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Abstract 

Crop scientists and government regulators are interested in mediating pollen flow 
from transgenic crops to other crops and weed species.  To this end, a multi-year, multi-
location series of experiments was conducted in eastern Colorado by the Department of 
Soil and Crop Sciences at Colorado State University.  These experiments were done to 
estimate the distance required between plots of transgenic corn and wheat and plots of the 
respective non-transgenic crop to obtain at most a regulated limit of cross-pollination.  
The experiments involved planting a rectangle of transgenic crop in the middle of a non-
transgenic field and measuring the proportion of cross-pollinated crop at various 
distances along transects radiating in multiple directions.  Gene flow to the non-
transgenic crop was evaluated in wheat using herbicide tolerance and in corn using kernel 
color.  An initial Generalized Linear Mixed Model with binomial response and logit link 
was estimated with independent variables: a square root transformation of distance, an 
additional covariate, and a random location effect.  For corn, the additional covariate was 
transect orientation; for wheat, it was the relative heading time of the recipient variety.  
An enhanced model that included additional sources of variation was also examined.  The 
analysis for both of these assumed models addresses two problems:  1) an Upper 
Tolerance Limit on the binomial probability of cross-pollination, which includes 100c% 
of the locations with 100d% confidence, at set values of the independent variables; and 2) 
an Upper Tolerance Limit on the distance at which 100c% of the locations will have 
binomial probability of cross-pollination less than a specified value, with 100d% 
confidence, at set values of the other independent variables.  The problems are addressed 
using Frequentist and Bayesian methods.   

 

1.  Introduction 

Crop scientists, government regulators, and commercial farmers have been 
working to determine ways to control cross-pollination, or gene flow, between different 
varieties of a crop.  Recent concern has been for cross-pollination between a transgenic 
variety and a non-transgenic variety.  A transgenic strain is a variety where genes have 
been artificially inserted.  There are many reasons for controlling this gene flow.  For 
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instance, farmers who grow and sell organic food are required by federal regulations to 
make sure that their product is almost entirely organic.  Farmers have to be sure that only 
a minimal amount of genetically engineered material of a certain crop finds its way into 
the corresponding organic product.  Another reason for controlling gene flow between 
varieties of a crop is the fact that undesired genes or characteristics could be exported to 
other countries and could cause economic, agricultural, or ecological problems.   

There are many factors that affect the rate of gene flow from a plot of transgenic 
material to another plot of non-transgenic material.  These factors can include the 
distance between the plots, wind patterns, receptivity to pollen, and other biological 
factors.  Faculty in the Department of Soil and Crop Sciences at Colorado State 
University (CSU) have been interested in this gene flow problem.  Over the past several 
years they have been studying the factors that contribute to the amount of gene flow.  
 

2.  Study Description 

There are two studies that the Department of Soil and Crop Sciences at CSU has 
conducted to look at gene flow rates.  Both of the studies were conducted at multiple 
locations in eastern Colorado.  One of them involved corn, and the other wheat.  The 
wheat study was conducted over the growing seasons from 2003 to 2005, and the corn 
study was conducted over the growing seasons from 2002 to 2005.  In each of the studies 
some of the locations were used over multiple growing seasons.  Each of the replicate 
location plots was treated as if it were planted at a different location, since each growing 
season presented different conditions affecting crop performance.  Thus, for the wheat 
study, there were fifty-six locations; whereas, for the corn study there were eleven 
locations.  In general, at each location a plot of transgenic material was planted within a 
larger field of the non-transgenic variety.  In each of the studies actual transgenic crops 
were not planted, but a variety that had a defined genetic trait that could be distinguished 
in the non-transgenic field was used as proxy.  In the remainder of this paper, this proxy 
material will be referred to as transgenic material.  Once the plots were planted, transects 
were then set up radiating outward from the smaller transgenic field into the non-
transgenic field.  Figure 2.1 shows an example of the general set up of the plots and 
transects.  The orientation of these transects were either perpendicular to the long side of 
the transgenic plot, perpendicular to the short side of the transgenic plot, or diagonal to 
the sides of the plot.   

 

 

 

 

 

Figure 2.1 – General setup of fields and transects for corn and wheat studies. 
 

 In the wheat study, however, most of the locations had a different set up, in which 
a plot of transgenic material was planted adjacent to a plot of non-transgenic material and 
then transects extending into the non-transgenic field were created.  These transects could 
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only then be perpendicular to the transgenic field, or at an angle.  For the determination 
of the rate of gene flow in wheat, the proxy crop for the transgenic material was a variety 
that was herbicide resistant, whereas the non-transgenic material was susceptible to 
herbicide.  Seeds were obtained from the non-transgenic field at specified distances and 
orientations and planted in another field; when the resulting plants were at the 3 to 5 
leafstage, they were sprayed with herbicide.  Non-transgenic plants were killed by the 
herbicide, and plants from cross-pollinated seeds were stunted.  The proportion of cross-
pollination for each sample could then be calculated by dividing the number of hybrid 
plants in a sample by the corresponding total number of plants in the sample.  Other data 
that were collected for each data point were the location of the experimental field where 
the data was taken, the distance at which the sample was collected, the compass direction 
at which the transect was pointed, and the timing of when the non-transgenic material 
headed. 
 In the corn study, the proxy crop for the transgenic material was a conventionally 
bred variety of blue corn, and the non-transgenic variety was yellow corn.  When pollen 
from a blue corn plant fertilizes a yellow corn ovule, the resulting kernel is blue.  Gene 
flow rates were determined by first sampling ten ears of corn at various distances along 
each transect.  Then, the total number of kernels in each sample was recorded along with 
the number of blue kernels in the sample.  The proportion of cross-pollination could then 
be calculated by dividing the number of blue kernels by the corresponding total number 
of kernels.  For the corn study, additional variables that were collected for each sample 
position were the location of the experimental field where the data was taken, the 
distance from the transgenic field where the sample was collected, the compass 
orientation of the transect, and whether the transect was perpendicular to the long side of 
the transgenic plot, perpendicular to the short side, or at an angle.  Other collected data 
included the average wind direction at a given location, the average wind speed at a 
location, and the difference in the timing of when the transgenic material flowered versus 
when the non-transgenic material flowered.  With the data for both the corn and wheat 
studies, statistical models can then be fit.  From the model fitting results, tables can then 
be created to inform farmers about the distances required to keep cross-pollination at a 
controlled level.     
 

