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USING NONLINEAR FIXED and MIXED MODELS with SWITCHING 
FUNCTIONS to ALLOW for HORMESIS in GROWTH of ESCHERICHIA Coli  

 
C. Tu1,  A. M. Parkhurst1,  L. M. Durso2,  R. W. Hutkins2 

1. Department of Statistics, University of Nebraska at Lincoln  
2.   Department of Food Science & Technology, University of Nebraska at Lincoln  

 
ABSTRACT 

Individual Escherichia coli (E. coli) strains can be characterized by measuring growth 
rate.  Strains better adapted to the environment are expected to grow faster.  Classic 
bacterial growth curves display an increase in optical density over time.  In this paper, we 
use the logistic function to model growth in optical density of E. coli over time. We 
examine 16 curves for 8 E. coli strains originally isolated from cattle and found many 
curves have a paradoxical dip at the beginning that is indicative of hormesis (an initial 
contrarian response showing, stimulation or suppression of growth). We examine several 
switching functions that allow for the effect of hormesis and compare the ability of 
nonlinear fixed and mixed models to detect the presence of hormesis.  
 

1. INTRODUCTION 
 

Escherichia coli (E. coli) is one type of common bacteria that live in the natural 
environment. Some E. coli bacteria, specifically E. coli with the O157:H7 serotype, are 
important human pathogens that are associated with food and waterborne outbreaks.  E. 
coli O157:H7 may cause severe illness and even death in humans. Young children and 
the elderly are especially susceptible to illness. Cattle are considered a reservoir for E. 
coli O157:H7 and evidence suggests that there may be differences between E. coli 
O157:H7 strains isolated from cattle compared to those isolated from humans (Kim, 
Nietfeldt, and Benson, 1999). It is important for scientists and physicians to distinguish 
among the E. coli O157:H7 strains, and to understand what factors contribute to the 
survival and persistence of one strain versus another. One way to characterize different 
types of bacteria is by measuring bacterial fitness, a measure of reproductive success 
(Elena and Lenski, 2003).  
 
Fitness can be measured in bacteria by calculating growth rate (Cooper and Lenski, 
2000). One way to model fitness of individual bacteria is to study changes in cell density 
as measured by optical density over time.  These changes can be described by logistic or 
log-logistic regression models.  The models provide such estimates as maximum optical 
density, maximum rate of growth, and time to maximum rate of growth. One drawback to 
these models is that there is no provision for characterizing the change in optical density 
if the growth of bacterial strains involves the phenomenon of hormesis.  Estimates of 
individual bacterial fitness (maximum rate of growth) can be affected by the presence of 
hormesis. 

 
The term hormesis comes from the Greek for “to excite” or ‘set into motion” and is often 
involved in biological, medical and toxicological science (Schabenberger and Pierce, 
2002).  The term “hormesis” was originally used by C. Southam and his co-worker J. 
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Erlish in 1943 to indicate that while high concentrations of Oak bark extract inhibited 
fungal growth, low doses stimulated fungal growth (Bruce, 1987). Mathematically, 
hormesis represents the failure of a model to be monotonically increasing or decreasing. 
(Davis and Svendsgaard, 1990; Calabrese, 2004). In terms of growth, hormesis can 
represent stimulation or suppression in the early stages. This study will focus on detecting 
the hormesis phenomenon representing suppression of growth in the early stages.   
 
Hormetic models are by definition non-monotonic.  A desirable feature of models that 
allow for hormesis is that they reduce to a standard model in the absence of hormesis.  
Such models allow for a test of hypothesis to detect the presence of hormesis.  
Schabenberger and Birch (2001) proposed using switching functions to build such 
models. For example, Brain and Cousens (1989) proposed a modification to the log-
logistic model which is a combination of switching functions and hormetic weights, γX to 
produce a hormetic model (1.1) that can detect hormesis. That is, 

                                    [ ] ε
κβ

γδαδ +
+

+−
+=

)ln(exp1 X
XY                                                  (1.1) 

where δ represents the initial optical density, α represents maximum optical density, κ 
represents the rate constant, β indicates a scale parameter, γ measures the initial rate of 
increase at small dosages and is the parameter used to test for the hormesis effect. The 
hypothesis test for hormesis is 0:0 =γH  vs. 0: ≠γaH . If γ is not significant, one may 
conclude that the hormesis phenomenon does not exist. Otherwise, the hormesis effect is 
believed to exist and one should take the hormesis effect into account when making 
statistical inferences.  
 
