0.016 0.220 
eV  20.000 0.015 1.000 1.000 1.000 

 Non-pseudo 
  True value  Bias Power 
   0.001† 0.010† 0.050† 

AV  20.000 0.831 0.702 0.792 0.824 
DV  20.000 0.243 0.246 0.496 0.676 
AEV  20.000 0.053 0.874 0.956 0.980 
DEV  20.000 0.083 0.100 0.366 0.594 
BV  20.000 0.398 0.050 0.366 0.796 
eV  20.000 0.012 1.000 1.000 1.000 
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Table 5. Estimated variance components, standard errors, and p values for two agronomic 
traits by two jackknife values under the genotype model. 
 Lint percentage 
 Pseudo based method Non-pseudo based method 
Parameter Estimate SE. P-value Estimate SE. P-value

GV  3.051 0.300 0.000 3.197 0.095 0.000
GEV  1.017 0.201 0.000 0.578 0.063 0.000

 eV  0.678 0.105 0.000 0.692 0.033 0.000
 Lint yield 
 Pseudo based method Non-pseudo based method 
 Estimate SE. P-value Estimate SE. P-value

GV  34045 7151 0.001 34132 2252 0.000
GEV  8080 9476 0.412 7818 2984 0.233

 eV  64389 14998 0.001 64396 4723 0.000
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Table 6. Predicted genotypic effects (deviated from the population means), standard error, 
and p values for two agronomic traits by two jackknife values under the genotypic model. 
 Lint percentage 
 Pseudo based method Non-pseudo based method 

 Prediction SE. P_value Prediction SE. P_value
P1 1.322 0.329 0.002 1.337 0.104 0.000
P2 -0.008 0.199 0.969 -0.008 0.063 1.000
P3 0.410 0.160 0.027 0.415 0.051 0.000
P4 -0.895 0.239 0.003 -0.906 0.075 0.000
P5 1.395 0.228 0.000 1.413 0.072 0.000
P6 -2.958 0.153 0.000 -2.994 0.048 0.000
P7 -2.670 0.310 0.000 -2.703 0.098 0.000
P8 -0.991 0.271 0.004 -1.003 0.085 0.000
P9 1.854 0.184 0.000 1.876 0.058 0.000
P10 0.053 0.230 0.822 0.055 0.073 0.999
P11 2.486 0.248 0.000 2.517 0.078 0.000
 Lint yield 
 Pseudo based method Non-pseudo based method 
 Prediction SE. P_value Prediction SE. P_value
P1 -190.4 51.9 0.000 -176.6 16.3 0.000
P2 -238.4 31.0 0.000 -221.1 9.8 0.000
P3 151.1 73.6 0.060 138.6 23.2 0.000
P4 -24.9 39.5 0.540 -22.8 12.4 0.660
P5 109.0 70.0 0.150 101.6 22.0 0.010
P6 -93.6 33.8 0.020 -86.6 10.7 0.000
P7 -346.7 47.4 0.000 -322.1 14.9 0.000
P8 173.2 91.2 0.080 161.8 28.7 0.000
P9 8.4 89.4 0.930 9.4 28.2 1.000
P10 193.3 83.7 0.040 177.7 26.4 0.000
P11 259.0 85.6 0.010 240.0 27.0 0.000
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