3.  Initial Model 

The objective of the statistical analysis for these studies is to fit a statistical model 
to estimate the relationship between the gene flow rate and how far the sampled plant 
material is from the transgenic field.  To this end, let Yij be the number of cross-
pollinated plants, or kernels, at the ith location and the jth sample within that location.  
These Yij ‘s are assumed to be independent.  Also, let xij be the measured distance along 
the transect from the transgenic field for location i and sample j.  It is assumed that  

Yij ~ Binomial(nij, pij), 
where nij is the number of plants or kernels sampled for location i and sample j, and pij is 
the true proportion of cross-pollinated material at a given sampled position.  Taking the 
logit of pij, the model for the cross-pollination proportions and the distance from the 
transgenic field with an additional covariate, wij, is assumed to be  
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where β is a fixed effect corresponding to xij and γ is the fixed effect corresponding to wij.  
Here, the assumed model allows for the locations to be considered a random sample from 
a larger population of locations.  This is done by assuming αi is distributed as follows: 
 ),(~ 2

0 ασαα Ni  (3.2) 
This form of the model is then a Generalized Linear Mixed Model with binomial 
response and a logit link function. 

After the model is fit, cross-pollination rates can then be predicted for various 
distances at given locations.  However, many actual observed rates will be above these 
predicted rates, and farmers and government regulators would want some control on the 
proportion of locations that would have rates above the predicted values.  To solve this 
problem a conservative upper limit on the predicted gene flow rate will be found by 
determining an Upper Tolerance Limit on the cross-pollination rate pij at a fixed distance 
using both Frequentist and Bayesian methods.   

A Frequentist Upper Tolerance Limit (Graybill 1976) is defined as follows:   
 
Let  
 ασγβαθ cijij zwx +++= 0  (3.3) 
where  
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the cth percentile of the standard normal distribution.  Therefore,  
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This is referred to as 100c% coverage.  The upper cth percentile of the distribution of pij is 
then  

( )
( )θ
θ

exp1
exp
+

. 

A Frequentist approach can be taken to find the 100c% coverage, 100d% confidence 
Upper Tolerance Limit for the logit of pij at a fixed xij and wij for a randomly selected 
location.  This can be done by calculating a 100d% Upper Confidence Limit for θ.  The 
formulation of the model defined in Equations 3.1 and 3.2 is developed in Section 3.1.  
An alternative Bayesian approach, described by Aitchison (1964), is to compute a 100c% 
posterior credible interval on θ.  This Bayesian approach will be addressed in Section 3.2.   
 

3.1  Frequentist Approach 

 To find an Upper Tolerance Limit for the Frequentist case, consider theta, as 
defined in Equation 3.3.  Let θ̂  be the estimated value of θ , δ be the vector of 
parameters in the model, and δ̂ be the corresponding vector of estimates.  Thus, 
 ( )Tασγβαδ ,,,0= . (3.5) 
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Also let  
 ( )Tcij zwxl ,,,1= . 
Therefore,  
 δθ ˆˆ Tl= . (3.6) 
The estimated standard error of θ̂  is then 

 Vllse T=)ˆ(θ , (3.7) 
where V is the estimated covariance matrix of δ̂ .  Assuming that  
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ˆ

θ
θθ

se
−       (3.8) 

is approximately distributed as Standard Normal, then  
 dzseU )ˆ(ˆ θθ +≡      (3.9) 
is a 100d% Upper Confidence Limit on θ which then gives an Upper Tolerance Limit on 
pij by taking  
 

)exp(1
)exp(

U
U

+
. (3.10) 

Therefore, the cross-pollination rate can be conservatively bounded at a given distance 
and covariate term. 
 