There are three objectives for our study.  We plan to use the concepts of switching 
functions, as exemplified by the Brain-Cousens model, and functions in R (nls and nlme) 
to: 1) build models to detect the hormesis effect in E. coli O157:H7 strains: 2) identify a 
suitable nonlinear fixed effect model; and 3) compare results from the nonlinear fixed 
and mixed models for detecting hormesis. Finally, we will propose a hormetic model for 
fitting E. coli O157:H7 strains which in turn will help researchers detect hormesis, 
estimate the maximum growth rate, and compare fitness measures of individual bacteria.   
 

2. MATERIALS AND METHODS  
2. a. Data 
 
A series of experiments were conducted at the University of Nebraska-Lincoln to study 
measurements of fitness and competition in Escherichia coli (E. coli) with a specific 
focus on E. coli O157:H7 strains (Durso, Smith, and Hutkins, 2004).  A subset of the 
individual fitness assays was used in this study.  Repeated measures over time were made 
on eight E. coli O157:H7 strains extracted from cattle. There were two replications for 
each of the eight strains. The response variable, optical density (log10 (1/transmission)) 
was measured at 0, 2, 4, 6, 8, and 10 hours.  Figure 1 contains plots of the optical density 
over time for each E. coli strains: 347, 348, 349, 350, 351, 398, 402, and 409. Six out of 
eight of the strains have curves with the paradoxical dip at the beginning, suggesting a 
need to account for the effect of hormesis.  
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Figure 1.  Plots of  8 Cattle E. coli Strains with 2 Replications 
 Optical Density over Time

Rep1:solid line; Rep2: dashed line
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2. b. Four-parameter Logistic Growth Model 
The logistic model is characterized by a sigmoidal growth curve around an inflection 
point (Ratkowsky, 1990).  To describe the increase in optical density over time for E. coli 
strains, we can use the inflection point parameterization of the four parameter logistic 
model 

ε
τκ

δαδ +
−−+

−
+=

))(exp(1 X
Y                                                  (2.1)                               

where E[Y | X] is the mean optical density given a particular level of covariate time, 
where α represents maximum optical density, δ represents the initial optical density, κ 
represents the rate constant, τ represents the  time to maximum rate of change and the 
errors, ),0(~ 2σε IN .   
 
 
2. c. Switching Functions to Build Non-hormetic and Hormetic Models   
Schabenberger and Birch (2001) proposed switching functions which take values 
between 0 and 1 as the independent covariate X increases. There are two types of a 
switching function: 1) Switch-on function, SI (X, θ); and 2) Switch-off function, SO (X, 
θ).  A switch-on function increases monotonically in X, while a switch-off function 
decreases monotonically in X. One function is the complement of the other, that is, SI (X, 
θ) =1 −  SO (X, θ).  They suggest the following techniques for developing non-hormetic 
and hormetic models.   
 
2. c. i. Non-hormetic Growth Model 
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Since continuous switch-on functions increase monotonically over time, we can choose a 
cumulative density function (CDF) of a continuous random variable with unimodal 
density (Seber and Wild, 1989).  The CDF distributed over the interval [0, 1] can then be 
used to model the transition between two asymptotes, minµ  and maxµ ,   

                       ),()( minmaxmin θµµµ XSY I−+=                                    (2.2)                               
The two-parameter logistic model provides a switch-on function when -κ < 0 and it is a 
switch-off function when -κ > 0. See figure 2 for an example of this function.  
 
 
 
 
 
 

Figure 2. Complementary Switching Functions for Logistic Model  
τ =4.8, κon=0.704, and κoff= -0.704 
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With an inflection point at  τ , the switching function is  

                                ( )

1( , )
1I XS X

e κ τθ − −=
+

                                                                  (2.3) 

Using (2.3) as the switching function in (2.2), results in the four-parameter logistic model 
(2.1). 
2. c. ii. Strategy for Adding Hormetic Behavior 
Hormetic behavior can be incorporated into a given model by adding a hormetic 
component to (2.2). 

),(),(),()( minmaxmin θγθµµµ XSXfXSY OI +−+=                (2.4) 
The ),( θXSI  and ),( θXSO  are switching functions that might be identical 

),( θXSI = ),( θXSO = ),( θXS .  The function for the hormetic effect, ),( γXf , is a 
monotonic function as X increases and satisfies two requirements: First, the model 
reduces to the non-hormetic version in the absence of the hormetic effect, 0),( =γXf  
when γ=0; Second, the model has no hormesis at the initial value, 0),( =γXf  when X=0 
(Schabenberger and Birch, 2001).    
 
2. c. iii. Proposed Hormetic Models with Linear and Non-monotonic Functions  
We construct four models to detect the hormetic effect on the growth curves of the E. coli 
strains using combinations of two switching functions and two hormetic weighting 
functions.  The switching functions are logistic (2.5) and log-logistic (2.6). We re-
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parameterized the logistic model in (2.1) so -κ = -1/ψ and re-parameterize the log-logistic 
switching function used in the Brain-Cousens model (1.1) so that κ = -1/ψ and β=exp 
(ln(τ)/ψ).  The two hormetic weighting functions ),( γXf  are linear (2.7), and non-
monotonic (2.8).  

[ ]ψτ /)(exp1
1

−−+
=

X
SLogistic                                                   (2.5) 

[ ]ψτ /))ln()(ln(exp1
1

−−+
=− X

S LogisticLog                                  (2.6) 

( , )linearf X Xγ γ=                                                                        (2.7) 
)exp(/),( XXXf monotonicnon γγ =−                                                 (2.8) 

Using the strategy of Schabenberger and Birch for adding hormetic behavior to a model 
(2.4) results in four hormetic models, (2.9), (2.10) (2.11), (2.12). Each of these four 
hormetic model is used to model growth when the potential for hormesis is present; 
 
Brain-Cousens (B-C), 

[ ]ψτ
γδαδ

/))ln()(ln(exp1 −−+
+−

+=
X

XY                                                     (2.9)            

 
 

 
Modified Brain-Cousens (Modified B-C), 

  [ ]ψτ
γδαδ

/)(exp1 −−+
+−

+=
X

XY                                                             (2.10)        

                        
Non-Monotonic with Logistic (NM-L), 

   [ ]ψτ
γδαδ

/)(exp1
)exp(/

−−+
+−

+=
X

XXY                                                            (2.11)  

                                                  
Non-Monotonic with Log-Logistic (NM-LL), 

  [ ]ψτ
γδαδ

/))ln()(ln(exp1
)exp(/

−−+
+−

+=
X

XXY                                                  (2.12) 

 
The B-C model uses a linear (monotonic) hormetic function,  XXf γγ =),(  to weight the 
log-logistic switch-off function, as shown in the third term of E[Y|X] given below. 

[ ] [ ]
[ | ]

1 exp (ln( ) ln( )) / 1 exp (ln( ) ln( )) /
XE Y X

X X
α δ γδ

τ ψ τ ψ
−

= + +
+ − − + − −

 

 
The Modified B-C  model is a logistic version of the B-C model.  
 
The problem of using a linear hormetic function (2.7) is the hormetic effect never 
vanishes.  We propose using a non-monotonic weighting function to allow the hormesis 
effect to dominate at the early stage and gradually diminish.  The NM-L model uses the 
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non-monotonic function, (2.8),  to weight the logistic switch-off function, as shown in the 
third term of E[Y|X] given below. 

[ ] [ ]
/ exp( )[ | ]

1 exp ( ) / 1 exp ( ) /
X XE Y X

X X
α δ γδ

τ ψ τ ψ
−

= + +
+ − − + − −

 

 
Figure 3 shows how a NM-L model over the interval  [δ=0,α=1] compares to the sum of 
two parts: 1) the logistic switch on function (2.3); and 2) the non-monotonic weighted 
logistic switch-off function. The hormesis effect occurs only in the initial stages then 
gradually decreases.  
Figure 3.  Non-Monotonic Hormetic Model (2.11) as a Sum of Logistic Model (2.3), 

and Non-Monotonic Weighted Switch off Function 
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The NM-LL model is a log-logistic version of the NM-L model.  It is used to make 
comparisons with the B-C model which also uses the log-logistic. 
 