3.2  Bayesian Approach 

Another approach, other than the previously described method, can be taken to 
find the 100c% coverage 100d% confidence Upper Tolerance Limit on pij.  This approach 
is a Bayesian approach discussed by Aitchison (1964), where a joint prior distribution is 
assumed for δ, the vector of the parameters in the model defined in Equation 3.5.  Then, a 
joint posterior distribution on δ can be estimated by using Markov-Chain Monte Carlo 
(MCMC) methods (see Givens and Hoeting (2006)).  This then implies a posterior 
distribution on θ, and the Upper Tolerance Limit on pij can be constructed by estimating 
the dth percentile of the posterior distribution of 

 
)exp(1

)exp(
θ

θ
+

. (3.11) 

Again, recall that the distance and the covariate term are fixed.  This method can have an 
advantage over the previous Frequentist method due to the relative ease of taking the dth 
percentile of the posterior distribution on pij. 
 In application, farmers, government regulators, and crop scientists often want to 
know how far their plots need to be from each other in order to obtain at most a regulated 
proportion of cross-pollination.  Thus, it is desired to find a 100c% coverage, 100d% 
confidence Upper Tolerance Limit on the distance needed to obtain the regulated cross-
pollination proportion p0.  To do this using the Frequentist approach is difficult.  
However, it is easier to do in the Bayesian sense by expanding the above Bayesian 
analysis.  First, let p0 be the regulated proportion of cross-pollination and let 
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It is then desired to find a distance, *
ix , for each location such that  

 gwxi <++ γβα  (3.13) 
for 

 
*
ixx > , (3.14) 

where wij is fixed at w for all locations and samples.  Then, it is desired for Equations 
3.13 and 3.14 to hold for 100c% of the locations.  To obtain this value, solve the 
inequality defined in Equation 3.13 for x, assuming β<0, to obtain 

 ( )
β

γα wgx i +−
>    (3.15) 

for 

 *
ixx > . (3.16) 

For Equations 3.15 and 3.16 to hold for 100c% of the locations let  

 ( )
β

γα wgx i
i

+−
=* , 

and take the lower 100cth percentile of *
ix  .  Let this value be κ, which then would be a 

100c% Lower Coverage Limit on the distance required to obtain at most the regulated 
limit of g.  Here, κ is defined as  

 
β

γσακ α )( 0 wzg c ++−
= . (3.17) 

Taking the 100d% Upper Bayesian Credible Limit of κ will then give the 100c% 
coverage, 100d% Upper Tolerance Limit on the distance required to obtain at most the 
regulated limit of g.   

The joint posterior distribution of δ, as defined in Equation 3.5, can be estimated 
using MCMC in WinBUGS after specifying prior distributions.  This would then imply a 
posterior distribution on κ as defined in Equation 3.17.  Then, taking the 100d% Upper 
Bayesian Credible Limit on 
 

will give a 100c% coverage, 100d% confidence Upper Tolerance Limit on the distance 
needed to obtain the regulated cross-pollination proportion p0. 
 

4.  Results for the Initial Model 

4.1  Selection of Covariates 

 For both the wheat and corn models in the form defined in Equation 3.1, it is first 
necessary to select the number of covariate variables to include in the model.  For the 
wheat data, Gaines et al. (2007) use just one additional covariate in the model:  the 
heading time of the receiving field, or non-transgenic plot.  At least some overlap in 
flowering time, which is indicated by the time of heading, is necessary for cross-

)exp(1
)exp(
κ

κ
+
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pollination to occur.  In the wheat data, the heading times were coded as ‘1’, ‘2’, ‘3’, ‘5’, 
‘6’, or ‘8’, where a ‘1’ indicated the earliest heading time with adjacent classes differing 
by approximately 1.5 days (see Gaines (2007)).  It was decided to include just the 
heading time as an additional covariate in the model to be consistent with earlier 
research.  For the corn model, it was also decided to include just one covariate in the 
model:  transect orientation.  Transect orientation information was coded as a ‘0’ if the 
transect was perpendicular to the short side of the transgenic plot.  It was coded as a ‘1’ if 
the transect was perpendicular to the long side of the transgenic plot, or if the transgenic 
plot was square.  The transect orientation information was coded as a ‘0.5’ if the transect 
was diagonal to any side or corner of the transgenic plot.   

Another model selection issue is the transformation of the distance variable in the 
model.  Gaines et al. (2007) and Gustafson et al. (2005) performed a square root 
transformation on distance.  To be consistent with this earlier research, the square root 
transformation was also performed in fitting the corn and wheat models.   
 

4.2 Corn Results 

 Figure 4.1 is a graph of the fitted model and Upper Tolerance Limit, where the 
transect orientation is fixed as perpendicular to the long side of the transgenic field.  The 
points on the graph represent the actual data that was collected in the corn study.  The 
blue line is the estimated model, the yellow line is the 95% Upper Coverage Limit, and 
the red line is the 95% coverage, 95% confidence Upper Tolerance Limit.   
 

 
Figure 4.1 – Model, Upper Coverage Limit, and Upper Tolerance Interval Fits for the 

Corn Data 
 
If a cross-pollination proportion no greater than 0.01 is desired, then the transgenic and 
non-transgenic fields would have to be about 40 meters apart when the non-transgenic 
field is adjacent to the longer side of the transgenic field.   
 For the Bayesian fit of the corn model, priors that are vague and centered in the 
vicinity of the Maximum Likelihood Estimates were selected.  Table 4.1 displays the 
selected priors for each of the parameters in the model.   
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      Table 4.1 – Selected priors for parameters in the corn model 
Parameter Prior Distribution 

α0 N(-0.07, 10) 
β N(-1.3, 10) 
γ N(0.49, 10) 
σα2 InvertedGamma(1.5, 0.3) 

 
Fitting the model using MCMC in WinBUGS gives the joint posterior distribution of δ, 
the vector of parameters in the model as defined in Equation 3.5.  Table 4.2 reports the 
marginal posterior means, medians, and standard deviations for each of the parameters in 
the model.  A sensitivity analysis was performed to check for any changes in the reported 
posterior values based on fitting the model with different prior distributions.  The analysis 
showed that the posterior values did not significantly change with adjustments in the 
prior distribution. 
 
Table 4.2 – Marginal posterior means, medians, and standard deviations for parameters 
in the corn model. 

Parameter Posterior Mean Posterior Median Posterior Standard 
Deviation 

α0 -0.075 -0.069 0.481 
β -1.287 -1.287 0.005 
γ 0.487 0.487 0.016 
σα2 2.568 2.299 1.202 

 
From the joint posterior distribution of δ, posterior distributions can be calculated for pij 
at various distances along transects perpendicular to the long side of the transgenic field.  
Table 4.3 reports the posterior means, medians, and 95th percentiles for the upper 95th 
percentile of pij at various distances.  The upper 95th percentiles here are the estimated 
95% coverage, 95% confidence Upper Tolerance Limits for pij at the given distance.  
Here transects are perpendicular to the long side of the transgenic field. 
 
Table 4.3 – Posterior means, medians, and 95th percentiles for the 95th percentile of pij at 

various distances for the corn model. 
Distance in Meters Posterior Mean Posterior Median 95th Percentile 

1 0.825 0.834 0.954 
10 0.273 0.238 0.562 
25 0.041 0.028 0.107 
50 0.003 0.002 0.008 

 
From Table 4.3 it can be seen that if a cross-pollination proportion of at most 0.8% was 
desired, then the non-transgenic field of corn would need to be planted about 50 meters 
away from the long side of the transgenic field.   
 Using the same joint posterior distribution of δ, the posterior distribution on the 
distance required to get a regulatory limit of cross-pollination can be calculated.  Table 
4.4 reports the posterior means, medians and 95th percentiles on the inverse logit 
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transformation of κ, as defined in Equation 3.17, for various regulatory limits of cross-
pollination proportions.  Again, the 95th percentile will be the estimated 95% coverage, 
95% confidence Upper Tolerance Limit for the distance required to get a regulated limit 
of cross-pollination.  Here transects are again perpendicular to the long side of the 
transgenic plot or perpendicular to a side of a square plot of transgenic material.   
 
Table 4.4 – Posterior means, medians and 95th percentiles on the inverse logit 

transformation of κ, for various regulatory limits of cross-pollination proportions 
in the corn model. 

Regulated Limit Posterior Mean Posterior Median 95th Percentile 
0.01 35.06 m 33.95 m 47.93 m 
0.005 41.75 m 40.57 m 55.72 m 
0.001 59.47 m 58.11 m 76.05 m 

 
From the above table it can be seen that if at most a 1% cross-pollination rate is desired, 
then the non-transgenic field of corn needs to be about 48 meters away from the long side 
of the transgenic plot.   
 

4.2 Wheat Results 

 Figure 4.2 is a graph of the fitted model and Upper Tolerance Limit with the 
earliest heading time of the non-transgenic crop.  In this case the relative heading class is 
coded as a ‘1’.  This is the class that appeared to have the greatest amount of cross-
pollination, thus presenting the worst case scenario.  The set up of this plot is the same as 
that of the plot for the estimated corn model.   
 

 
Figure 4.2 – Model, Upper Coverage Limit, and Upper Tolerance Limit Fits for 

theWheat Data 
 
It appears from the graph that if a cross-pollination proportion of at most 0.01 is desired, 
then the transgenic and non-transgenic fields would have to be about 28 meters apart 
when the heading time of the non-transgenic plot is at its earliest.   
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 For the Bayesian fit of the wheat model, as in the corn analysis, selected priors 
were vague and centered in the vicinity of the Maximum Likelihood Estimates.  Table 4.5 
displays the selected priors for each of the parameters in the model.   
 

Table 4.5 - Selected priors for each of the parameters in the wheat model 

Parameter Prior Distribution 
α0 N(-4, 10) 
β N(-0.41, 10) 
γ N(-0.49, 10) 
σα2 InvertedGamma(0.8, 1) 

 
Fitting the model using MCMC in WinBUGS gives the joint posterior distribution for δ.   
From the joint posterior distribution of δ, posterior distributions can be estimated for the 
upper 95th percentile of pij at various distances (assuming the heading time of the non-
transgenic variety is at its earliest).  Table 4.6 reports the posterior means, medians, and 
95th percentiles for the upper 95th percentile of the distribution of pij at various distances.  
The upper 95th percentiles are the estimated 95% coverage, 95% confidence Upper 
Tolerance Limits for pij at the given distance where, again, the heading time of the non-
transgenic variety is at its earliest.  Again, a sensitivity analysis was performed by 
changing the prior distributions and the resulting posterior means, medians, and 95th 
percentiles remained essentially the same. 
 