 
2. d.  Hormetic Nonlinear Mixed Model 
 A mixed effects version of the hormetic nonlinear fixed model was examined to identify 
the appropriate random effects. When the optical density, Y, was fit by the Non-
Monotonic with Logistic (NM-L) model the following effects were used. That is,    

[ ]
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X XY
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where 8,..2,1=i  and 2,1=j  
 

Fixed and random effects were assigned to all parameters. The fixed effects 
( γτψδα   ,  ,  ,  , ) represent the population average of the parameters.  The level-1 random 
effects vector, ib* , represents the deviation of the ith strain from the population average for 
each parameter. The level-2 random effects, ijb* , represents the deviation of the jth 

replication of the ith strain from the population average for each parameter. The ib*  are 
assumed to be independent for each strain. The ijb*  are assumed independent for each 

replication of each strain.   The ib* , ijb* , and ijε  are all assumed independent of each 
other.   
 
 
2. e.  Model Building using R 
All analyses were performed in R version 2.5.0.  We used the nonlinear least squares 
function, nls, to estimate the fixed effects parameters. Information criteria and log-
likelihood functions (AIC, BIC, and logLik) were used to compare results. The nonlinear 
mixed effects function, nlme, was used to estimate the fixed effects with random 
components. The advantages of using nlme include provisions for multilevel random 
effects, as well as, correlated and heterogeneous errors (Pinheiro and Bates, 2000).  
Pinheiro, Bates, and Lindstrom (1993), and Pinheiro and Bates (1995) suggest assigning 
random effects to all parameters and fitting a full covariance structure for the initial 
analysis. However, this strategy is frequently fraught with convergence problems. The 
stepwise strategy we used to choose the appropriate random effect structure was to 
assume a diagonal matrix for all random effects for the initial model.  We removed the 
smallest random effects, one at a time, to create a reduced model and compared the 
reduced model with the previous one until the log-likelihood ratio test is significant 
(p<0.10).  If multiple random effects remain, we then examine the correlated error 
structure for significance. The following is the code for applying the nlme function to the 
E. coli data. 

NLME codes for fitting the nonlinear mixed-effects model are as follows: 
NM.L.nlme<-nlme(density~new(time, alpha, delta, psi, tau,   

gamma),data=br, fixed=alpha+delta+psi+tau+gamma~1, 
     random=list( bh=pdDiag(alpha+delta+psi+tau+gamma~1), 
                 rep=pdDiag(alpha+delta+psi+tau+gamma~1)), 
               start=c(alpha=0.3, delta=0.06, psi=1.12,  

tau=4.13,gamma=-1.3)) 
               summary(NM.L.nlme) 
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3. RESULTS AND DISCUSSION 
3.1 Nonlinear Fixed Effect Model  
We begin by comparing the parameter estimates and their associated confidence intervals 
for each model. Table 1 shows both the Non-Monotonic with Logistic (NM-L) and Non-
Monotonic with Log-Logistic (NM-LL) models provided statistically significant 
parameter estimates (p<0.05) and confidence intervals of reasonable width. On the other 
hand, not all parameter estimates are significantly different from zero for either the Brain-
Cousens model (B-C) or the Modified Brain-Cousens (Modified B-C) model. The 
maximum optical density, α, for the B-C model is barely significant and has wide 
confidence intervals. While the inverse rate constant, ψ, is not significant in the Modified 
B-C model. More importantly, neither the B-C nor the Modified B-C model were able to 
detect a significant hormesis effect, γ, (p=0.8170, and p=0.2047 respectively).  
 

Table 1. Parameter Estimations and 95% Confidence Intervals for the 
Hormetic Nonlinear Fixed Effect Models 

 Logistic Switch Function Log-Logistic Switch Function 
NM-L Modified B-C NM-LL B-C   Model 

Parm Est L U Est L U Est L U Est L U 
α .30* .28 .32 .21* .06 .35 .31* .28 .34 .27† .001 .55
δ .06* .04 .08 .05* .04 .07 .07* .04 .09 .06* .04 .07
ψ 1.12* .56 1.67 .60 -.15 1.36 .27* .12 .43 .18* .02 .33
τ 4.13* 3.50 4.76 4.28* 3.53 5.03 3.81* 2.94 4.69 4.58* 3.26 5.9
γ -1.3* -2.0 -0.6 .01 -.01 .03 -1.7* -2.4 -1.0 .003  -.02 .03

R.S.E 0.043 0.044 0.043 0.043 
* P-value < 0.05; † P-value = 0.052  
Est: Estimate; L: Lower 95% Confidence Interval; U: Upper 95% Confidence Interval 
Parm: Parameter; R.S.E: Residual Standard Error on 91 degrees freedom  
 