Table 4.6 - Posterior means, medians, and 95th percentiles for the 95th percentile of the 

distribution of pij at various distances in the wheat model. 
Distance in Meters Posterior Mean Posterior Median 95th Percentile 

1 0.037 0.036 0.055 
10 0.016 0.015 0.023 
25 0.007 0.007 0.011 
50 0.003 0.003 0.005 

 
From the previous table it can be seen that if a cross-pollination proportion of at most 
1.1% was desired, then the non-transgenic field of corn would need to be planted about 
25 meters away.   
 Using the same joint posterior distribution of δ, the posterior distribution on the 
distance required to get a regulatory limit of cross-pollination can be calculated.  Table 
4.7 on the following page reports the posterior means, medians and 95th percentiles on the 
inverse logit transformation of κ, as defined in Equation 3.17, for various regulatory 
limits on cross-pollination proportion.  Again, the 95th percentile will be the estimated 
95% coverage, 95% confidence Upper Tolerance Limit for the distance required to get a 
regulated limit of cross-pollination when the heading time of the non-transgenic variety is 
at its earliest.   
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Table 4.7 - Posterior means, medians and 95th percentiles on the inverse logit 
transformation of κ, for various regulatory limits of cross-pollination proportions 
for the wheat model. 

Regulated Limit Posterior Mean Posterior Median 95th Percentile 
0.01 17.88 m 17.17 m 27.82 m 
0.005 34.95 m 34.08 m 48.63 m 
0.001 96.42 m 95.21 m 119.1 m 

 
From Table 4.7 it can be seen that if only a 1% cross-pollination rate is desired, then the 
non-transgenic field of wheat needs to be about 28 meters away when, again, the heading 
time of the non-transgenic variety is at its earliest.   
 

4.3 Evaluation of the Frequentist Method by Simulation 

 In computing the Frequentist Upper Tolerance Limits, the Covariance Matrix of δ 
is estimated using large sample theory.  However, for the corn there are only eleven 
locations, and for the wheat there are fifty-six locations.  For the corn analysis, there is 
definitely a concern about small sample size, but the question remains as to whether the 
fifty locations in the wheat data provide a sample size that is large enough for large 
sample results to be appropriate.  To evaluate this, a simulation study was conducted in 
which a dataset containing a specified number of locations was generated with known 
model parameters.  The set up of the model for the simulation study starts with the 
assumption  

Yij ~ Binomial(n, pij). 
Then, 

 iji
ij

ij x
p

p
βα +=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−1
log , (4.1) 

where β is a fixed effect corresponding to xij, which are set distances.  αi is considered to 
be a random effect assumed to be distributed as follows: 
 ),(~ 2

0 ασαα Ni  (4.2) 
Here i = 1, … ,I and j = 1, … ,J.  After generating a dataset with known model 
parameters, a true 95% Upper Coverage Limit was constructed.  Next, the generated data 
was analyzed using SAS Proc NLMIXED and the Maximum Likelihood Estimates of the 
parameters were obtained.  Using these estimates, a 95% coverage, 95% confidence 
Upper Tolerance Limit was then constructed.  The datasets were generated many times 
and the number of times that the calculated 95% coverage, 95% confidence Upper 
Tolerance Limit contained the true 95% Upper Coverage Limit was recorded.  From this, 
the percentage of times that the true 95% Upper Coverage Limit was contained in the 
Upper Tolerance Limit could be calculated.  This is what will be referred to as the 
Containment Percentage.  If the model is estimated correctly, then the Containment 
Percentages will be close to 95%.   

The simulation was done twice, once mimicking the corn data, and a second time 
mimicking the wheat data.  Hence, the generated datasets had the number of locations 
and the true parameters set close to the number of locations and Maximum Likelihood 
Estimates in the two studies.  The distance values were always set to consecutive integer 
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values ranging from 0 to 10.  Thus, xij = j-1 where j = 1, … ,11.  Also, the Containment 
Percentages were calculated for each value of distance.  Table 4.8 reports the results of 
the corn mimicked simulation study using the following values for the model parameters: 

I = 10, n = 100, α0 = 6.43, σα2 = 1.45, β = -1.3. 
The Upper Tolerance Intervals were constructed with 95% coverage and 95% confidence.  
The simulation was run five thousand times.   
 
 
Table 4.8 – Containment percentages for the corn mimicked simulation study. 

x 0 1 2 3 4 5 6 7 8 9 10 
Containment 

% 84.0 83.7 83.6 83.3 83.3 83.3 83.4 83.4 83.4 83.5 83.6 

 
As can be seen, the percentage of the actual number of times the calculated Upper 

Tolerance Interval contained the true Upper Coverage Interval was much lower than the 
desired 95%.  Table 4.9 reports the results of the wheat mimicked simulation study using 
the following values for the model parameters: 

I = 50, n = 100, α0 = -2, σα2 = 1.1, β = -0.4. 
The Upper Tolerance Intervals were constructed with 95% coverage and 95% confidence.  
Again, the simulation was run five thousand times.   
 
Table 4.9 – Containment percentages for the wheat mimicked simulation study. 

x 0 1 2 3 4 5 6 7 8 9 10 
Containment 

% 91.2 91.3 91.2 91.1 91 91 90.9 91 90.8 90.9 91.1 

 

From the previous table it can be seen that with the larger sample size, the containment 
percentages are higher, but still not up to the desired 95%.   
 Another problem with the analysis is that there is more variation in the observed 
counts of cross-pollinated material than what would be expected under the Binomial 
Distribution.  To account for this extra variation the slope corresponding to distance will 
be considered random over locations.  Also, a random position effect will be added to the 
model to allow for overdispersion.  This position effect corresponds to the various 
positions in the non-transgenic field where the samples were taken.  Therefore these 
positions are considered to be a random sample from a larger population of positions.  
This enhanced model is developed in Section 5. 
 