Table 2 shows the models based on the non-monotonic function (2.8) have the smallest 
AIC, BIC and the largest log likelihood value. The NM-L and NM-LL models appear to 
be comparable. For both models, the residuals passed the Shapiro-Wilks test for 
normality (p-value = 0.44 for NM-L and 0.47 for NM-LL); the coefficients of variation 
are similar (not shown); and, the scatter plots of the standardized residuals vs. fitted 
values exhibited an undesirable wedge-shaped patterns (Figure 4). (See results of the 
mixed model analysis below for resolution of this issue). It is not until we consider the 
nonlinear characteristics that we have a basis to choose between the models.    
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Table 2. Information Criteria and Log Likelihood for the Nonlinear Fixed 
Effect Models 

Model # of 
Iterations D.F AIC BIC Log Likelihood 

Logistic Switch Function 
NM-L 4 6 -325.013 -309.628 168.507 

Modified B-C 13 6 -321.683 -306.298 166.842 
Log-Logistic Switch Function 

NM-LL 6 6 -324.988 -309.602 168.494 
B-C 13 6 -322.735 -307.349 167.368 

 
 

Figure 4. Scatter Plot of Standardized Residuals vs. Fitted Values for the Nonlinear 
Fixed-Effect Model Fit 
Non-Monotonic with Logistic Model
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Statistics for assessing nonlinear behavior are presented in Table 3. The NM-LL model 
has higher parameter-effects curvature, PE (Bates and Watts, 1980, 1988).  In addition, 
the NM-LL model, generally, has higher percent bias and percent excess variance (λ).  
Finally, there is more correlation among the parameter estimates in the NM-LL model 
(data not shown).   Four pairs of parameters have a |r| > 0.5 in the NM-LL model; only 2 
pairs have a |r| > 0.5 in the NM-L model.  The above results, lead us to propose using the 
NM-L model to analyze the observed growth behavior. 
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3.2 Nonlinear Mixed Effects Model 
The pattern in the residual scatter plot (Figure 4) suggests incorporation of random 
effects may improve the Non-Monotonic with Logistic (NM-L) model. To identify which 
parameters, if any, require random effects, we fit the nonlinear mixed model for several 
sets of diagonal random-effects structures and check for model equivalency. We begin 
with Model 1 using the full diagonal structure. Then, we removed the smallest random 
effect, δ, for replications within strains and fit Model 2 (Table 4). We compare the 
models to see if the random effect we removed is significant.  Since the likelihood ratio 
test is not significant (Table 5), we conclude the random effect is not significantly 
different from zero and continue the process. Finally, the smallest random effect was 
removed from Model 8 resulting in Model 9.  Comparing Models 8 and 9 results in a 
significant drop in the log-likelihood (p=0.0059). So we keep Model 8. We then fit 
Model 10, the full variance-covariance between δ and τ for strains with α for the 
replication within strains, (not shown) and check for significance. The likelihood test 
indicated no significant improvement over Model 8 when Model 10 was used (p=0.15). 

 

Table 3.  Statistics for Curvature and Close-to-
Linear Behavior 

 
NM-L Model NM-LL Model 

IC=0.18    PE=0.99 IC= 0.25    PE=98.19 
 

 
Estimate %Bias  λ Estimate %Bias  λ 

α 0.30 0.48 6.62 0.31 1.26 2437

δ 0.06 -2.91 8.51 0.07 -0.05 2400

ψ 1.12 1.32 8.90 0.27 4.71 849 

τ 4.13 -0.53 9.22 3.81 75.38 6221

γ -1.30 -0.10 12.4 -1.74 -5.97 2482

 IC = Intrinsic Curvature, PE=Parameter effects 
curvature,  λ = % Excess variance, (add 0.01for time=0 in NM-
LL Model) 
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Table 4. Standard Deviations for Diagonal Random Effect Structures in the       
Non-Monotonic with Logistic Model, NM-L 

Strains  Replications within Strains Model 
α δ ψ τ γ α δ Ψ τ γ 

1* 0.02 0.02 3e-5 0.78 5e-4 0.03 9e-7 2e-5 1e-3 4e-5 
2 0.02 0.02 4e-5 0.78 1e-6 0.03  1e-5 8e-5 2e-5 
3 0.02 0.02 4e-5 0.78  0.03  6e-6 7e-5 1e-5 
4 0.02 0.02 4e-5 0.78  0.03   9e-5 1e-5 
5 0.02 0.02 3e-5 0.78  0.03    5e-5 
6 0.02 0.02 4e-5 0.78  0.03     
7 0.02 0.02  0.78  0.03     
8  0.02  0.80  0.03     
9    0.97  0.03     

*Model 1: All random effects are diagonal variance-covariance structure 
 

Table 5. Information Criteria, Log-Likelihoods, and Ratios for Comparing Random 
Structures in the Non-Monotonic with Logistic Model, NM-L 

Model AIC BIC L Like Test LRT P-value 
1 -339 -298 185.6.    
2 -341 -302 185.6 1 vs. 2 1e-5 0.99 
3 -343 -307 185.6 2 vs.3 2e-7 0.99 
4 -345 -311 185.6 3 vs.4 0.01 0.92 
5 -347 -316 185.6 4 vs. 5 0.02 0.90 
6 -349 -321 185.6 5 vs. 6 0.01 0.92 
7 -351 -325 185.6 6 vs. 7 0.01 0.92 
8* -353 -329 185.5 7 vs. 8 0.26 0.61 
9 -351 -330 183.7 8 vs. 9 3.55 0.059 

* Model 8: Based on the smallest AIC value and non-significance of LRT (p=0.61), 
  Model 8 is the best model in Table 5. 
The fixed effects parameter estimates for the NM-L nonlinear mixed effects model 
(Model 8) are given in Table 6. The estimates are similar to those from the NM-L 
nonlinear fixed models; however, the nonlinear mixed effects model provides a smaller 
residual standard error. The statistics given in Table 7 provide further ways to compare 
the two versions (fixed and mixed) of the NM-L model. The mixed version has a lower 
AIC, BIC and a significantly larger log-likelihood. Also, the nonlinear mixed effect 
model reduces the correlations between the fixed parameters (Table 8), suggesting the 
pervasive simultaneous confidences may have more legitimacy than usual.  In other 
words, the simultaneous confidence intervals of the nonlinear mixed model are safer to 
use for making statistical inferences than those from the nonlinear fixed model, because 
the correlations between fixed parameters of the nonlinear mixed model are less than the 
correlations in the nonlinear fixed model.  
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Table 6. Fixed Effect Estimates in Nonlinear Fixed and Mixed Model  
for Non-Monotonic with Logistic Model, NM-L 

Parameter Fixed Model Estimates (STD) Mixed Model Estimates (STD) 
α 0.30** (0.01) 0.31** (0.01) 
δ 0.06** (0.01) 0.06** (0.01) 
ψ 1.12** (0.28) 1.19** (0.19) 
τ 4.13** (0.32) 4.29** (0.35) 
γ -1.30** (0.37) -1.34** (0.22) 

R.S.E 0.043 0.028 
** P-value < 0.001 

Table 7. Information Criteria, Log-Likelihoods, and Ratios for Comparing 
Nonlinear Mixed and Fixed Models in the Non-Monotonic with Logistic Model, NM-

L 
Model D.F. AIC BIC L Like Test  LR P-Value 
Mixed  9 -352 -329 185    
Fixed 6 -325 -309 168 Mixed vs. Fixed 34 <.0001 

 
Table 8. Correlation Coefficients between Fixed Parameters for 
Fixed and Mixed Non-Monotonic with Logistic Model, NM-L 

Mixed  
 α δ ψ τ γ 

α 1 -0.126 0.416 0.182 0.112 
δ -0.236 1 -0.344 0.004 -0.522
ψ 0.627 -0.408 1 0.083 0.474 
τ 0.494 -0.159 0.205 1 0.075 

Fi
xe

d 

γ 0.194 -0.735 0.458 0.367 1 
 

3.3.  Assessing the Nonlinear Mixed Non-Monotonic with Logistic Model, NM-L 
Model diagnostics were performed for the nonlinear mixed version of the Non-
Monotonic with Logistic (NM-L) model to examine the validity of the classical 
assumptions. The NM-L model was fit with provisions for correlated errors and non-
constant variance. The results of the information criteria and log-likelihoods were 
consistent with the assumptions of uncorrelated and constant errors. The scatter plot of 
the standardized residuals vs. fitted values (Figure 5) indicates the random-effects 
removed the wedge-shaped pattern displayed by the residuals from the fixed version 
(Figure 4). The assumption of normality for the within-group residuals was consistent 
using the Shapiro-Wilkes test (p=0.8872) and the normal probability plot (not shown).   
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Figure 5.  Scatter Plot of Standardized Residuals vs. Fitted Values for the  
Nonlinear Mixed-effects Non-Monotonic with Logistic Model, NM-L 