5.  Enhanced Model 

 Recall that the number of cross-pollinated plants or kernels at the ith location and 
the jth sample within that location, Yij, is assumed to be distributed  

Yij ~ Binomial(nij, pij). 
Consider an enhanced model describing the relationship between the logit of pij and the 
distance from the transgenic field, xij, along with a covariate, wij:   
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where φij is the position effect at location i and sample position j.  The initial model 
developed in Section 3 assumed that the studies for wheat and corn were done at 
locations sampled from a population of potential locations with a mean of α0 and 
variance σα2.  In the enhanced model, for each randomly selected location, a slope, βi,   
corresponding to xij is also randomly selected from a larger population of slopes with a 
mean of β0 and variance σβ2.  The randomly selected slopes and randomly selected 
intercepts are also assumed to be correlated with each other with a covariance of σαβ.  
Thus, αi and βi are assumed to be jointly distributed as follows: 
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The position effects, φij, are assumed to be a random sample from a normally distributed 
population:   
 ( )2,0~ φσφ Nij  (5.3) 
 
5.1  The Bias Adjustment 

 The random position effect adds a second level of randomness to the model and 
creates a bias in estimating the cross-pollination proportions.  This bias problem arises 
because there are an infinite number of possible positions planted at a fixed distance from 
the edge of the transgenic field.  When the non-transgenic field is harvested, each 
individual position is not harvested separately, but the entire field is harvested.  Thus, an 
average of cross-pollination proportions is taken at a fixed distance, x, and covariate 
term, w.  Therefore, it is desired to estimate this value, which is ( )wxipE ij ,,| .   
However, 

 
)exp(1

)exp(),,|(
i

i
ij wxipE

η
η

+
≥ , (5.4) 

where 
wxwxiE iiiji γβαηη ++== ),,|( . 

The difference between the left and right hand sides of equation 5.4 represents bias that 
would occur if the left hand side were estimated using the right hand side directly.   

To reduce bias due to the random φij in the enhanced model, we propose an 
approximate bias adjustment.  Consider that 

( )
( )ij

ij
ijp

η
η

exp1
exp
+

= . 

For small pij, 
 )exp( ijijp η≅ . (5.5) 
Because ηij is normally distributed, 
 ),(~)exp( 2

φσγβαη ijijiiij wxLognormal ++ . (5.6) 
Then, 
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suggesting a bias adjustment of 
2

2
1

φσ . 

 

5.2  Derivation of Upper Tolerance Limit for the Enhanced Model 

In the enhanced model as defined in Equation 5.1, recall that for a fixed location i, 
distance x, and covariate term w, 
 wxwxiE iiiji γβαηη ++== ),,|( . (5.8) 
Thus, unconditionally across locations, with distance and the covariate term still fixed, 

)2,(~ 222
00 αββα σσσγβαη xxwxNi ++++ . 

The objective of this section is to derive a 100c% coverage, 100d% confidence Upper 
Tolerance Interval for the cross-pollination proportion at a fixed distance and covariate 
term.  For a given content c, define 

 
2

2
2

222
00

φ
αββα

σ
σσσγβαθ ++++++= xxzwx c ,   (5.9) 

which is the cth percentile of the distribution of ηij plus the bias adjustment.  Let  

 
)exp(1

)exp(
θ

θϕ
+

= , (5.10) 

which estimates the 100cth percentile of ( )wxipE ij ,,| .  Therefore, approximately 100c% 
of the locations will have an average pij below ϕ. 
 Fitting the enhanced model, as defined in Equations 5.1, 5.2, and 5.3, using 
Frequentist methods, is a difficult matter with available software.  The reason for this is 
that SAS Proc NLMIXED, which computes maximum likelihood estimates, cannot 
handle both the random location effect and the random position effect within the 
randomly chosen locations.  SAS Proc GLMMIX can do the pseudo-likelihood analysis 
as described by Littell et al. (2006), but cannot compute the estimated covariance matrix, 
V, that includes estimated variances for both the random effect standard deviations and 
fixed effects.  However, the enhanced model can be estimated using Bayesian methods.  
This can be done by first specifying prior distributions for the parameters in the model.  
Let 
 ( )φαββα σσσσγβαδ ,,,,,, 00=T  (5.11) 
be the vector of model parameters.  Then, a joint posterior distribution on δ can be 
estimated using MCMC methods.  The joint posterior distribution on δ implies a posterior 
distribution on θ as defined in Equation 5.9, and ϕ as defined in Equation 5.10.  Taking 
the 100d% Upper Bayesian Credible Limit on ϕ will then give an approximate 100c% 
coverage, 100d% confidence Upper Tolerance Interval on the average cross-pollination 
proportion at a fixed location and sample. 
 A 100c% coverage, 100d% confidence Upper Tolerance Limit on the distance 
needed to assure compliance with a regulatory maximum cross-pollination proportion p0 
can also be estimated using Baysian methods.  Again, let 
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Recall that, 
)2,(~ 222
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It is desired to find x, such that 
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This will be satisfied by taking the 100cth percentile of the distribution of ηi and setting it 
equal to g minus the bias adjustment, as found in Equation 5.13.  The result is then 
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This equation can be converted to a quadratic equation in x, which can be easily solved.  
Solving the quadratic equation gives the upper root 
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The joint posterior distribution on δ as defined in Equation 5.14 then implies a posterior 
distribution on τ for a fixed regulated cross-pollination proportion.  Taking the 100d% 
Upper Bayesian Credible Limit on the posterior distribution of τ then gives a 100c% 
coverage, 100d% confidence Upper Tolerance Limit on the distance needed to obtain the 
regulated cross-pollination proportion p0.   
 

5.3  Enhanced Model Results 

5.3.1  Corn Results 

 For the fit of the enhanced corn model, priors were selected that are vague and 
centered in the vicinity of the Maximum Penalized Quasi-Likelihood Estimates, which 
were obtained through SAS Proc GLMMIX.  Table 5.1 displays the selected priors for 
each of the parameters in the model.   
 
 Table 5.1 - Selected priors for each of the parameters in the enhanced corn model 

Parameter Prior Distribution 
α0 N(-7.9, 10) 
β0 N(-0.65, 10) 
γ N(0.68, 10) 
σφ2 InvertedGamma(0.78125, 0.8) 
Σ Wishart(R,2) 
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In Table 5.1,  
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Fitting the model using MCMC gives the Joint Posterior Distribution of δ as defined in 
equation 5.11.  Table 5.2 reports the marginal posterior means, medians, and standard 
deviations for each of the parameters in the model.  Again, a sensitivity analysis was 
performed by changing the prior distributions and the resulting posterior means, medians, 
and standard deviations remained essentially the same. 
 
Table 5.2 - Marginal posterior means, medians, and standard deviations for each of the 
parameters in the enhanced corn model. 

Parameter Posterior Mean Posterior Median Posterior Standard 
Deviation 

α0 -8.061 -8.045 0.625 
β0 -0.751 -0.748 0.067 
σφ2 1.723 1.716 0.151 
σα2 3.861 3.292 2.301 
σβ2 0.039 0.033 0.025 
σαβ 0.38 0.321 0.238 

 
From the joint posterior distribution of δ, posterior distributions can be estimated for pij at 
various distances where the transects are perpendicular to the long side of the transgenic 
field.  Table 5.3 reports the posterior means, medians, and 95th percentiles for ϕ at 
various distances.  The upper 95th percentiles for ϕ are the estimated 95% coverage, 95% 
confidence Upper Tolerance Limits for the proportion of cross-pollination at the given 
distance where, again, the transects are perpendicular to the long side of the transgenic 
field. 
 
Table 5.3 - Posterior means, medians, and 95th percentiles for ϕ, at various distances for 

the enhanced corn model. 
Distance in Meters Posterior Mean Posterior Median 95th Percentile 

1 0.311 0.295 0.471 
10 0.149 0.128 0.295 
25 0.078 0.059 0.194 
50 0.04 0.023 0.119 

 
From Table 5.3 it can be seen that if a cross-pollination proportion of about 12% was 
desired, then the non-transgenic field of wheat would need to be planted about 50 meters 
away.   
 Using the same joint posterior distribution of δ, the posterior distribution on the 
distance required to get a regulatory limit of cross-pollination can be calculated.  Table 
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5.4 reports the posterior means, medians and 95th percentiles of τ, as defined in equation 
5.15, for various regulatory limits of cross-pollination proportions.  Again, the 95th 
percentile will be the estimated 95% coverage, 95% confidence Upper Tolerance Limit 
for the distance required to get a regulated limit of cross-pollination when the transects 
are perpendicular to the long side of the transgenic field.   
 
Table 5.4 - Posterior means, medians and 95th percentiles of τ for the enhanced corn 

model for three selected regulatory limits. 
Regulated Limit Posterior Mean Posterior Median 95th Percentile 

0.01 150.4 m 79.86 m 285.8 m 
0.005 194.6 m 109.4 m 383.8 m 
0.001 318.8 m 195.6 m 669.8 m 

 
From Table 5.4 it can be seen that if only a 1% cross-pollination rate is desired, then the 
non-transgenic field of corn needs to be about 286 meters away when, again, the transects 
are perpendicular to the long side of the transgenic field.   

 

5.3.2  Wheat Results 

For the wheat data, vague prior distributions for the parameters in the model were 
selected to be in the vicinity of the Maximum Likelihood Estimates as found through 
SAS Proc GLMMIX.  Table 5.5 displays the selected priors for each of the parameters in 
the model.   

 
   Table 5.5 - Selected priors for each of the parameters in the wheat model. 

Parameter Prior Distribution 
α0 N(-4.34, 10) 
β0 N(-0.45, 10) 
γ N(-0.42, 10) 
σφ2 InvertedGamma(0.8, 1) 
Σ Wishart(R,2) 

 
Here,  

⎥
⎦

⎤
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04964.04504.1

R . 

Fitting the model using MCMC gives the Joint Posterior Distribution of δ as defined in 
equation 5.11.  Table 5.6 on the following page reports the marginal posterior means, 
medians, and standard deviations for each of the parameters in the model.  Again, a 
sensitivity analysis was performed by changing the prior distributions and the resulting 
posterior means, medians, and standard deviations remained essentially the same. 
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Table 5.6 - Marginal posterior means, medians, and standard deviations for each of the 
parameters in the enhanced wheat model. 