 
 

The quality of fit can be assessed by the augmented predictions plot, Figure 6.  The plot 
shows the population predictions (Fixed: solid line), the within strain predictions and the 
replication within strain predictions (Rep: dotted line) superimposed on the optical 
density observations (circles). The Strain and Rep curves show how adjustments to the 
population fixed predictions from the Escherichia coli (E. coli) strains help the model get 
closer to the observed values to more adequately describe the optical density growth in 
the E. coli data.     
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Figure 6. Augmented Predictions Plot for Nonlinear Mixed-effects Non-Monotonic 
with Logistic Model, NM-L 
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4.  CONCLUSIONS 
Logistic regression can be used to characterize changes in cell density as measured by 
optical density over time. However, the regression model needs modification to capture 
the initial dip indicative of hormesis. This paper demonstrates that switching functions 
provide a useful tool for building models to detect the hormesis effect in Escherichia coli 
(E. coli) O157:H7 strains. The non-monotonic function is superior to the linear function 
used in the Brain-Cousens (B-C) model, while the logistic switching function was similar 
to the log-logistic switching function used in the B-C model. Both of these nonlinear 
fixed models, Non-Monotonic function with Logistic (NM-L) and Non-Monotonic 
function with Log-Logistic (NM-LL), were able to detect hormesis. However, we 
recommend the NM-L model.  The NM-L model with the logistic switching function 
tended to perform better than the log-logistic switching in terms of close-to-linear 
behavior and had fewer significant correlations between parameters. 
The nonlinear mixed effects model provides better prediction results than the nonlinear 
fixed effect model. Random effects for the optical density baseline (lower asymptote, δ) 
and the time to maximum rate of change (τ) help the model adjust to each strain.  
Random effects for the maximum optical density (upper asymptote, α) help the model 
predict each replication within a strain.   
The augmented prediction plots show the ability of the NM-L nonlinear mixed model to 
characterize the growth in optical density of E. coli O157:H7 strains isolated form cattle. 
The NM-L model catches the observed optical density response of each replication within 
a strain and provides a statistical test for hormesis. 
 

5. SUMMARY 
The ability to distinguish among Escherichia coli (E. coli) O157:H7 strains is important 
for understanding the reproductive process of human pathogens that are associated with 
food and waterborne outbreaks. One measure of fitness in bacteria is growth rate. Growth 
rate is one of the parameters obtained when a logistic regression model is used to 
characterize changes in cell density as measured by optical density over time, but the 
logistic model does not provide a way to detect a potential hormetic effect. Switching 
functions were used to build hormesis models.  The linear hormetic weights and log-
logistic switching function of the Brain-Cousens model were compared to combinations 
of non-monotonic hormetic weights and logistic switching function. Data was gathered 
from a multilevel repeated measurements design on the optical density responses of eight 
E. coli strains, each strain was repeatedly measured at six time points. There were two 
replications for each strain. Models fit with the non-monotonic hormetic weights were 
superior to those with linear hormetic weights. There was little difference between the 
switching functions except for the correlation between parameters and the nonlinear 
behavior. The new model (Non-Monotonic with Logistic, NM-L) consisting of the non-
monotonic hormetic weights and logistic switching function was selected. The nonlinear 
mixed effects version of the NM-L model was studied to identify an appropriate random 
effects structure. The nonlinear mixed effects model shows significant improvement over 
the fixed effects version. Random effects were identified for within strains (the 
baseline, δ,  and  time to maximum rate of change, τ ) and for replications within strains 
(maximum optical density, α ).  A plot of the augmented predictions shows that the NM-
L mixed model characterizes the growth behavior of E. coli well.  Although both the 
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fixed and mixed models indicated the presence of hormesis, the mixed model provided 
smaller standard errors. We recommend using the NM-L nonlinear mixed effects model 
 to allow for hormesis in characterizing growth in optical density of E. coli O157:H7 
strains. Using NM-L nonlinear mixed effects model, would allow researchers to detect 
hormesis and better estimate the growth rate dimension of fitness for a strain 
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