Parameter Posterior Mean Posterior Median Posterior Standard 
Deviation 

α0 -4.274 -4.27 0.248 
β0 -0.487 -0.485 0.044 
γ -0.447 -0.45 0.047 
σφ2 0.905 0.9 0.103 
σα2 0.796 0.751 0.304 
σβ2 0.034 0.031 0.015 
σαβ -0.02 -0.014 0.049 

 
From the joint posterior distribution of δ, posterior distributions can be estimated for ϕ, 
as defined in Equation 5.10, at various distances where the heading times between the 
transgenic and non-transgenic varieties are close to each other.  Table 5.7 reports the 
posterior means, medians, and 95th percentiles for ϕ at various distances.  The upper 95th 
percentiles for ϕ are the estimated 95% coverage, 95% confidence Upper Tolerance 
Limits for the proportion of cross-pollination at the given distance where, again, the 
heading time of the non-transgenic variety is at its earliest. 
 
Table 5.7 - Posterior means, medians, and 95th percentiles for ϕ at various distances for 

the enhanced wheat model. 
Distance in Meters Posterior Mean Posterior Median 95th Percentile 

1 0.037 0.034 0.059 
10 0.016 0.015 0.025 
25 0.009 0.008 0.015 
50 0.005 0.005 0.01 

 
From Table 5.7 it can be seen that if a cross-pollination proportion of about 1% was 
desired, then the non-transgenic field of wheat would need to be planted about 50 meters 
away.   
 Using the same joint posterior distribution of δ, the posterior distribution on the 
distance required to get a regulatory limit of cross-pollination can be calculated.  Table 
5.8 reports the posterior means, medians and 95th percentiles of τ, as defined in equation 
5.15, for various regulatory limits of cross-pollination proportions.  Again, the 95th 
percentile will be the estimated 95% coverage, 95% confidence Upper Tolerance Limit 
for the distance required to get a regulated limit of cross-pollination when the heading 
times are close to each other.   
 
Table 5.8 - Posterior means, medians and 95th percentiles of τ for the enhanced wheat 

model for three selected regulatory limits. 
Regulated Limit Posterior Mean Posterior Median 95th Percentile 

0.01 32.63 m 19.52 m 51.54 m 
0.005 97.67 m 48.11 m 155.6 m 
0.001 412 m 196 m 1008 m 
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From Table 5.8 it can be seen that if only a 1% cross-pollination rate is desired, then the 
non-transgenic field of wheat needs to be about 52 meters away when, again, the heading 
time of the non-transgenic variety is at its earliest.   
 

6.  Summary of Results and Conclusions 

 In this discussion, several methods have been presented for estimating 100c% 
coverage, 100d% confidence Upper Tolerance Intervals on the proportion of cross-
pollination between two crop varieties when they are planted at a fixed distance away 
from each other.  A summary of the results of these methods is found in Table 6.1.  Here 
95% coverage, 95% confidence Upper Tolerance Limits are reported for various 
conditions and models. 
 
Table 6.1 – Summary of the results of the various methods for estimating Upper 

Tolerrance Intervals. 
 Conditions Corn Wheat 

Initial Model 95% Coverage 
95% Confidence 

Transect 900 to long 
side of source field 

Earliest Heading 
Timing 

Frequentist on pij Distance = 25 m 0.046 0.011 
Bayesian on pij Distance = 25 m 0.107 0.011 

Required Distance p0 = 0.01 47.93 m 27.82 m 

Enhanced Model 95% Coverage 
95% Confidence 

Transect 900 to long 
side of source field 

Earliest Heading 
Timing 

Bayesian on ϕ Distance = 25 m 0.194 0.015 
Required Dist. τ p0 = 0.01 285.8 m 51.54 m 

 
 A key feature of Table 6.1 is that for the corn results for the initial model, as 
defined in Equation 3.4, the estimated Upper Tolerance Limit on pij for a distance of 25 
meters is larger for the Bayesian approach than for the Frequentist approach.  In Section 
4.3 it was observed that the Frequentist method exhibited poor coverage performance.  
Thus, it would appear that the Bayesian approach, with a higher estimate of the Upper 
Tolerance Limit, has better coverage performance than the Frequentist approach.  When 
comparing the wheat results for the initial model, the estimated Upper Tolerance Limit on 
pij for a distance of 25 meters is the same for both the Bayesian and Frequentist 
approaches.  The equality of these estimates may be a result of the larger number of 
locations for wheat.  From the simulation evaluation performed in Section 4.3, it was 
observed that the higher sample size, as in the wheat data, improved the coverage 
performance of the Frequentist approach.  This improvement might then put the 
Frequentist approach on par with the Bayesian approach, thus giving estimates that are 
the same.  When comparing the estimated Upper Tolerance Limits for the initial model to 
those for the enhanced model, the enhanced model gives larger estimates for both pij and 
the required distance in both the corn and wheat studies.  This is because the enhanced 
model accounts for extra variation.   
 In choosing a method to find 100c% coverage, 100d% Upper Tolerance Limits 
for these studies, we recommend using the Bayesian approach.  One of the reasons for 
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this is the poor performance of the Frequentist approach with small sample sizes.  
Another reason is the ability to find the distribution of the distance needed to get at most 
a regulated limit of cross-pollination.  Also, it is simple to find a 100c% coverage, 100d% 
confidence Upper Tolerance Limit by taking an Upper Bayesian Credible Limit on the 
posterior distribution of the Upper Coverage Limit.  Further work on these corn and 
wheat studies would be to determine the number of locations needed to get a large 
enough sample size for the Frequentist analysis to work well.   
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